B.Sc. (Mathematics) (Part II) (Semester – IV)

Choice Based Credit System with Multiple Entry and Multiple Exit Option (NEP-2020)

Course code : DSE - D5

Title of course : Vector Calculus

Theory : 32 Hrs. (40 lecturers of 48 min.)

Marks : 50 (Credit: 02)

Course Learning Outcomes: This course will enable the students to:

CO1: understand and evaluate the concepts of gradient, divergence and curl of point functions in terms of cartesian co-ordinate system.

CO2: understand and evaluate different types of line, surface & volume integrals and the two integral transformation theorems of Gauss and Stokes.

Unit 1 Differential Operators

(16 Hrs.)

- 1.1 Scalar and Vector valued Point functions
- 1.2 Limit and continuity of a scalar and vector point functions
- 1.3 Directional Derivatives of scalar and vector Point Functions & examples
- 1.4 The Operator ∇
- 1.5 Gradient of a Scalar Point Function & examples
- 1.6 Geometrical Interpretation of grad \emptyset , where \emptyset is a scalar point function
- 1.7 Divergence and Curl of vector point function
 - 1.7.1 Definition of div f and curl f, where f is a vector point function
 - 1.7.2 Expressions of div f and curl f in terms of components of f
 - 1.7.3 Characters of div f and curl f as point functions
 - 1.7.4 Problems based on 1.7
- 1.8 Gradient, Divergence and Curl of Sums

1.8.1
$$grad(\emptyset \pm \varphi) = grad \emptyset \pm grad \varphi$$

1.8.2
$$\operatorname{div}(f \pm g) = \operatorname{div} f \pm \operatorname{div} g$$

1.8.3
$$curl(f \pm g) = curl f \pm curl g$$

1.9 Gradient, Divergence and Curl of Products

1.9.1 grad
$$(\phi \varphi)$$
, grad $(f \cdot g)$

1.9.2 div
$$(\emptyset f)$$
, div $(f \times g)$

1.9.3 curl (
$$\emptyset f$$
), curl ($f \times g$)

1.10 Second Order Differential Operators

1.10.1 div grad
$$\emptyset = \nabla \cdot \nabla \emptyset = \frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} + \frac{\partial^2 \emptyset}{\partial z^2}$$

1.10.2 curl grad
$$\emptyset = \nabla \times \nabla \emptyset = 0$$

1.10.3 div curl
$$f = \nabla \cdot \nabla \times f = 0$$

1.10.4 grad div
$$f = \text{curl curl } f + \sum \frac{\partial^2 f}{\partial x^2}$$

1.11 The Laplacian Operator, ∇^2 and examples

Unit 2 Integral Transformations

(16 Hrs.)

- 2.1 Some preliminary concepts: Oriented curve, Smooth curve, Smooth surface, classification of regions
- 2.2 Line integrals
- 2.3 Circulation, work done by a force
- 2.4 Surface integrals, flux
- 2.5 Volume integrals
- 2.6 Problems based on 2.2 to 2.5
- 2.7 Green's theorem in the plane
- 2.8 Green's theorem in the plane in vector notation
- 2.9 Problems based on 2.7 and 2.8
- 2.10 The Divergence theorem of Gauss (statement only)
- 2.11 Stoke's theorem (statement only)
- 2.12 Line integrals independent of path
- 2.13 Physical interpretation of div. and curl

Recommended Book:

 Shanti Narayan & P. K. Mittal: Vector Calculus, S. CHAND & CO (Pvt) LTD, RAM NAGAR, NEW DELHI-110055.

Scope: [Chapter -6: 6.1 to 6.17]

 J. N. Sharma & A. R. Vasishtha: Vector Calculus, KRISHNA Prakashan Media (P) Ltd., Meerut.

Scope: [Chapter- 3]

Reference Books:

- 1. M. L. Khanna: Vector Calculus, Jai Prakash Nath & Co. Meerut
- P. N. Wartikar and J. N. Wartikar: A text book of Applied Mathematics (Vol-II), Vidhyarthi Griha Prakashan, Pune.
- 3. B. S. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi-110002.
- 4. R. K. Jain & S. R. K. Iyengar: Advanced Engineering Mathematics, fourth edition, Narosa Publishing House New Delhi.