B.Sc. (Mathematics) (Part III) (Semester – V) Choice Based Credit System with Multiple Entry and Multiple Exit Option (NEP-2020) Syllabus to be implemented from Academic Year 2024-25

Course code

DSE - E12

Title of course

: Integral Transform

Theory

32 Hrs. (40 lecturers of 48 min.)

Marks

: 50 (Credit: 02)

Course Learning Outcomes: This course will enable the students to:

CO1: understand meaning of Laplace Transform

CO2: apply properties of LT to solve differential equations.

CO3: understand relation between Laplace and Fourier Transform.

CO4: understand infinite and finite Fourier Transform.

Unit: 1 Laplace and Inverse Laplace Transform.

(20 Lect.)

1.1 Laplace Transform:

:

- 1.1.1 Definitions: Piccewise continuity, Function of exponential order, Function of class A and Laplace transform.
- 1.1.2 Existence theorem of Laplace transform.
- 1.1.3 Laplace transform of standard functions.
- 1.1.4 First shifting theorem, Second shifting theorem and Change of scale property.
- 1.1.5 Laplace transform of derivatives, Laplace transform of integrals.
- 1.1.6 Effect of Multiplication, Effect of division.
- 1.1.7 Laplace transform of periodic functions.
- 1.1.8 Laplace transform of Heaviside's unit step function and Dirac delta function.
- 1.1.9 Examples based on 1.1.1 to 1.1.8

1.2 Inverse Laplace Transform:

- 1.2.1 Inverse Laplace transform.
- 1.2.2 Standard results of inverse Laplace transform.
- 1.2.3 First shifting theorem, Second shifting theorem and Change of scale property.
- 1.2.4 Inverse Laplace transform of derivatives, inverse Laplace transform of integrals.
- 1.2.5 The Convolution theorem.
- 1.2.6 Effect of multiplication and division.
- 1.2.7 Inverse Laplace by partial fractions.
- 1.2.8 Examples based on 1.2.1 to 1.2.7

Fourier Transform Unit 2

- 2.1.1 Infinite Fourier transform.
- 2.1.2 Infinite Fourier sine and cosine transform.
- 2.1.3 Infinite inverse Fourier sine and cosine transform. 2.1.4 Relationship between Fourier transform and Laplace transform.
- 2.1.5 Change of Scale Property, Modulation theorem.
- 2.1.6 The Derivative theorem, Extension theorem.
- 2.1.7 Convolution theorem.
- 2.1.8 Finite Fourier sine and cosine transform.
- 2.1.9 Finite inverse Fourier sine and cosine transform.
- 2.1.10 Examples based on 2.1.1 to 2.1.9.

Recommended Books: 1. J. K.Goyal, K.P.Gupta, Laplace and Fourier Transform, A Pragati Prakashan, Meerut, 2016. Scope of Syllabus:

Unit 1: Part I: 1.0 to 1.6, Part II: 1.0 to 1.3.

Unit 2: Part I: 2.0 to 2.3, Part II: 2.0 to 2.1.

Reference Books:

- 1. Dr. S. Sreenadh, Fourier series and Integral Transform, S.Chand, New Delhi, 2021
- 2. B.Davies, Integral Transforms and Their Applications, Springer Science, 2017.
- 3. Murray R. Spiegel, Laplace Transforms, Schaum's outlines, 2018.