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This chapter gives a brief introduction to quantum mechanics. Quantum mechanics can be
thought of roughly as the study of physics on very small length scales, although there are
also certain macroscopic systems it directly applies to. The descriptor “quantum” arises
because in contrast with classical mechanics, certain quantities take on only discrete values.
However, some quantities still take on continuous values, as we’ll see.

In quantum mechanics, particles have wavelike properties, and a particular wave equa-
tion, the Schrodinger equation, governs how these waves behave. The Schrodinger equation
is different in a few ways from the other wave equations we’ve seen in this book. But these
differences won’t keep us from applying all of our usual strategies for solving a wave equation
and dealing with the resulting solutions.

In some respect, quantum mechanics is just another example of a system governed by a
wave equation. In fact, we will find below that some quantum mechanical systems have exact
analogies to systems we’ve already studied in this book. So the results can be carried over,
with no modifications whatsoever needed. However, although it is fairly straightforward
to deal with the actual waves, there are many things about quantum mechanics that are a
combination of subtle, perplexing, and bizarre. To name a few: the measurement problem,
hidden variables along with Bell’s theorem, and wave-particle duality. You’ll learn all about
these in an actual course on quantum mechanics.

Even though there are many things that are highly confusing about quantum mechanics,
the nice thing is that it’s relatively easy to apply quantum mechanics to a physical system
to figure out how it behaves. There is fortunately no need to understand all of the subtleties
about quantum mechanics in order to use it. Of course, in most cases this isn’t the best
strategy to take; it’s usually not a good idea to blindly forge ahead with something if you
don’t understand what you’re actually working with. But this lack of understanding can
be forgiven in the case of quantum mechanics, because no one really understands it. (Well,
maybe a couple people do, but they’re few and far between.) If the world waited to use
quantum mechanics until it understood it, then we’d be stuck back in the 1920’s. The
bottom line is that quantum mechanics can be used to make predictions that are consistent
with experiment. It hasn’t failed us yet. So it would be foolish not to use it.

The main purpose of this chapter is to demonstrate how similar certain results in quan-
tum mechanics are to earlier results we’ve derived in the book. You actually know a good
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2 CHAPTER 10. INTRODUCTION TO QUANTUM MECHANICS

deal of quantum mechanics already, whether you realize it or not.
The outline of this chapter is as follows. In Section 10.1 we give a brief history of the

development of quantum mechanics. In Section 10.2 we write down, after some motivation,
the Schrodinger wave equation, both the time-dependent and time-independent forms. In
Section 10.3 we discuss a number of examples. The most important thing to take away from
this section is that all of the examples we discuss have exact analogies in the string/spring
systems earlier in the book. So we technically won’t have to solve anything new here. All
the work has been done before. The only thing new that we’ll have to do is interpret the old
results. In Section 10.4 we discuss the uncertainty principle. As in Section 10.3, we’ll find
that we already did the necessary work earlier in the book. The uncertainty principle turns
out to be a direct consequence of a result from Fourier analysis. But the interpretation of
this result as an uncertainty principle has profound implications in quantum mechanics.

10.1 A brief history

Before discussing the Schrodinger wave equation, let’s take a brief (and by no means com-
prehensive) look at the historical timeline of how quantum mechanics came about. The
actual history is of course never as clean as an outline like this suggests, but we can at least
get a general idea of how things proceeded.

1900 (Planck): Max Planck proposed that light with frequency ν is emitted in quantized
lumps of energy that come in integral multiples of the quantity,

E = hν = h̄ω (1)

where h ≈ 6.63 · 10−34 J · s is Planck’s constant, and h̄ ≡ h/2π = 1.06 · 10−34 J · s.
The frequency ν of light is generally very large (on the order of 1015 s−1 for the visible

spectrum), but the smallness of h wins out, so the hν unit of energy is very small (at least on
an everyday energy scale). The energy is therefore essentially continuous for most purposes.
However, a puzzle in late 19th-century physics was the blackbody radiation problem. In a
nutshell, the issue was that the classical (continuous) theory of light predicted that certain
objects would radiate an infinite amount of energy, which of course can’t be correct. Planck’s
hypothesis of quantized radiation not only got rid of the problem of the infinity, but also
correctly predicted the shape of the power curve as a function of temperature.

The results that we derived for electromagnetic waves in Chapter 8 are still true. In
particular, the energy flux is given by the Poynting vector in Eq. 8.47. And E = pc for
a light. Planck’s hypothesis simply adds the information of how many lumps of energy a
wave contains. Although strictly speaking, Planck initially thought that the quantization
was only a function of the emission process and not inherent to the light itself.

1905 (Einstein): Albert Einstein stated that the quantization was in fact inherent to the
light, and that the lumps can be interpreted as particles, which we now call “photons.” This
proposal was a result of his work on the photoelectric effect, which deals with the absorption
of light and the emission of elections from a material.

We know from Chapter 8 that E = pc for a light wave. (This relation also follows from
Einstein’s 1905 work on relativity, where he showed that E = pc for any massless particle,
an example of which is a photon.) And we also know that ω = ck for a light wave. So
Planck’s E = h̄ω relation becomes

E = h̄ω =⇒ pc = h̄(ck) =⇒ p = h̄k (2)

This result relates the momentum of a photon to the wavenumber of the wave it is associated
with.
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1913 (Bohr): Niels Bohr stated that electrons in atoms have wavelike properties. This
correctly explained a few things about hydrogen, in particular the quantized energy levels
that were known.

1924 (de Broglie): Louis de Broglie proposed that all particles are associated with waves,
where the frequency and wavenumber of the wave are given by the same relations we found
above for photons, namely E = h̄ω and p = h̄k. The larger E and p are, the larger ω
and k are. Even for small E and p that are typical of a photon, ω and k are very large
because h̄ is so small. So any everyday-sized particle with large (in comparison) energy and
momentum values will have extremely large ω and k values. This (among other reasons)
makes it virtually impossible to observe the wave nature of macroscopic amounts of matter.

This proposal (that E = h̄ω and p = h̄k also hold for massive particles) was a big step,
because many things that are true for photons are not true for massive (and nonrelativistic)
particles. For example, E = pc (and hence ω = ck) holds only for massless particles (we’ll
see below how ω and k are related for massive particles). But the proposal was a reasonable
one to try. And it turned out to be correct, in view of the fact that the resulting predictions
agree with experiments.

The fact that any particle has a wave associated with it leads to the so-called wave-
particle duality. Are things particles, or waves, or both? Well, it depends what you’re doing
with them. Sometimes things behave like waves, sometimes they behave like particles. A
vaguely true statement is that things behave like waves until a measurement takes place,
at which point they behave like particles. However, approximately one million things are
left unaddressed in that sentence. The wave-particle duality is one of the things that few
people, if any, understand about quantum mechanics.

1925 (Heisenberg): Werner Heisenberg formulated a version of quantum mechanics that
made use of matrix mechanics. We won’t deal with this matrix formulation (it’s rather
difficult), but instead with the following wave formulation due to Schrodinger (this is a
waves book, after all).

1926 (Schrodinger): Erwin Schrodinger formulated a version of quantum mechanics that
was based on waves. He wrote down a wave equation (the so-called Schrodinger equation)
that governs how the waves evolve in space and time. We’ll deal with this equation in depth
below. Even though the equation is correct, the correct interpretation of what the wave
actually meant was still missing. Initially Schrodinger thought (incorrectly) that the wave
represented the charge density.

1926 (Born): Max Born correctly interpreted Schrodinger’s wave as a probability am-
plitude. By “amplitude” we mean that the wave must be squared to obtain the desired
probability. More precisely, since the wave (as we’ll see) is in general complex, we need to
square its absolute value. This yields the probability of finding a particle at a given location
(assuming that the wave is written as a function of x).

This probability isn’t a consequence of ignorance, as is the case with virtually every
other example of probability you’re familiar with. For example, in a coin toss, if you
know everything about the initial motion of the coin (velocity, angular velocity), along
with all external influences (air currents, nature of the floor it lands on, etc.), then you
can predict which side will land facing up. Quantum mechanical probabilities aren’t like
this. They aren’t a consequence of missing information. The probabilities are truly random,
and there is no further information (so-called “hidden variables”) that will make things un-
random. The topic of hidden variables includes various theorems (such as Bell’s theorem)
and experimental results that you will learn about in a quantum mechanics course.
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1926 (Dirac): Paul Dirac showed that Heisenberg’s and Schrodinger’s versions of quantum
mechanics were equivalent, in that they could both be derived from a more general version
of quantum mechanics.

10.2 The Schrodinger equation

In this section we’ll give a “derivation” of the Schrodinger equation. Our starting point will
be the classical nonrelativistic expression for the energy of a particle, which is the sum of
the kinetic and potential energies. We’ll assume as usual that the potential is a function of
only x. We have

E = K + V =
1

2
mv2 + V (x) =

p2

2m
+ V (x). (3)

We’ll now invoke de Broglie’s claim that all particles can be represented as waves with
frequency ω and wavenumber k, and that E = h̄ω and p = h̄k. This turns the expression
for the energy into

h̄ω =
h̄2k2

2m
+ V (x). (4)

A wave with frequency ω and wavenumber k can be written as usual as ψ(x, t) = Aei(kx−ωt)

(the convention is to put a minus sign in front of the ωt). In 3-D we would have ψ(r, t) =
Aei(k·r−ωt), but let’s just deal with 1-D. We now note that

∂ψ

∂t
= −iωψ =⇒ ωψ = i

∂ψ

∂t
, and

∂2ψ

∂x2
= −k2ψ =⇒ k2ψ = −∂2ψ

∂x2
. (5)

If we multiply the energy equation in Eq. (4) by ψ, and then plug in these relations, we
obtain

h̄(ωψ) =
h̄2

2m
(k2ψ) + V (x)ψ =⇒ ih̄

∂ψ

∂t
=

−h̄2

2m
· ∂

2ψ

∂x2
+ V ψ (6)

This is the time-dependent Schrodinger equation. If we put the x and t arguments back in,
the equation takes the form,

ih̄
∂ψ(x, t)

∂t
=

−h̄2

2m
· ∂

2ψ(x, t)

∂x2
+ V (x)ψ(x, t). (7)

In 3-D, the x dependence turns into dependence on all three coordinates (x, y, z), and the
∂2ψ/∂x2 term becomes ∇2ψ (the sum of the second derivatives). Remember that Born’s
(correct) interpretation of ψ(x) is that |ψ(x)|2 gives the probability of finding the particle
at position x.

Having successfully produced the time-dependent Schrodinger equation, we should ask:
Did the above reasoning actually prove that the Schrodinger equation is valid? No, it didn’t,
for three reasons.

1. The reasoning is based on de Broglie’s assumption that there is a wave associated with
every particle, and also on the assumption that the ω and k of the wave are related to
E and p via Planck’s constant in Eqs. (1) and (2). We had to accept these assumptions
on faith.

2. Said in a different way, it is impossible to actually prove anything in physics. All we
can do is make an educated guess at a theory, and then do experiments to try to show
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that the theory is consistent with the real world. The more experiments we do, the
more comfortable we are that the theory is a good one. But we can never be absolutely
sure that we have the correct theory. In fact, odds are that it’s simply the limiting
case of a more correct theory.

3. The Schrodinger equation actually isn’t valid, so there’s certainly no way that we
proved it. Consistent with the above point concerning limiting cases, the quantum
theory based on Schrodinger’s equation is just a limiting theory of a more correct one,
which happens to be quantum field theory (which unifies quantum mechanics with
special relativity). This is turn must be a limiting theory of yet another more correct
one, because it doesn’t incorporate gravity. Eventually there will be one theory that
covers everything (although this point can be debated), but we’re definitely not there
yet.

Due to the “i” that appears in Eq. (6), ψ(x) is complex. And in contrast with waves in
classical mechanics, the entire complex function now matters in quantum mechanics. We
won’t be taking the real part in the end. Up to this point in the book, the use of complex
functions was simply a matter of convenience, because it is easier to work with exponentials
than trig functions. Only the real part mattered (or imaginary part – take your pick, but not
both). But in quantum mechanics the whole complex wavefunction is relevant. However,
the theory is structured in such a way that anything you might want to measure (position,
momentum, energy, etc.) will always turn out to be a real quantity. This is a necessary
feature of any valid theory, of course, because you’re not going to go out and measure a
distance of 2 + 5i meters, or pay an electrical bill of 17 + 6i kilowatt hours.

As mentioned in the introduction to this chapter, there is an endless number of difficult
questions about quantum mechanics that can be discussed. But in this short introduction
to the subject, let’s just accept Schrodinger’s equation as valid, and see where it takes us.

Solving the equation

If we put aside the profound implications of the Schrodinger equation and regard it as
simply a mathematical equation, then it’s just another wave equation. We already know
the solution, of course, because we used the function ψ(x, t) = Aei(kx−ωt) to produce Eqs.
(5) and (6) in the first place. But let’s pretend that we don’t know this, and let’s solve the
Schrodinger equation as if we were given it out of the blue.

As always, we’ll guess an exponential solution. If we first look at exponential behavior
in the time coordinate, our guess is ψ(x, t) = e−iωtf(x) (the minus sign here is convention).
Plugging this into Eq. (7) and canceling the e−iωt yields

h̄ωf(x) = − h̄2

2m

∂2f(x)

∂x2
+ V (x)f(x). (8)

But from Eq. (1), we have h̄ω = E. And we’ll now replace f(x) with ψ(x). This might
cause a little confusion, since we’ve already used ψ to denote the entire wavefunction ψ(x, t).
However, it is general convention to also use the letter ψ to denote the spatial part. So we
now have

E ψ(x) = − h̄2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) (9)

This is called the time-independent Schrodinger equation. This equation is more restrictive
than the original time-dependent Schrodinger equation, because it assumes that the parti-
cle/wave has a definite energy (that is, a definite ω). In general, a particle can be in a state
that is the superposition of states with various definite energies, just like the motion of a
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string can be the superposition of various normal modes with definite ω’s. The same rea-
soning applies here as with all the other waves we’ve discussed: From Fourier analysis and
from the linearity of the Schrodinger equation, we can build up any general wavefunction
from ones with specific energies. Because of this, it suffices to consider the time-independent
Schrodinger equation. The solutions for that equation form a basis for all possible solutions.1

Continuing with our standard strategy of guessing exponentials, we’ll let ψ(x) = Aeikx.
Plugging this into Eq. (9) and canceling the eikx gives (going back to the h̄ω instead of E)

h̄ω = − h̄2

2m
(−k2) + V (x) =⇒ h̄ω =

h̄2k2

2m
+ V (x). (10)

This is simply Eq. (4), so we’ve ended up back where we started, as expected. However, our
goal here was to show how the Schrodinger equation can be solved from scratch, without
knowing where it came from.

Eq. (10) is (sort of) a dispersion relation. If V (x) is a constant C in a given region, then
the relation between ω and k (namely ω = h̄k2/2m + C) is independent of x, so we have
a nice sinusoidal wavefunction (or exponential, if k is imaginary). However, if V (x) isn’t
constant, then the wavefunction isn’t characterized by a unique wavenumber. So a function
of the form eikx doesn’t work as a solution for ψ(x). (A Fourier superposition can certainly
work, since any function can be expressed that way, but a single eikx by itself doesn’t work.)
This is similar to the case where the density of a string isn’t constant. We don’t obtain
sinusoidal waves there either.

10.3 Examples

In order to solve for the wavefunction ψ(x) in the time-independent Schrodinger equation
in Eq. (9), we need to be given the potential energy V (x). So let’s now do some examples
with particular functions V (x).

10.3.1 Constant potential

The simplest example is where we have a constant potential, V (x) = V0 in a given region.
Plugging ψ(x) = Aeikx into Eq. (9) then gives

E =
h̄2k2

2m
+ V0 =⇒ k =

√
2m(E − V0)

h̄2 . (11)

(We’ve taken the positive square root here. We’ll throw in the minus sign by hand to obtain
the other solution, in the discussion below.) k is a constant, and its real/imaginary nature
depends on the relation between E and V0. If E > V0, then k is real, so we have oscillatory
solutions,

ψ(x) = Aeikx +Be−ikx. (12)

But if E < V0, then k is imaginary, so we have exponentially growing or decaying solutions.
If we let κ ≡ |k| =

√
2m(V0 − E)/h̄, then ψ(x) takes the form,

ψ(x) = Aeκx +Ba−κx. (13)

We see that it is possible for ψ(x) to be nonzero in a region where E < V0. Since ψ(x) is
the probability amplitude, this implies that it is possible to have a particle with E < V0.

1The “time-dependent” and “time-independent” qualifiers are a bit of a pain to keep saying, so we usually
just say “the Schrodinger equation,” and it’s generally clear from the context which one we mean.
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This isn’t possible classically, and it is one of the many ways in which quantum mechanics
diverges from classical mechanics. We’ll talk more about this when we discuss the finite
square well in Section 10.3.3.

If E = V0, then this is the one case where the strategy of guessing an exponential function
doesn’t work. But if we go back to Eq. (9) we see that E = V0 implies ∂2ψ/∂x2 = 0, which
in turn implies that ψ is a linear function,

ψ(x) = Ax+B. (14)

In all of these cases, the full wavefunction (including the time dependence) for a particle
with a specific value of E is given by

ψ(x, t) = e−iωtψ(x) = e−iEt/h̄ψ(x) (15)

Again, we’re using the letter ψ to stand for two different functions here, but the meaning of
each is clear from the number of arguments. Any general wavefunction is built up from a
superposition of the states in Eq. (15) with different values of E, just as the general motion
of a string is built of from various normal modes with different frequencies ω. The fact that a
particle can be in a superposition of states with different energies is another instance where
quantum mechanics diverges from classical mechanics. (Of course, it’s easy for classical
waves to be in a superposition of normal modes with different energies, by Fourier analysis.)

The above E > V0 and E < V0 cases correspond, respectively, to being above or below
the cutoff frequency in the string/spring system we discussed in Section 6.2.2. We have an
oscillatory solution if E (or ω) is above a particular value, and an exponential solution if
E (or ω) is below a particular value. The two setups (quantum mechanical with constant
V0, and string/spring with springs present everywhere) are exactly analogous to each other.
The spatial parts of the solutions are exactly the same (well, before taking the real part
in the string/spring case). The frequencies, however, are different, because the dispersion
relations are different (h̄ω = h̄2k2/2m + V0 and ω2 = c2k2 + ω2

s , respectively). But this
affects only the rate of oscillation, and not the shape of the function.

The above results hold for any particular region where V (x) is constant. What if the
region extends from, say, x = 0 to x = +∞? If E > V0, the oscillatory solutions are fine,
even though they’re not normalizable. That is, the integral of |ψ|2 is infinite (at least for any
nonzero coefficient in ψ; if the coefficient were zero, then we wouldn’t have a particle). So
we can’t make the total probability equal to 1. However, this is fine. The interpretation is
that we simply have a stream of particles extending to infinity. We shouldn’t be too worried
about this divergence, because when dealing with traveling waves on a string (for example,
when discussing reflection and transmission coefficients) we assumed that the sinusiodal
waves extended to ±∞, which of course is impossible in reality.

If E < V0, then the fact that x = +∞ is in the given region implies that the coefficient
A in Eq. (13) must be zero, because otherwise ψ would diverge as x → ∞. So we are left
with only the Ba−κx term. (It’s one thing to have the integral of |ψ|2 diverge, as it did in
the previous paragraph. It’s another thing to have the integral diverge and be dominated
by values at large x. There is then zero probability of finding the particle at a finite value
of x.) If the region where E < V0 is actually the entire x axis, from −∞ to ∞, then the B
coefficient in Eq. (13) must also be zero. So ψ(x) = 0 for all x. In other words, there is no
allowed wavefunction. It is impossible to have a particle with E < V0 everywhere.

10.3.2 Infinite square well

Consider the potential energy,

V (x) =

{
0 (0 ≤ x ≤ L)
∞ (x < 0 or x > L).

(16)
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This is called an “infinite square well,” and it is shown in Fig. 1. The “square” part of the

V = 0

V = 

-a a

8

V = 

8

Figure 1

name comes from the right-angled corners and not from the actual shape, since it’s a very
(infinitely) tall rectangle. This setup is also called a “particle in a box” (a 1-D box), because
the particle can freely move around inside a given region, but has zero probability of leaving
the region, just like a box. So ψ(x) = 0 outside the box.

The particle does indeed have zero chance of being found outside the region 0 ≤ x ≤ L.
Intuitively, this is reasonable, because the particle would have to climb the infinitely high
potential cliff at the side of the box. Mathematically, this can be derived rigorously, and
we’ll do this below when we discuss the finite square well.

We’ll assume E > 0, because the E < 0 case makes E < V0 everywhere, which isn’t
possible, as we mentioned above. Inside the well, we have V (x) = 0, so this is a special
case of the constant potential discussed above. We therefore have the oscillatory solution
in Eq. (12) (since E > 0), which we will find more convenient here to write in terms of trig
functions,

ψ(x) = A cos kx+B sin kx, where E =
h̄2k2

2m
=⇒ k =

√
2mE

h̄
. (17)

The coefficients A and B may be complex.
We now claim that ψ must be continuous at the boundaries at x = 0 and x = L. When

dealing with, say, waves on a string, it was obvious that the function ψ(x) representing
the transverse position must be continuous, because otherwise the string would have a
break in it. But it isn’t so obvious with the quantum-mechanical ψ. There doesn’t seem
to be anything horribly wrong with having a discontinuous probability distribution, since
probability isn’t an actual object. However, it is indeed true that the probability distribution
is continuous in this case (and in any other case that isn’t pathological). For now, let’s just
assume that this is true, but we’ll justify it below when we discuss the finite square well.

Since ψ(x) = 0 outside the box, continuity of ψ(x) at x = 0 quickly gives A cos(0) +
B sin(0) = 0 =⇒ A = 0. Continuity at x = L then gives B sin kL = 0 =⇒ kL = nπ, where
n is an integer. So k = nπ/L, and the solution for ψ(x) is ψ(x) = B sin(nπx/L). The full
solution including the time dependence is given by Eq. (15) as

ψ(x, t) = Be−iEt/h̄ sin
(nπx

L

)
where E =

h̄2k2

2m
=

n2π2h̄2

2mL2
(18)

We see that the energies are quantized (that is, they can take on only discrete values) and
indexed by the integer n. The string setup that is analogous to the infinite square well is
a string with fixed ends, which we discussed in Chapter 4 (see Section 4.5.2). In both of
these setups, the boundary conditions yield the same result that an integral number of half
wavelengths fit into the region. So the k values take the same form, k = nπ/L.

The dispersion relation, however, is different. It was simply ω = ck for waves on a
string, whereas it is h̄ω = h̄2k2/2m for the V (x) = 0 region of the infinite well. But as
in the above case of the constant potential, this difference affects only the rate at which
the waves oscillate in time. It does’t affect the spatial shape, which is determined by the
wavenumber k. The wavefunctions for the lowest four energies are shown in Fig. 2 (the

x = 0 x = L

n = 1

n = 2

n = 3

n = 4

Figure 2

vertical separation between the curves is meaningless). These look exactly like the normal
modes in the “both ends fixed” case in Fig. 24 in Chapter 4.
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The corresponding energies are shown in Fig. 3. Since E ∝ ω = (h̄2/2m)k2 ∝ n2, the

n = 1

n = 2

n = 3

n = 4

π2h2/2mL2

1

4

9

16

E

Energy in units of

Figure 3

gap between the energies grows as n increases. Note that the energies in the case of a string
are also proportional to n2, because although ω = ck ∝ n, the energy is proportional to ω2

(because the time derivative in Eq. (4.50) brings down a factor of ω). So Figs. 2 and 3 both
apply to both systems. The difference between the systems is that a string has ω ∝ √

E,
where as the quantum mechanical system has ω ∝ E.

There is no n = 0 state, because from Eq. (18) this would make ψ be identically zero.
That wouldn’t be much of a state, because the probability would be zero everywhere. The
lack of a n = 0 state is consistent with the uncertainty principle (see Section 10.4 below),
because such a state would have ∆x∆p = 0 (since ∆x < L, and ∆p = 0 because n = 0 =⇒
k = 0 =⇒ p = h̄k = 0), which would violate the principle.

10.3.3 Finite square well

Things get more complicated if we have a finite potential well. For future convenience, we’ll
let x = 0 be located at the center of the well. If we label the ends as ±a, then V (x) is given
by

V (x) =

{
0 (|x| ≤ a)
V0 (|x| > a).

(19)

This is shown in Fig. 4. Given V0, there are two basic possibilities for the energy E:

V = 0

V = V0

-a a

Figure 4

• E > V0 (unbound state): From Eq. (11), the wavenumber k takes the general form
of

√
2m(E − V (x))/h̄. This equals

√
2mE/h̄ inside the well and

√
2m(E − V0)/h̄

outside. k is therefore real everywhere, so ψ(x) is an oscillatory function both inside
and outside the well. k is larger inside the well, so the wavelength is shorter there. A
possible wavefunction might look something like the one in Fig. 5. It is customary to

-a a

E

V0

Figure 5
draw the ψ(x) function on top of the E line, although this technically has no meaning
because ψ and E have different units.

The wavefunction extends infinitely on both direction, so the particle can be anywhere.
Hence the name “unbound state.” We’ve drawn an even-function standing wave in
Fig. 5, although in general we’re concerned with traveling waves for unbound states.
These are obtained from superpositions of the standing waves, with a phase thrown
in the time dependence. For traveling waves, the relative sizes of ψ(x) in the different
regions depend on the specifics of how the problem is set up.

• 0 < E < V0 (bound state): The wavenumber k still equals
√
2mE/h̄ inside the well and√

2m(E − V0)/h̄ outside, but now that latter value is imaginary. So ψ is an oscillatory
function inside the well, but an exponential function outside. Furthermore, it must
be an exponentially decaying function outside, because otherwise it would diverge at
x = ±∞. Since the particle has an exponentially small probability of being found
far away from the well, we call this a “bound state.” We’ll talk more below about
the strange fact that the probability is nonzero in the region outside the well, where
E < V (x).

There is also the third case were E = V0, but this can be obtained as the limit of the
other two cases (more easily as the limit of the bound-state case). The fourth case,
E < 0, isn’t allowed, as we discussed at the end of Section 10.3.1.

In both of these cases, the complete solution for ψ(x) involves solving the boundary
conditions at x = ±a. The procedure is the same for both cases, but let’s concentrate on
the bound-state case here. The boundary conditions are given by the following theorem.
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Theorem 10.1 If V (x) is everywhere finite (which is the case for the finite square well),
then both ψ(x) and ψ′(x) are everywhere continuous.

Proof: If we solve for ψ′′ in Eq. (9), we see that ψ′′ is always finite (because V (x) is always
finite). This implies two things. First, it implies that ψ′ must be continuous, because if ψ′

were discontinuous at a given point, then its derivative ψ′′ would be infinite there (because
ψ′ would make a finite jump over zero distance). So half of the theorem is proved.

Second, the finiteness of ψ′′ implies that ψ′ must also be finite everywhere, because if
ψ′ were infinite at a given point (excluding x = ±∞), then its derivative ψ′′ would also be
infinite there (because ψ′ would make an infinite jump over a finite distance).

Now, since ψ′ is finite everywhere, we can repeat the same reasoning with ψ′ and ψ that
we used with ψ′′ and ψ′ in the first paragraph above: Since ψ′ is always finite, we know
that ψ must be continuous. So the other half of the theorem is also proved.

Having proved this theorem, let’s outline the general strategy for solving for ψ in the
E < V0 case. The actual task of going through the calculation is left for Problem 10.2. The
calculation is made much easier with the help of Problem 10.1 which states that only even
and odd functions need to be considered.

If we let k ≡ iκ outside the well, then we have κ =
√
2m(V0 − E)/h̄, which is real and

positive since E < V0. The general forms of the wavefunctions in the left, middle, and right
regions are

x < −a : ψ1(x) = A1e
κx +B1e

−κx,

−a < x < a : ψ2(x) = A2e
ikx +B2e

−ikx,

x > a : ψ3(x) = A3e
κx +B3e

−κx, (20)

where

k =

√
2mE

h̄
, and κ =

√
2m(V0 − E)

h̄
. (21)

We’ve given only the x dependence in these wavefunctions. To obtain the full wavefunction
ψ(x, t), all of these waves are multiplied by the same function of t, namely e−iωt = e−iEt/h̄.

We now need to solve for various quantities. How many unknowns do we have, and how
many equations/facts do we have? We have seven unknowns: A1, A2, A3, B1, B2, B3, and
E (which appears in k and κ). And we have seven facts:

• Four boundary conditions at x = ±a, namely continuity of ψ and ψ′ at both points.

• Two boundary conditions at x = ±∞, namely ψ = 0 in both cases.

• One normalization condition, namely
∫∞
−∞ |ψ|2dx = 1.

As we mentioned at the end of Section 10.3.1, the boundary conditions at ±∞ quickly
tell us that B1 and A3 equal zero. Also, in most cases we’re not concerned with the overall
normalization constant (the usual goal is to find E), so we can ignore the normalization
condition and just find all the other constants in terms of, say, A1. So were’re down to
four equations (the four boundary conditions at x = ±a), and four unknowns (A2, B2, B3,
and E). Furthermore, the even/odd trick discussed in Problem 10.1 cuts things down by a
factor of 2, so we’re down to two equations and two unknowns (the energy E, along with
one of the coefficients), which is quite manageable. The details are left for Problem 10.2,
but let’s get a rough idea here of what the wavefunctions look like.
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It turns out that the energies and states are again discrete and can be labeled by an
integer n, just as in the infinite-well case. However, the energies don’t take the simple form
in Eq. (18), although they approximately do if the well is deep. Fig.6shows the five states for

-a a

V0

E4

E5

E3

E2

E1

V = E = 0

Figure 6

a well of a particular depth V0. We’ve drawn each wave relative to the line that represents
the energy En. Both ψ and ψ′ are continuous at x = ±a, and ψ goes to 0 at x = ±∞.
We’ve chosen the various parameters (one of which is the depth) so that there are exactly
five states (see Problem 10.2 for the details on this). The deeper the well, the more states
there are.

Consistent with Eq. (20), ψ is indeed oscillatory inside the well (that is, the curvature
is toward the x axis), and exponential decaying outside the well (the curvature is away
from the x axis). As E increases, Eq. (21) tells us that k increases (so the wiggles inside
the well have shorter wavelengths), and also that κ decreases (so the exponential decay is
slower). These facts are evident in Fig. 6. The exact details of the waves depend on various
parameters, but the number of bumps equals n.

Explanation of the quantized energy levels

The most important thing to note about these states is that they are discrete. In the infinite-
well case, this discreteness was clear because an integral number of half wavelengths needed
to fit into the well (because ψ = 0 at the boundaries). The discreteness isn’t so obvious in
the finite-well case (because ψ 6= 0 at the boundaries), but it is still reasonably easy to see.
There are two ways to understand it. First, the not-so-enlightening way is to note that we
initially had 7 equation and 7 unknowns. So all the unknowns, including E, are determined.
There may be different discrete solutions, but at least we know that we can’t just pick a
random value for E and expect it to work.

Second, the more physical and enlightening way is the following. If we choose a random
value of E, it probably won’t yield an allowable function ψ, and here’s why. Pick an arbitrary
value of the coefficient A1 in Eq. (20), and set B1 = 0. So we have an exponentially decaying
function in the left region, which behaves properly at x = −∞. Since E determines κ, we
know everything about the A1e

κx function.

Now pick a point x0 in the left region, and imagine marching rightward on the x axis.
We claim that all of the subsequent values of ψ are completely determined, all the way up
to x = +∞. This is clear in the left region, because we know what the function is. But it
is also true in the middle and right regions, because we know the values of ψ, ψ′, and ψ′′

at any given point, so we can recursively find these three values at the “next” point as we
march along. More precisely: (a) from the definition of the derivative, the values of ψ and
ψ′ at a given point yield the value of ψ at the next point, (b) likewise, the values of ψ′ and
ψ′′ at a given point yield the value of ψ′ at the next point, and (c) finally, the value of ψ at
a given point yields the value of ψ′′ at that point, via the Schrodinger equation, Eq. (9). So
we can recursively march all the way up to x = +∞, and the entire function is determined.
There is no freedom whatsoever in what the function turns out to be.

A particular choice of E and A1 might yield the first (top) function shown in Fig.7. It has

-a a

Figure 7

the correct exponential and oscillatory nature in the left and middle regions, respectively.
But in the right region it apparently has an exponentially growing piece. Because it diverges
at x = +∞, this function isn’t an allowable one. So it is impossible for the energy to take
on the value that we chose.

We can try to remedy the divergence at x = +∞ by increasing the value of E. This will
make ψ oscillate quicker inside the well, so that it encounters the x = a boundary with a
negative slope. We then might end up with the second function shown in Fig. 7. We still
have the divergence at x = +∞, so again we have an invalid ψ. If we increase E a little
more, by precisely the right amount, then we’ll end up with the third function shown in Fig.
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7. The growing exponential term is now absent from the right region, so we have success.
This function is allowable, as is the associated energy.

If we increase E a little more, then we’ll end up with something like the fourth (bottom)
function in Fig. 7. This function diverges, but now in the negative direction. So we’re back
to an invalid ψ. If we continue to increase E, then eventually we’ll end up with the situation
where there is now (approximately) one additional half oscillation, and the function again
decays to zero at x = +∞. And so on and so forth with additional half-oscillations, although
eventually E will become larger than V0, in which case we won’t have a bound state anymore.
(We can also decrease E from the value in the top plot in Fig. 7. We will encounter ψ’s
with two bumps and then one bump. The latter will have the lowest possible energy.) This
reasoning makes it clear why only discrete values of E are allowed. Only special values of
E make the coefficient A3 in Eq. (20) be zero. Other values of E produce an exponentially
growing piece in the right region, resulting in a non-normalizable wavefunction.

The terminology for this bound-state setup is that the particle is “trapped” in the well.
However, we have discovered the strange fact that the particle has a nonzero probability
of being found outside the well where E < V0, because ψ is nonzero there. Strange, but
true. Classically, it is impossible for a particle to have E < V . But classical mechanics isn’t
correct. It usually is, but not always. And this is one of the places where it fails.

What happens if V0 → ∞, so that the finite well approaches an infinite well? κ equals√
2m(V0 − E)/h̄, so it approaches ∞ as V0 → ∞. The exponential decay outside the well

is therefore infinitely quick. In the case of a very large by finite V0, Fig. 8 shows what the

-a a

Figure 8

first two states look like. As V0 increases further, the region of the exponential decay gets
smaller and smaller. Eventually you can’t tell the difference between the plots in Fig. 8 and
the bottom two plots in Fig. 2 for the infinite well. Technically the decay for the finite well
always extends to x = ±∞, because the exponential function never actually equals zero.
But it’s essentially zero after a very short distance.

We see that as V0 → ∞, ψ approaches a function that is still continuous, but has a
discontinuity in its first derivative. So if we consider the infinite well in Section 10.3.2 to
be the limit of a finite well as V0 → ∞ (which is the most reasonable way to consider it),
then the present discussion justifies our assumption in Section 10.3.2 that ψ was continuous.
And furthermore it justifies why we didn’t also assume that ψ′ was continuous.

As with the infinite square well, the finite square well also has a direct analogy with a
setup involving a string. Recall the discussion of the string/spring system in Section 6.2.2,
involving evanescent waves and a low-frequency cutoff. Consider the system shown in Fig.
9, where the springs extend to x = ±∞. From Section 6.2.2, we know that if the frequency
is below the cutoff frequency, then we have a sinusoidal wave in the middle region, but
an evanescent wave (that is, an exponentially decaying wave) in the side regions. This is
exactly what we have in the quantum-mechanical finite-well setup. In both setups the most
general forms of the waves (as functions of x) in the different regions are given by Eq. (20)
(but we need to take the real part in the string/spring case). And the boundary conditions
are the same: continuity of ψ and ψ′ at the boundaries, and ψ = 0 at x = ±∞. If you’ve
solved for one ψ(x), you’ve solved for the other.

(no springs)

-a a

Figure 9
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However, as with the other examples we’ve studied, the dispersion relation in the string/spring
system is different from the relation in the quantum-mechanical system. In particular, in
the quantum case, the wave equations and dispersion relations inside and outside the well
are

Inside : ih̄
∂ψ

∂t
=

−h̄2

2m
· ∂

2ψ

∂x2
=⇒ h̄ω =

h̄2k2

2m
,

Outside : ih̄
∂ψ

∂t
=

−h̄2

2m
· ∂

2ψ

∂x2
+ V0ψ =⇒ h̄ω =

h̄2k2

2m
+ V0. (22)

And for the string/spring system we have

Middle :
∂2ψ

∂t2
= c2

∂2ψ

∂x2
=⇒ ω2 = c2k2,

Sides :
∂2ψ

∂t2
= c2

∂2ψ

∂x2
+ ω2

sψ =⇒ ω2 = c2k2 + ω2
s . (23)

But the differences in these equations don’t affect the shape of the waves, because the shape
is determined by the wavenumbers k and κ, where κ is the exponential decay constant. ω is
irrelevant for the shape; it determines only how fast the wave oscillates in time. κ is given
by κ =

√
2m(V0 − h̄ω)/h̄ in the quantum case, and

√
(ω2

s − ω2)/c in the string/spring case.
So in both cases, k and κ are related by an equation of the form, k2 + κ2 = A, where A is
a constant that equals 2mV0/h̄

2 in the quantum case, and ω2
s /c

2 in the string/spring case.
Note that ω doesn’t appear in A in either case. When you solve Problem 10.2, you will
see that the shape of the wave is determined by the boundary conditions, along with the
k2 + κ2 = A equation. So the shape is indeed independent of ω.

10.3.4 Tunneling

Consider the string/spring system that is the “opposite” of the system shown in Fig. 9. So
we now have springs in the middle region, and a normal string in the outer regions, as shown
in Fig. 10.

-a a

Figure 10

If a rightward-traveling wave comes in from the left, and if the frequency ω is less than
the cutoff frequency ωs, then we will have an evanescent wave in the middle region. And we
will also have rightward-traveling wave in the right region (but no leftward-traveling wave,
because we’re not sending anything in from the right). So the waves in the three regions
take the general form,

x < −a : ψ1(x) = A1e
ikx +B1e

−ikx,

−a < x < a : ψ2(x) = A2e
κx +B2e

−κx,

x > a : ψ3(x) = A3e
ikx. (24)

We’ve given only the x dependence here. All of these waves are multiplied by the same
function of t, namely e−iωt. The ratio B1/A1 is the reflection coefficient, and the ratio A3/A1
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is the transmission coefficient. Note that we can have both the exponentially growing and
decaying terms in the middle region, because the boundary conditions at ±∞ don’t apply.

The frequency ω can take on any value. It need not take on certain discrete values as
it did in the “opposite” string/spring system analogous to the finite well above. There are
two ways of seeing why this is true. First, it makes physical sense, because you are free to
wiggle the string at whatever ω you want, when creating the incoming wave, A1e

i(kx−ωt). 2

Second, it makes mathematical sense if we count the number of unknowns and equations.
In the finite-well case, we had seven unknowns: A1, A2, A3, B1, B2, B3, and E (or equiva-
lently ω); see Eqs. (20) and (21). And we had seven equations: Six boundary conditions and
the normalization condition. So we could solve for everything. In the present case, we have
six unknowns: A1, A2, A3, B1, B2, and ω (which determines k and κ). And we have four
equations: two boundary conditions at each of x = ±a (there are no boundary conditions at
x = ±∞). Since we have two more unknowns than equations, there will be two unknowns
that we can’t solve for. We can take these to be A1 and ω. In other words, we are free to
give the incoming wave whatever amplitude and frequency we want it to have, which makes
sense.

We can therefore solve for the reflection and transmission coefficients, B1/A1 and A3/A1

in terms of ω (and any other parameters in the setup). The calculation is rather messy,
so we won’t do it here (see Problem [to be added]). The situation isn’t symmetric, since
we’re throwing things in from the left, so we can’t make easy use of the even/odd trick from
Problem 10.1.

The important point to note is that the coefficient A3 is not equal to zero. This is
believable, because the string in the middle region will move at least a little, so the right
end of it will wiggle the string in the right region, creating a rightward-traveling A3e

i(kx−ωt)

wave. Intuitively, if the springs are weak, or if the width 2a of the middle region is small,
then virtually all of the wave will make it through, so A3 ≈ A1. In the other extreme, if the
springs are stiff, or if the width 2a of the middle region is large, then A3 will be small, but
it will always be nonzero. Increasing the stiffness of the springs and/or increasing a should
make A3 smaller, but it should just be a matter of degree, and A3 should asymptotically
approach zero. There isn’t any reason why A3 should suddenly exactly equal zero.

Let’s now consider the analogous quantum system shown in Fig. 11. V (x) equals zero

V = 0

V = V0

-a a

Figure 11

except for the −a < x < a region where it equals V0. If we send a particle (or technically
a stream of particles) in from the left, and if the energy is less than the height V0 of the
bump, then we have exactly the same situation as with the string/spring system. We have
sinusoidal waves in the outer regions, and an evanescent wave in the middle region. The
wavefunctions are again given by Eq. (24). The boundary conditions are also the same, so
the resulting wavefunctions are exactly the same. (As with the finite-well case, the dispersion
relations, and hence the ω’s, are different, but this doesn’t affect the shape of the waves.)
So we again reach the conclusion that A3 is nonzero.

However, while this conclusion is quite intuitive in the string/spring setup, it is quite
bizarre and highly counterintuitive in the quantum-mechanical setup. Classically, if a par-
ticle has E < V0, then it has zero chance of making it over the potential-energy bump. If
a stream of particles comes in from the left, all of them are reflected, and none of them
make it through. But not so in quantum mechanics. Since A3 is nonzero, there is a nonzero
probability that a particle can make it through. This phenomenon is known as tunneling.
With macroscopic particles, the probability is prohibitively small. If you roll a ball toward

2We can’t use the same reasoning in the case of the finite well, because there would be a kink in the
string where you grab it (in the middle region). In the present setup, it doesn’t matter if there’s a kink
very far to the left. (If we wiggled the string in the finite-well case very far to the left, then the evanescent
wave generated would die out well before the middle region. So essentially no sinusoidal wave would be
generated.)
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a hill, and if it doesn’t reach the top, then you will (essentially) never see it appear on the
other side of the hill and roll down. But on the atomic level there are countless examples
and applications of tunneling, including alpha decay, flash memory, and scanning tunneling
microscopes.

10.4 Uncertainty principle

The uncertainty principle (often prefixed with “Heisenberg,” after the physicist who first
formulated it) makes a statement about the uncertainties in the position and momentum
of a particle. There are actually many different uncertainty principles, applying to many
different pairs (always pairs) of variables, but the most common one involves the position
and momentum. This uncertainty principle says that the product of the uncertainties in x
and p can never be smaller than a certain value. More precisely,

∆x∆p ≥ h̄

2
(25)

This tells us that if we know one of x or p very well, then we must be rather unsure of the
other.

Remark: Although we won’t be concerned here with the precise definition of the uncertainties, ∆x
and ∆p, we’ll give the official definition for completeness. The uncertainty in a variable is defined to
be the standard deviation of the variable, which in turn is defined by (with an “overline” denoting
the average)

∆x =

√
(x− x)2 (26)

In words: to find ∆x, you first calculate the average value, x. Then you calculate the average

value of the squares of the distances from x. And then you take the square root of the result.

In general, the probability distributions for x and p are continuous ones, so the averages in Eq.

(26) involve calculating some integrals. But to illustrate the procedure, let’s look at the simpler

case of a discrete distribution. Let’s say we have three equally possible values of x: 1, 2, and

6. Then the average value is x = 3, and the squares of the differences from x are (1 − 3)2 = 4,

(2 − 3)2 = 1, and (6 − 3)2 = 9. The average value of these squares is 14/3, and the square root

of this is
√

14/3 =⇒ ∆x ≈ 2.16. But as we mentioned, the precise definition of the uncertainties

won’t be important here. For the present purposes, we can just take the uncertainty to be the

rough spread of the bump of the probability distribution of x or p. ♣

The quickest way to rigorously prove the uncertainty principle makes use of what are
called quantum-mechanical operators, which you will learn about when you take an actual
course on quantum mechanics. But if you want to understand physically what’s going on
with the uncertainty principle, the best way is to invoke a few results from Chapter 3
on Fourier analysis. It turns out that the uncertainly principle is simply a fancy way of
interpreting a certain fact from Fourier analysis.

Consider the wavefunction ψ(x) shown in Fig. 12. This represents a particle that is
x

ψ(x)

Figure 12

localized to within roughly the spread of the bump. Our Fourier result in Eq. (3.43) says
that we can write (we’ll use the letter φ here instead of C)

ψ(x) =

∫ ∞

−∞
φ(k)eikxdk, where φ(k) =

1

2π

∫ ∞

−∞
ψ(x)e−ikxdx. (27)

φ(k) is the Fourier transform of ψ(x), and it tells us how much of ψ(x) is made up of the
function eikx with a particular value of k.
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Eq. (27) is a mathematical statement that need not have anything to do with physics.
But now let’s introduce some physics. We know from de Broglie’s proposal in Section 10.1
that the function eikx corresponds to a momentum of p = h̄k. Therefore, since φ(k) tells
us how much of ψ(x) is made up of the function eikx with a particular value of k, we see
that φ(k) (or technically |φ(k)|2, once it is normalized to 1) gives the probability that the
particle has a momentum of p = h̄k.

Recall now from Section 3.4.1 that if a Gaussian function ψ(x) is narrow, then the (also
Gaussian) function φ(k) is wide, and vice versa. This opposing behavior of the widths is
also true in general for the other pairs of non-Gaussian functions we dealt with (exponen-
tial/Lorentzian, square-wave/sinc). If a function is narrow (wide), then its Fourier transform
is wide (narrow). This can be proved rigorously, but due to all the examples we gave in
Chapter 3, we’ll just accept it as true here.

Therefore, since φ(k) is the Fourier transform of ψ(x), we see that if we’re very sure about
the position (so ψ(x) is narrow), then we’re very unsure about the momentum (because φ(k)
is wide). Basically, if we want to construct a thin spike, then we need to use many different
eikx functions to build it up.

If you do things rigorously, you will obtain the h̄/2 term on the righthand side of Eq.
(25). But even from our above qualitative argument, this term is believable, because we
saw in Section 3.4 that the product of the rough widths of a plot and its Fourier transform
is always of order 1. That is, ∆x∆k ≈ 1. And since p = h̄k, we obtain ∆x∆p ≈ h̄. So
the exact result of ∆x∆p ≥ h̄/2 is plausible. It turns out that if x (and hence also p) is
a Gaussian function, then the lower bound of h̄/2 is achieved. But for any other function,
∆x∆p is strictly larger than h̄/2.

A common physical interpretation of the uncertainty principle is the following. If you
want to measure the position of a particle, the most reasonable way to do this is to look at
it. This involves shining photons and observing the ones that bounce off in your direction.
Since photons carry momentum (which is given by p = E/c = hν/c), they will transfer some
random fraction of this momentum to the particle when they hit it. You will therefore be
uncertain of the particle’s resulting momentum. Furthermore, if you want to narrow down
the position, you will need to use a shorter wavelength of light, because it is impossible
to resolve the position of a particle to more accuracy than the order of the wavelength
of the light you’re using. (Trying to do so would be like trying accurately measure the
width of a penny by using a ruler whose smallest markings are inches.) Therefore, if you
want to decrease ∆x, then you need to decrease the wavelength λ, which means increasing
the frequency ν (since ν = c/λ), which means increasing the photon’s momentum (since
p = E/c = hν/c). This then increases ∆p. So a small ∆x implies a large ∆p, consistent
with the uncertainty principle.

However, although this physical reasoning makes the uncertainty principle a little more
believable, it can be slightly misleading, because you might think that it is possible to
conjure up a clever way of measuring a position that doesn’t use light and doesn’t disturb
the particle. The uncertainty principle states that this isn’t possible. It states that no
matter how clever you are, you won’t be able to beat the ∆x∆p ≥ h̄/2 lower bound.
The uncertainty principle isn’t a measurement-specific result. Rather, it is a mathematical
consequence of the wave nature of matter with a little Fourier analysis thrown in.



10.5. PROBLEMS 17

10.5 Problems

10.1. Even and odd functions *

Show that if the potential energy is an even function of x (that is, V (−x) = V (x)),
then when solving the time-independent Schrodinger equation, it suffices to consider
even and odd functions ψ (that is, ones for which ψ(−x) = ψ(x) or ψ(−x) = −ψ(x)).
By “suffices,” we mean that any solution can be written as a linear combination of
even and/or odd solutions. Hint: Replace x with −x in the Schrodinger equation.

10.2. Finite square well **

Consider the finite square well discussed in Section 10.3.3 and shown in Fig. 4. From
Problem 10.1 we know that we need only consider even and odd functions for ψ. Let’s
consider the even functions here (Exercise [to be added] covers the odd functions).

(a) If ψ(x) is even, write down the most general possible form of the functions ψ2(x)
and ψ3(x) in Eq. (20).

(b) Apply the boundary conditions at a, and show that (ka) tan(ka) = κa. We could
cancel a factor of a here, but it’s easier to work with the dimensionless quantities,
ka and κa.

(c) From the definitions of k and κ in Eq. (21), it quickly follows that (ka)2+(κa)2 =
2mV0a

2/h̄2. Show graphically how to obtain the solutions for k and κ (and hence
E) by drawing the appropriate curves in the κa vs. ka plane and finding their
intersections.
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10.6 Solutions

10.1. Even and odd functions

Assume that ψ(x) is a solution to the time-independent Schrodinger equation,

Eψ(x) = − h̄2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x). (28)

If we replace x with −x (or if that seems like a fishy step, you can define z ≡ −x, and then
later on relabel the letter z with the letter x), then we have

Eψ(−x) = − h̄2

2m

∂2ψ(−x)

∂(−x)2
+ V (−x)ψ(−x). (29)

Using the given fact that V (−x) = V (x), along with (−x)2 = x2, we obtain

Eψ(−x) = − h̄2

2m

∂2ψ(−x)

∂x2
+ V (x)ψ(−x). (30)

This tells us that if ψ(x) is a solution to the Schrodinger equation with potential V (x) and
total energy E, then ψ(−x) is also a solution with the same V (x) and E. And since the
Schrodinger equation is linear, this means that any linear combination of the functions ψ(x)
and ψ(−x) is also a solution for the same V (x) and E. In particular, the combinations,

ψeven(x) =
1

2

(
ψ(x) + ψ(−x)

)
and ψodd(x) =

1

2

(
ψ(x)− ψ(−x)

)
(31)

are solutions. But these two function are even and odd, as you can verify by replacing x with
−x. And since ψ(x) =

(
ψeven(x) + ψodd(x)

)
/2, any solution with a particular energy can be

written as a linear combination of the even and odd solutions with that energy. It turns out
that in many cases there is only one solution with a given energy, so it is either even or odd
(so one of the functions in Eq. (31) is identically zero).

10.2. Finite square well

(a) Since ψ2(x) is even, only the cos kx parts of the exponentials in Eq. (20) survive. So
ψ2(x) = A cos kx. In the righthand region, the boundary condition at infinity tells us
that the eκx term can’t exist, so ψ3(x) = Be−κx. And then in the lefthand region we
have ψ1(x) = Beκx, but this ends up giving redundant information.

(b) k and κ are unknowns, but they aren’t independent, because E determines both of
them through Eq. (21). ψ1 and ψ2 therefore contain three unknowns, namely A, B, and
E. And we have three equations, namely the two boundary conditions at x = a (the
boundary conditions at x = −a are redundant, given that we are using an even function
by construction), and the normalization condition. However, since our goal is to find
only k and κ (and from these, E), we won’t need to use the normalization condition.

The boundary conditions at x = a (continuity of the wavefunction and its slope) are

ψ2(a) = ψ3(a) =⇒ A cos ka = Be−κa,

ψ′
2(a) = ψ′

3(a) =⇒ −kA sin ka = −κBe−κa. (32)

Dividing these gives

k tan ka = κ =⇒ (ka) tan(ka) = κa, (33)

as desired.

(c) If we square and add the relations in Eq. (21), the E’s cancel, and we end up with (after
multiplying through by a2)

(ka)2 + (κa)2 = 2mV0a
2/h̄2. (34)
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Eqs. (33) and (34) are two equations in two unknowns, k and κ (or equivalently ka and
κa). They can’t be solved analytically, so if we want to obtain precise values we have
to solve them numerically (after being given the values of a, m, V0, and h̄). However,
to get a general idea of what the solutions look like, it is far more instructive to solve
the equations graphically than numerically. Our goal is to find the specific pairs of k
and κ values that simultaneously satisfy Eqs. (33) and (34). These pairs can be found
by drawing the curves represented by Eqs. (33) and (34) in the κa vs. ka plane and
finding their intersections. (We’re working with ka and κa because these quantities
are dimensionless.) These two curves are shown in Fig. 13. Eq. (33) is a series of
(ka) tan(ka) curves, and Eq. (34) is a circle. The intersections are shown by the dots.
The (k, κ) pairs associated with these dots give the desired solutions.
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Figure 13

For a given value of a, the (ka) tan(ka) curves are located at fixed positions, but the size
of the circle depends on the value of mV0a

2/h̄2. And the size of the circle determines
how many solutions there are. Let’s look at the cases of very small and very large
circles. Given the values of m, a, and h̄, this is equivalent to looking at the cases of
very small V0 and very large V0.

Small V0 (shallow well): There is always at least one even solution, no matter
how small V0 is, because the circle always intersects at least the first of the (ka) tan(ka)
curves, even if the radius is very small. (The same can’t be said for the odd states, as
you will see in Exercise [to be added].) In the small-V0 limit, the circle is close to the
origin, so ka and κa are small (more precisely, these dimensionless quantities are much
smaller than 1). We can therefore use tan(ka) ≈ ka to write Eq. (33) as k2a2 ≈ κa.
This says that κa is a second-order small quantity, much smaller that ka. (In other
words, the slope of the (ka) tan(ka) curve equals zero at the origin.) The (κa)2 term

in Eq. (34) is therefore negligible, so our solution for k and κ is k ≈
√

2mV0/h̄
2 and

κ ≈ 0.

The plot of the wave looks something like the function shown in Fig. 14. Since κ ≈ 0,
x

ψ(x)

a-a

(small V0)

Figure 14

the exponential part of the function hardly decays, so it’s almost a straight line. Also,

ka ≈
√

2mV0a2/h̄2, which is the radius of the circle in Fig. 13, which we are assuming
is small. Therefore, since 2ka is the phase change inside the well, the wave has hardly
any net curvature in the middle region, so it’s roughly a straight line there too. So
we end up with a nearly straight line, with a slight negative curvature in the middle,
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and a slight positive curvature on the sides. Note that since κ → 0, virtually all of the
area under the curve (or technically under the |ψ|2 curve) lies outside the well. So the
particle has essentially zero probability of actually being found inside the well. This is
consistent with the fact that the energy E is very small (because it is squeezed between
0 and the very small V0), which means that the wavefunction should be nearly the same
as the wavefunction for a very small E that is barely larger than V0. But in that case
we have a free particle which can be anywhere from −∞ to ∞.

Large V0 (deep well): If V0 is large, then the circle in Fig. 13 is very large, so
there are many solutions for k and κ. This makes sense, because the well is very deep,
so it should roughly approximate an infinite square well, which we know from Section
10.3.2 has an infinite number of possible states. From Fig. 13, a large V0 (and hence
a large circle) implies that the solutions for ka are roughly equal to π/2, 3π/2, 5π/2,
etc. (except for the solutions near the right end of the circle), because the (ka) tan(ka)
curves asymptotically approach the vertical dotted lines in the figure, which are located
at the odd multiples of π/2. This means that the total phase of the cosine in the well is
approximately k(2a) = π, 3π, 5π, etc. So the number of wavelengths that fit into the well
is approximately 1/2, 3/2, 5/2, etc. This makes sense, because we approximately have
an infinite well, and from Fig. 3 you can see that these are the numbers of wavelengths
that fit into an infinite well for the even functions (the ones with odd values of n).


