

Rayat Shikshan Sanstha's **D. P. Bhosale College, Koregaon**

B.Sc. Part III Semester V

Paper X: Molecular Cell Biology and Animal Biotechnology

Question Bank

Multiple Choice Questions

- 1. What is Molecular Biology?
 - a) Deals with the physical structures and processes of biological events
 - b) Deals with the chemical structures and processes of chemical events
 - c) Deals with the physical structures and processes of chemical events
 - d) Deals with the chemical structures and processes of biological events
- 2. Which of the following is DNA made up of?
 - a) Adenine Guanine
 - b) Cytosine Thymine
 - c) Both Adenine Guanine & Cytosine Thymine
 - d) None of the mentioned
- 3. Who is known as the father of Molecular biology?
 - a) Linus Carl Pauling b)James Watson
 - c) Francis H. Crick d) Mahlon B. Hoagland
- 4. Proteins are made up of which of the following?
 - a) Nucleic acids b) Amino acids c) Nuclease d) None of the mentioned
- 5. Which of the following is RNA made up of?
 - a) Adenine, Cytosine, Guanine, and Uracil
 - b) Adenine, Guanine, Cytosine, and Thymine
 - c) Adenine, Guanine, Uracil, and Thymine
 - d) Adenine, Uracil, Cytosine, and Thymine

6. Which of the following is a type of RNA involved in protein synthesis?

a) snRNA b) rRNA c) yRNA d) dsRNA

7. How many unusual bases are observed in a tRNA molecule?

a) 1 b) 3 c) 5 d) 0

8. Which of the following parts of the mRNA determines the specificity of the amino acid attached?

a) Acceptor stem	b) D loop	c) ΨU loop	d) Variable loop

- 9. Which of the following is wrongly paired?
 - a) Nucleic acid hydrogen bond b) Polysaccharide glycosidic bond
 - c) Proteins peptide bond d) Phospholipids –phosphate linkage
- 10. Which of the following factors do not provide to the separation of DNA fragments during electrophoresis?

a) Size b) Matrix density c) Chargaff's rule d) Ethidium bromide

11. Which of the following is the slowest process among the following?

a) Splicing b) Translation c) Transcription d) Replication

- 12. Which of the following is not a component of the nucleic acid backbone?
 - a) Nucleotide b) Phosphate group
 - c) Pentose sugar d) Phosphodiesterase bond

13. Which of the following does not take part in gene expression?

- a) Transcription b) RNA processing c) Replication d) Translation
- 14. Which of the following is a character of ORF?
 - a) Non overlapping b) 3 nucleotide codons
 - c) Contiguous d) Intron
- 15. Which of the following does not contribute to the stability of tRNA?
 - a) Hydrogen bonding
 - b) Hydrophobic interactions
 - c) Base and sugar-phosphate backbone interaction
 - d) Base pairing
- 16. This best describes a polysome
 - a) active site for synthesis of lipids b) active site for synthesis of proteins
 - c) active site for synthesis of DNA d) all of these
- 17. In protein synthesis, translocation is initiated with the movement of

- a) tRNA from P-site to the A-site
- b) dipeptidyl tRNA from A-site to P-site
- c) tRNA from A-site to P-site
- d) tRNA from P-site to E-site
- 18. The process by which protein synthesis from genetic code occurs is best described bya) transcriptionb) translationc) replicationd) reproduction
- 19. This is incorrect about the nature of genetic code.

Codons are

- a) universal b) overlapping c) comma less d) triplet
- 20. This elongation factor is known as translocase
 - a) EFG b) EF2 c) both (a) and (b) d) EF-Tu and EF-Ts
- 21. This drug inhibits the initiation step of translation
 - a) ricin b) tetracycline c) streptomycin d) cyclohexylamine
- 22. In translation, this is not an essential component
 - a) amino acid b) ligase c) mRNA d) anticodon
- 23. This identifies a particular amino acid and its cognate tRNA molecule
 - a) topoisomerase b) rRNA c) Ribosome d) tRNA synthetase
- 24. Protein synthesis corresponds to the process of
 - a) duplicating required DNA for synthesis of proteins
 - b) formation of amino acids from mRNA
 - c) formation of mRNA from DNA template
 - d) formation of amino acids from DNA template directly
- 25. This is considered to be the start codon
 - a) AGG b) UAG c) GUG d) AUG
- 26. Conversion of messages carried by mRNA into amino acid sequences is called______a) Replication b) DNA repair c) Translation d) Transcription
- 27. The following set of RNA is required in the translation process except one, mark the INCORRECT?
 - a) Si RNA b) rRNA c) mRNA d) tRNA
- 28. What is the size of the prokaryotic ribosome?
 - a) 80S b) 70S c) 40S d) 60S

29. Name the sequence of RNA, which is recognized by a small subunit of the ribosome.

- a) Rho utilization site b) Downstream sequence
- c) Upstream sequence d) Shine Dalgarno sequence
- 30. Which of the following is considered as a start codon?

a) AUG b) GUG c) UAG d) AGG

31. Mark the one, which is NOT a stop codon?

a) UAA b) UAG c) UGA d) GGA

32. Which of the following is not true to the nature of the genetic code?

a) Codon is triplet b) Codons are commaless

c) Codons are overlapping d) Codons are universal

33. Who explained the wobble hypothesis?

- a) Darwin b) Watson and Crick
- c) Samuel B. Weiss d) Nirenberg
- 34. Which of the following recognize a specific amino acid and its cognate t-RNA molecule?

a) t-RNA synthetase b) Ribososme c) r-RNA d) Topoisomerase

35. Name the inhibitor which blocks translation in both prokaryotes as well as eukaryotes?a) Chlorophenicol b) Tetracycline c) Puromycin d) Streptomycin

36. Which of the following inhibitor block translation in eukaryotes?

a) Cyclohexamine b) Tetracycline c) Puromycin d) Streptomycin

37. Name the drug which inhibits the initiation step of translation.

a) Cyclohexamine b) Tetracycline c) Ricin d) Streptomycin

- 38. What is the major difference between cloning vectors and primary vectors?
 - a) Selectable marker b) DNA inserts
 - c) Presence of promoter d) Presence of two Ori

39. Which of the following is the primary use of an expression vector?

a) DNA library b) DNA purification c) Protein production d) DNA cloning

40. The process by which every type of transformant can be identified is _____

a) Replica plating b) Hybridization c) Blotting d) Insertional inactivation

41. Southern Blot is used to detect.....

a) RNA b) DNA c) Proteins d) Chromosomes

42. The method used to identify specific DNA sequences in bacterial colonies is known as

a) Colony Hybridization	b) In-Situ Hybridization					
c) Dot Blot Technique	d) Western Blotting					
43. Sothern hybridization is						
a) Used to identify a specific protein	b) Used to identify a specific DNA					
c) Used to identify a specific RNA	d) Used to identify both DNA and RNA					
44. Which of the following statements abo	ut southern blotting is correct?					
a) Developed by E. M. Southern						
b) DNA-DNA hybridization is the ba	sis					
c) Transfer of DNA fragments from g	gel to the membrane is called blotting					
d) All of these						
45. Southern blotting has a variety of appli	ications include?					
a) DNA fingerprinting	b) Preparation of RFLP maps					
c) Identification of transferred genes	d) All of these					
46. The method for detecting the presence	of DNA or RNA in a non-fractionated DNA					
sample is known as						
a) Colony Hybridization b) In Si	tu Hybridization					
c) Dot Blot Technique d) West	tern Blotting					
47. Northern hybridization is						
a) Used to identify a specific protein	a) Used to identify a specific protein					
b) Used to identify a specific DNA						
c) Used to identify a specific RNA						
d) Used to identify both DNA and RN	NA					
48. In Northern hybridization probe hybrid	lization forms					
a) DNA: DNA hybrid b) RNA: DN	NA hybrid					
c) Both a and b d) None of t	hese					
49. Except for one, there are no differences in procedure between Northern and Southern						
hybridization.						
a) DBM membrane is used in northern hybridization						
b) RNA: DNA hybrids are formed in a	b) RNA: DNA hybrids are formed in northern hybridization					
c) Initially fragments are separated by electrophoresis in northern hybridization						
d) DNA denaturation is required before	re blotting in Sothern hybridization					

50. Southern hybridization is

- a) Used to identify a specific protein
- b) Used to identify a specific DNA
- c) Used to identify a specific RNA
- d) Used to identify both DNA and RNA
- 51. In Western blotting
 - a) Agarose gel is commonly used b) Polyacrylamide gel is commonly used
 - c) Both a and b d) High-resolution gels
- 52. For glycoproteins, the most commonly used probe is
 - a) Antibody b) Lectin c) Antigens d) Interferon
- 53. For protein detection, the most commonly used probe is
 - a) Antibody b) Lectin c) Antigens d) Interferons
- 54. ELISA is based on
 - a) Antigen-antibody interaction b) Antigen-protein interaction
 - c) Lectin- antibody interaction d) All of these
- 55. The method for locating specific genes in chromosomes is known as
 - a) Colony hybridization b) In situ hybridization
 - c) Dot blot technique d) Western blotting
- 56. The separation of charged molecules under the influence of an electric current is known as
 - a) Colony hybridization b) Electrophoresis
 - c) Dot blot technique d) Western blotting
- 57. Eukaryotic entities
 - a) in the presence of a cAMP molecule, it carries out protein synthesis
 - b) have only operons assisting in gene expression
 - c) transcription takes place in the nucleus and translation in the cytoplasm
 - d) transcription occurs in the cytoplasm and translation in nucleus
- 58. A genomic DNA possesses functioning units, a group of genes under the influence of promoters known as
 - a) genes b) operons c) anticodon d) codon
- 59. All regulatory proteins possess a common DNA binding motif that is specific flexes in their protein chains permitting them to interlock with
 - a) the outside groove of DNA helix b) the major groove of DNA helix

c) the mir	nor groove of DNA	helix d) the inne	er groove of DNA helix
	0		- 0

60. Regulatory proteins turn transcription off through binding to a site rapidly at the front

of the promoter and many times even overlaps the promoter, this site is the

a) regulatory site b) operator site

c) suppressor site d) transcriptional control site

61. Seemingly, the vertebrate cells contain a protein which binds to clusters of 5methylcytosine ensuring that the bound gene stays in the "off" position. This regulation on the role of gene regulation is an outcome of

a) Methylation b) Translation c) Enhancer expression d) operator suppression

62. The transcriptional gene control in eukaryotes is mediated by

- a) metabolites that bind to the cis-acting elements
- b) trans-acting factors failing to bind to cis-acting elements
- c) trans-acting factors binding to cis-acting elements
- d) repressor proteins that bind to operator sites
- 63. Basic tools of genetic regulation are the ability of some proteins to bind to specific
 - a) regulatory DNA sequences b) regulatory RNA sequences
 - c) enzymes of cells d) promoter portions of genes

64. In the regulation of gene expression, this is an incorrect statement

- a) in the bacteria, it permits to replicate with no control
- b) in the bacteria, it permits to adapt to changing environments
- c) permits the maintenance of homeostasis in multicellular entities
- d) permits the functioning of multicellular entities on the whole

65. There are these many histones in the core of a nucleosome

a) 8 b) 6 c) 4 d) 2

66. In eukaryotes and bacteria, the most common form of regulation is

- a) promoter control b) translation control
- c) repressor control d) transcriptional control

67. Lactose can be a nutrient source for bacteria, it is a _____

a) monosaccharide b) lipid c) disaccharide d) polysaccharide

68. The first step in catabolism of lactose by the bacteria is ______ of a linkage bond.

a) hydrolysis b) oxidation c) reduction d) alkylation

69.	Enzymes ofare clustered together in a bacterial operon.
	a) metabolic pathway b) transcription c) transfusion d) transformation
70.	When was the operation mechanism of a bacterial operon first elucidated?
	a) 1961 b) 1971 c) 1981 d) 1991
71.	In a bacterial operon, which is located downstream of the structural genes?
	a) operator b) inducer c) promoter d) regulatory gene
72.	Which is a DNA-binding protein?
	a) repressor b) operator c) luciferase d) thymidine
73.	The repressor protein is encoded by
	a) regulatory gene b) structural gene c) transfer-DNA d) ribosomal-RNA
74.	The capability of the repressor to bind the operator depends upon
	a) pH b) conformation c) temperature d) moisture
75.	The lac operon consists of structural genes.
	a) 1 b) 2 c) 3 d) 4
76.	Which of the following acts as an inducer in the lac operon?
	a) glucose b) tryptophan c) lactose d) galactose
77.	The lac operon is under positive control, a phenomenon called
	a) regulation b) mutation c) lactose-effect d) glucose-effect
78.	Which of the following acts as a co-repressor in tryptophan operon?
	a) tryptophan b) tyrosine c) glucose d) lactose
79.	. In bacteria, mRNAs bound to small metabolites are called
	a) euchromatin b) riboswitches c) heterochromatin d) nucleosome
80.	What is the reaction in DNA replication catalysed by DNA ligase?
	a) Addition of new nucleotides to the leading strand
	b) Addition of new nucleotide to the lagging strand
	c) Formation of a phosphodiester bond between the 3'-OH of one Okazaki fragment
	and the 5'-phosphate of the next on the lagging strand
	d) Base pairing of the template and the newly formed DNA strand
81.	Which of the following enzymes remove supercoiling in replicating DNA ahead of the
	replication fork?
	a) DNA polymerases b) Helicases c) Primases d) Topoisomerases

82.	DNA unwinding is done by				
	a) Ligase b) Helicase c) Topoisomerase d) Hexonuclease				
83.	Which of the following enzymes is the principal replication enzyme in E. coli?				
	a) DNA polymerase I b) DNA polymerase II				
	c) DNA polymerase III d) None of the mentioned				
84.	Which enzyme used to join bits of DNA?				
	a) DNA polymerase b) DNA ligase c) Endonuclease d) Primase				
85.	During replication, Okazaki fragments elongate				
	a) leading strand towards the replication fork				
	b) lagging strand towards the replication fork				
	c) leading strand away from the replication fork				
	d) lagging strand away from the replication fork				
86.	What is a mode of replication in E.coli?				
	a) Intermediate b) Dispersive c) Conservative d) Semiconservative				
87.	. What is the origin of replication?				
	a) Particular site at which DNA replication starts				
	b) Site which prevents initiation				
	c) Random location on the DNA				
	d) Site at which replication terminated				
88.	Which of the following has the self-repairing mechanisms?				
	a) DNA and RNA b) DNA, RNA and protein				
	c) Only DNA d) DNA and proteins				
89.	What is the function of enzyme involved in base excision repair?				
	a) Addition of correct base b) Addition of correct nucleotide				
	c) Removal of incorrect base d) Removal of phosphodiester bond				
90.	Why recombinational repair system is called double strand break repair?				
	a) Both strands are broken b) One strand is broken				
	c) No strand is broken d) Both strand act as template				
91.	In SOS repair system cleavage of LexA and UmuD is mediated by				
	a) RecB b) RecA c) RecC d) UvrA				

92. '	2. The okazaki fragments are present onstrand						
ä	a) Templ	ate	b) leading		c) lagging	d) all the above	
93.]	Replicati	on occurs in.	phase				
i	a) G1	b) S	c) G2	d) M			
94 .]	In replica	tion of DNA	synthesis of n	new stra	and always occ	urs in the direction	n
8	a) 5'- 3'	b) 3'-5'	c) both	d) for	ward		
9 5.]	DNA pol	ymerase	.removes RN	A prim	er and replaces	DNA	
:	a) I	b) II c) III	d) IV				
96. '	The gene	tic code is					
	a) Triple	t	b) Quadruple	t	c) Do	ablet d) Single	t
97	A codon	contains how	many nucleor	tides?			
ä	a) 1	b) 2	c) 3	d) 4			
98. ′	The initia	ation codon is	S				
i	a) AUG	b) UAA	c) UAG d) U	UGA			
99.	The term	nination codo	n is not				
i	a) AUG	b) UAA	c) UAG d)	UGA			
100.	100. How many t-RNAs are required to translate all 61 codons?						
	a) 31 b) 32 c) 30 d) 29						
101.	101. Which position of a codon is said to wobble?						
a) First b) Second c) Third d) Fourth							
102. The genetic code translated the language of							
	a) Proteins into that of RNA b) Amino acids into that of RNA						
	c) RNA into that of proteins d) RNA into that of DNA						
103.	103. Wobble hypothesis was first proposed by						
	a) Nirer	berg b) W	atson and Cric	ck c)	Watson d) C	rick	
104.	The ope	eron hypothes	sis was discove	ered by	/		
	a) Wats	on and Crick	b) Mendel	c) Jac	ob and Monod	d)niren berg	
105.	The stru	ictural gene .	are responsi	ible for	the synthesis of	of galactoside permease	
	enzyme						
	a)	z b) y	c) a	d) all	the above		
106.	The stru	ictural gene z	are responsib	le for t	he synthesis of	enzyme	
	a) thiog	alactoside	b) galactosid	le perm	ease		

c)transacetylase	d) b-galactosidase				
107. The sequence of the structural genes in lac operon are					
a) lacA-lacZ-lacY l	b) lacZ-lacA-lacY				
c)lacZ-lacY-lacA	d) lacA-lacY-lacZ				
108. Lac operon will be turn	ned on when				
a) Lactose is less than	glucose b) L	actose is less than	medium		
c)Glucose is enough ir	the medium d) L	actose is more than	n glucose		
109. Lac operon is an exam	ple of				
a) Only positive regulat	ion				
b) Only negative regulat	tion				
c) both positive and neg	ative regulation regu	lation			
d) sometimes positive s	sometime negative				
110. Synthesis of RNA from	DNA template is call	ed			
a) Transcription	b) Translation	c) Transition	d) Transversion		
111. Simple proteins are po	lymers of				
a) Sugars b) A	mino Acids c)	Fatty acids	d) Globular proteins		
112. Methionine is specific	ed by initiation co	don	to begin polypeptide		
chain synthesis.					
a) AUG b) T	UGA c)	AAA	d) AGU		
113. The enzyme required	l for transcription is_				
a) Restriction enzyme	b) DNA polymeras	e c) RNA polyme	rase d) RNAase		
114 is a process in	which RNA is synth	esized from DNA	template.		
a) Transcription b)	Translation c)	Transition	d) Transformation		
115. Individual amino acid	during protein synth	esis specified by	codons.		
a) 3 b) 20	c) 64	d) 61			
116 Translation is the	,	,			
a) Synthesis of protein	from a mRNA	b) Synthesis of I	DNA from a mRNA		
c) Synthesis of RNA f	rom a mRNA	d) Synthesis of r	protein from a DNA		
117 The process of forma	tion of RNA is know	zn as			
a) Replication b) DN	JA repair (c) Transla	tion d) Transcrir	ntion		
118 Which is INCORRECT	repair of fransic	and a ransellp	/11/11		
	T statement about the	e transcription unit	?		

- b) Eukaryotes have monocistronic transcription unit
- c) Prokaryotes also have a monocistronic transcription unit
- d) Immediate product of transcription is primary transcript
- 119. Which of the following is TRUE for the RNA polymerase activity?
 - a) DNA dependent DNA synthesis b) Direct repair
 - c) DNA dependent RNA synthesis d) RNA dependent RNA synthesis
- 120. Who discovered RNA polymerase?
 - a) Samuel B. Weiss b) Nirenberg c) Watson and Crick d) Darwin
- 121. Which of the following ensure stable binding of RNA polymerase at the promoter site?
 - a) DNA photolyase b) Sigma factor c) DNA glycosylase d) RecA
- 122. What is the work of the sigma factor in transcription?
 - a) Helicase action b) Transcription initiation
 - c) Transcription elongation d) Transcription termination
- 123. factor is used for promoter recognition
 - a) Sigma 32 b) Sigma 70 c) Sigma 60 d) Sigma 40
- 124. base pairs of DNA is transcribed by RNA polymerase in one go.a) 5-6 b) 3 c) 4 d) 7-8
- 125. Which of the following transcription termination technique has RNA dependent ATPase activity?
 - a) Intercalating agents b) Rho dependent
 - c) Rho independent d) Rifampcin
- 126. Shine-Dalgarno sequence is present in the _____
 - a) hnRNA b) mRNA c) tRNA d) siRNA
- 127. The first amino acid incorporated at the N-terminus of polypeptide isa) methionine b) cysteine c) tryptophan d) valine.
- 128. Translation is the.....
 - a) Synthesis of DNA from a mRNA template
 - b) Synthesis of protein from a mRNA template
 - c) Synthesis of RNA from a mRNA template
 - d) Synthesis of RNA from a DNA template
 - 129. Translation occurs in.....

a) Nucleus b) Cytoplasm c) Nucl	leolus d) Lysosome
130. During translation, protein are synthe	sized
a) By ribosome using the information of	n DNA
b) By lysosome using the information of	n DNA
c) By ribosome using the information of	n mRNA
d) By ribosome using the information of	n tRNA
131molecule serves as an adaptor n	molecule during protein synthesis
a) mRNA b) tRNA c) rRNA	d) mRNA and tRNA
132. In prokaryotes, the ribosomal binding	g site on mRNA is called
a) Hogness sequence b) Shine-	dalgarno sequence
c)N-formyl methionine d) all of the	hese
133is the energy rich molecule req	uires for initiation of translation
a) ATP b) GTP c) CTP	d) AMP
134. In eukaryotes, translation is initiated	by binding of ribosome to the
a) Pribnows box b) Hogness box	c) 5'cap d) poly A tail
135. The 70S ribosome hasbind	ding sites of aminoacyl RNA
a) A site b) P site	c) E site d) all the above
136. In translation process, ribosome move	es on mRNA indirection.
a) 5'-3' b) 3'-5' c) reverse	d) both a and b
137. Which of the following is not termina	ation codon
a) UAA b) AUG c) UAG	d) UGA
138. In splicingare removed to for	rm mature mRNA.
a) Exon b) Intron c)	primers d) sequence
139. Restriction endonuclease produce	cuts.
a) External b) internal c)	internal and external d)at one end
140. Cloning vector are DNA molecules the	hat can carry
a) Foreign DNA fragment	b) Chromosome
c) Foreign protein	d) Enzyme
141. Select the wrong statement about plas	smids?
a) It is extrachromosomal	b) It is double stranded
c) Its replication depends upon host cell	ll d) It is closed and circular DNA
142. What does PCR stand for?	

	a) Polymerase	Chronic Reag	gent	b)Principle (Chorionic Reliability			
	c)Polymerase	Chain Reaction	on	d)Probably C	Cannot React			
143.	A method us	ed to make m	illions of copi	es of a specifi	c segment of DNA from a			
ve	very small amount of DNA.							
	a) DNA Finge	erprint		b) Electroph	oresis			
	c) Polymerase	Chain Reacti	on	d)Res	triction Enzyme			
144.	Southern blo	otting is						
	a) Attachment	t of probes to I	ONA fragmen	ts				
	b) Transfer of	DNA fragmen	nts from electr	rophoretic gel	to a nitrocellulose sheet			
	c) Comparison	n of DNA frag	ments to two	sources				
	d) Transfer of	DNA fragmen	nts to electrop	horetic gel fro	m cellulose membrane			
145.	The polymer	ase chain reac	tion is					
	a) It is a DNA	sequencing te	chnique.					
	b) It is a DNA	degradation t	echnique					
	c) It is a DNA	amplification	technique					
	d) All of the a	bove						
146.	Denaturation	n is the process	s of					
	a) Heating bet	ween 72°C		b) Heating b	etween 40 to 60°C			
	c) Heating bet	ween 90 to 98	°C	d) None of th	ne above			
147.	7 In genome Southern blotting can be used to identify							
1.,,	a) Protein			b) number of	sequence			
	c) DNA fragm	nents		d) RNA sequ	iences			
148.	Restriction e	enzyme is know	wn as					
	a) Molecular S	Scissor b) Mo	lecular Knive					
	c) Molecular c	cutter d) All	the above					
149.	Plasmids rep	licate indepen	dently due to	the presence of	of an			
	a) origin of rep	plication	b) vector	c) markers	d) polylinker site			
150.	The lambda	phage consists	s of	head				
	a) circular	b) rectangula	ur c) ico	osahedral	d) triangular			
151.	The recognit	tion site consis	sts of	base pairs.				
	a) 4-8	b) 2-3	c) 5	d) 10				

152.	The DNA th	at carries the	desired gene t	o the host ce	ll is called as
	a) Template	b) cloning v	ector c) bac	cteria d) a	ll of these
153.	In nomencla	ture of restrict	tion enzyme E	coRI , 'co' i	s name of
	a) Genus	b) Species	c) subspecie	s d) a	ll of these
154.	The single s	tranded extens	sions of lambo	la DNA are l	known as
	a) complement	ntary site	b) cos ends	c) ss DNA	d) both a and b
155.	Foreign DN	A upto kb	size can clone	ed in cosmid	vectors
	a) 5	b) 70	c) 45	d) 50	
156.	A phagemid	is a hybrid of	a		
	a) plasmid and	d f1 phage DN	IA	b) p	lasmid and cosmid
	c) two plasmi	ds		d) p	lasmid and bacteria
157.	The rDNA c	an be delivere	d into bacteria	al cell by	
	a) Transforma	ation b) transc	luction c) ele	ctroporation	d) all of these
158.	In the proces	ss of transform	nation the corr	npetent cell c	an intake rDNA with the
si	ze			•	
	a) 5-15kbp	b) 5b	p c) 45	kbs d) 2	0 kbp
159.	To introduce	e rDNA into E	. <i>coli</i> cells rD	NA is treate	d with
	a) CaCl ₂	b) NaCl	c) Calcium c	carbonate	d) all the above
160.	In electropor	ration method	to introduce r	DNA into <i>E</i>	. <i>coli</i> cellskilovolt/cm
el	ectric pulse is	generate betwe	een elevtrodes	s for 4.6 mill	iseconds.
	a) 2.5 b) 8.5	5 c) 5	d) 12		
161.	Northern blo	otting is introd	uced by		
	a) Ed Souther	n b) Nothern	c) Alwine	d) Watson	
162.	The mRNA	present in the	agarose gel ai	re transforme	ed tofilter paper by the
b	lotting method.				
	a) Nitrocellul	ose	c) Cellulase		
	c) Whatmann	d) am	ino benzyloxy	ymethyl	
163.	Northern blo	otting is used i	n separation a	nd identifica	tion of
	a) DNA	b) Protein	c) RN	JА	d) Gene
164.	The transfer	of protein from	m electrophor	resed gel to r	itrocellulose filter is called as
blotting.					
	a) Southern	b) northern	c) western	d) all the a	lbove

- - a) Origin of replication b) marker c) polylinker site d) vector

Long Questions

- 1. What is replication? Describe in details process of semi conservative replication.
- 2. Describe process of transcription in eukaryotes.
- 3. Describe process of transcription in prokaryotes.
- 4. Describe process of translation in eukaryotes.
- 5. Describe process of post transcriptional modification in RNA.
- 6. Describe process of protein formation.
- 7. Explain lac operon concept of gene expression.
- 8. What is genetic code? Describe properties of genetic code.
- 9. Describe cloning vectors.
- 10. Describe Polymerase Chain Reaction.
- 11. Describe DNA damage and repair mechanism

Write short Notes on following

- 1) DNA microarray
- 2) PCR
- 3) Southern blotting
- 4) Northern blotting
- 5) Western blotting
- 6) cDNA libraries
- 7) Restriction enzymes

- 8) RNA polymerase
- 9) Wobble hypothesis
- 10) Properties of genetic code
- 11) Lac operon
- 12) DNA damage
- 13) Semiconservative replication