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Preface

This book is a compact introduction to many of the important topics of
mathematical logic, comprising natural and unrestricted set-theoretic
methods. Here is a very brief sketch of some of its contents:

1. One of the most prominent features of this new edition is a con-
sistency proof for formal number theory due to Kurt Schiitte. This
proof had been included in the first edition in 1964. It was dropped
in later editions and is now brought back by “popular demand.”
Quite a few people thought I had made a mistake in abandoning it.

2. There is now a greatly enlarged bibliography, with items that should
be interesting to a wide audience. Many of them have to do with
the philosophical significance of some important results of modern
mathematical logic.

As before, the material in this book can be covered in two semesters,
but Chapters 1 through 3 are quite adequate for a one-semester course.
Bibliographic references are aimed at giving the best source of information,
which is not always the earliest; hence, these references give no indication of
priority.

I'believe that the essential parts of the book can be read with ease by any-
one with some experience in abstract mathematical thinking. There is, how-
ever, no specific prerequisite.

This book owes an obvious debt to the standard works of Hilbert and
Bernays (1934, 1939), Kleene (1952), Rosser (1953), and Church (1956). I am also
grateful to many people for their help, including my editor Jessica Vakili, as
well as the editors of the earlier editions.

xiii






Introduction

One of the popular definitions of logic is that it is the analysis of methods of
reasoning. In studying these methods, logic is interested in the form rather
than the content of the argument. For example, consider these two arguments:

1. All men are mortal. Socrates is a man. Hence, Socrates is mortal.
2. All cats like fish. Silvy is a cat. Hence, Silvy likes fish.

Both have the same form: All A are B. S is an A. Hence, S is a B. The truth or
falsity of the particular premises and conclusions is of no concern to logi-
cians. They want to know only whether the premises imply the conclusion.
The systematic formalization and cataloguing of valid methods of reasoning
are a main task of logicians. If the work uses mathematical techniques or if it
is primarily devoted to the study of mathematical reasoning, then it may be
called mathematical logic. We can narrow the domain of mathematical logic if
we define its principal aim to be a precise and adequate understanding of the
notion of mathematical proof.

Impeccable definitions have little value at the beginning of the study of a
subject. The best way to find out what mathematical logic is about is to start
doing it, and students are advised to begin reading the book even though
(or especially if) they have qualms about the meaning and purpose of the
subject.

Although logic is basic to all other studies, its fundamental and apparently
self-evident character discouraged any deep logical investigations until the
late nineteenth century. Then, under the impetus of the discovery of non-
Euclidean geometry and the desire to provide a rigorous foundation for
calculus and higher analysis, interest in logic was revived. This new inter-
est, however, was still rather unenthusiastic until, around the turn of the
century, the mathematical world was shocked by the discovery of the para-
doxes—that is, arguments that lead to contradictions. The most important
paradoxes are described here.

1. Russell’s paradox (1902): By a set, we mean any collection of objects—
for example, the set of all even integers or the set of all saxophone
players in Brooklyn. The objects that make up a set are called its
members or elements. Sets may themselves be members of sets; for
example, the set of all sets of integers has sets as its members. Most
sets are not members of themselves; the set of cats, for example, is not
a member of itself because the set of cats is not a cat. However, there
may be sets that do belong to themselves—perhaps, for example,

X0



xvi Introduction

a set containing all sets. Now, consider the set A of all those sets X
such that X is not a member of X. Clearly, by definition, A is a mem-
ber of A if and only if A is not a member of A. So, if A is a member of
A, then A is also not a member of A; and if A is not a member of A,
then A is a member of A. In any case, A is a member of A and A is not
a member of A (see Link, 2004).

2. Cantor’s paradox (1899): This paradox involves the theory of cardinal
numbers and may be skipped by those readers having no previous
acquaintance with that theory. The cardinal number y of a set Y is a
measure of the size of the set; Y = 7 if and only if Y is equinumerous
with Z (i.e, there is a one—one correspondence between Y and Z).
We define Y< Z to mean that Y is equinumerous with a subset of
Z; by Y <7 we mean Y<7 and Y # 7. Cantor proved that if ./(Y)
is the set of all subsets of Y, then Y < /(Y). Let V be the universal
set—that is, the set of all sets. Now, .(V) is a subset of V; so it fol-
lows easily that (V)<V. On the other hand, by Cantor’s theorem,
V<o V). Bernstelns theorem asserts that if Y < 7 and Z<Y, then

Y = Z. Hence, V = = (V) contrad1ct1ngV< (V).

3. Burali-Forti’s paradox (1897): This paradox is the analogue in the the-
ory of ordinal numbers of Cantor’s paradox and requires familiarity
with ordinal number theory. Given any ordinal number, there is still
a larger ordinal number. But the ordinal number determined by the
set of all ordinal numbers is the largest ordinal number.

4. The liar paradox: A man says, “I am lying.” If he is lying, then what he
says is true and so he is not lying. If he is not lying, then what he says
is true, and so he is lying. In any case, he is lying and he is not lying.*

5. Richard’s paradox (1905): Some phrases of the English language denote
real numbers; for example, “the ratio between the circumference and
diameter of a circle” denotes the number n. All the phrases of the
English language can be enumerated in a standard way: order all
phrases that have k letters lexicographically (as in a dictionary) and
then place all phrases with k letters before all phrases with a larger
number of letters. Hence, all phrases of the English language that
denote real numbers can be enumerated merely by omitting all other
phrases in the given standard enumeration. Call the nth real number
in this enumeration the nth Richard number. Consider the phrase:
“the real number whose nth decimal place is 1 if the nth decimal

* The Cretan “paradox,” known in antiquity, is similar to the liar paradox. The Cretan philoso-
pher Epimenides said, “All Cretans are liars.” If what he said is true, then, since Epimenides
is a Cretan, it must be false. Hence, what he said is false. Thus, there must be some Cretan
who is not a liar. This is not logically impossible; so we do not have a genuine paradox.
However, the fact that the utterance by Epimenides of that false sentence could imply the
existence of some Cretan who is not a liar is rather unsettling.
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place of the nth Richard number is not 1, and whose nth decimal
place is 2 if the nth decimal place of the nth Richard number is 1.”
This phrase defines a Richard number—say, the kth Richard num-
ber; but, by its definition, it differs from the kth Richard number in
the kth decimal place.

6. Berry’s paradox (1906): There are only a finite number of symbols (let-
ters, punctuation signs, etc.) in the English language. Hence, there
are only a finite number of English expressions that contain fewer
than 200 occurrences of symbols (allowing repetitions). There are,
therefore, only a finite number of positive integers that are denoted
by an English expression containing fewer than 200 occurrences
of symbols. Let k be the least positive integer that is not denoted by an
English expression containing fewer than 200 occurrences of symbols. The
italicized English phrase contains fewer than 200 occurrences of
symbols and denotes the integer k.

7. Grelling’s paradox (1908): An adjective is called autological if the prop-
erty denoted by the adjective holds for the adjective itself. An adjec-
tive is called heterological if the property denoted by the adjective
does not apply to the adjective itself. For example, “polysyllabic” and
“English” are autological, whereas “monosyllabic” and “French” are
heterological. Consider the adjective “heterological.” If “heterologi-
cal” is heterological, then it is not heterological. If “heterological” is
not heterological, then it is heterological. In either case, “heterologi-
cal” is both heterological and not heterological.

8. Lob’s paradox (1955): Let A be any sentence. Let B be the sentence: “If
this sentence is true, then A.” So B asserts, “If B is true, then A.” Now
consider the following argument: Assume B is true; then, by B, since
B is true, A holds. This argument shows that if B is true, then A. But
this is exactly what B asserts. Hence, B is true. Therefore, by B, since
B is true, A is true. Thus, every sentence is true. (This paradox may
be more accurately attributed to Curry [1942])

All of these paradoxes are genuine in the sense that they contain no obvi-
ous logical flaws. The logical paradoxes (1-3) involve only notions from the
theory of sets, whereas the semantic paradoxes (4-8) also make use of con-
cepts like “denote,” “true,” and “adjective,” which need not occur within our
standard mathematical language. For this reason, the logical paradoxes are
a much greater threat to a mathematician’s peace of mind than the semantic
paradoxes.

Analysis of the paradoxes has led to various proposals for avoiding them.
All of these proposals are restrictive in one way or another of the “naive”
concepts that enter into the derivation of the paradoxes. Russell noted the
self-reference present in all the paradoxes and suggested that every object
must have a definite nonnegative integer as its “type.” Then an expression
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“x is a member of the set y” is to be considered meaningful if and only if the
type of y is one greater than the type of x.

This approach, known as the theory of types and systematized and devel-
oped in Principia Mathematica by Whitehead and Russell (1910-1913), is suc-
cessful in eliminating the known paradoxes,* but it is clumsy in practice and
has certain other drawbacks as well. A different criticism of the logical para-
doxes is aimed at their assumption that, for every property P(x), there exists
a corresponding set of all objects x that satisfy P(x). If we reject this assump-
tion, then the logical paradoxes are no longer derivable! It is necessary, how-
ever, to provide new postulates that will enable us to prove the existence of
those sets that are needed by the practicing mathematician. The first such
axiomatic set theory was invented by Zermelo (1908). In Chapter 4, we shall
present an axiomatic theory of sets that is a descendant of Zermelo’s system
(with some new twists given to it by von Neumann, R. Robinson, Bernays,
and Godel). There are also various hybrid theories combining some aspects
of type theory and axiomatic set theory—for example, Quine’s system NF.

A more radical interpretation of the paradoxes has been advocated by
Brouwer and his intuitionist school (see Heyting, 1956). They refuse to accept
the universality of certain basic logical laws, such as the law of excluded
middle: P or not P. Such a law, they claim, is true for finite sets, but it is
invalid to extend it on a wholesale basis to all sets. Likewise, they say it is
invalid to conclude that “There exists an object x such that not-P(x)” follows
from the negation of “For all x, P(x)”; we are justified in asserting the exis-
tence of an object having a certain property only if we know an effective
method for constructing (or finding) such an object. The paradoxes are not
derivable (or even meaningful) if we obey the intuitionist strictures, but so
are many important theorems of everyday mathematics, and for this reason,
intuitionism has found few converts among mathematicians.

Exercises

P.1 Use the sentence
(*) This entire sentence is false or 2 + 2 =5 to prove that 2 + 2 =5. Comment
on the significance of this proof.

P.2 Show how the following has a paradoxical result.

The smallest positive integer that is not denoted by a phrase in this
book.

* Russells’s paradox, for example, depends on the existence of the set A of all sets that are not
members of themselves. Because, according to the theory of types, it is meaningless to say
that a set belongs to itself, there is no such set A.

* Russell’s paradox then proves that there is no set A of all sets that do not belong to them-
selves. The paradoxes of Cantor and Burali-Forti show that there is no universal set and no
set that contains all ordinal numbers. The semantic paradoxes cannot even be formulated,
since they involve notions not expressible within the system.
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Whatever approach one takes to the paradoxes, it is necessary first to
examine the language of logic and mathematics to see what symbols may be
used, to determine the ways in which these symbols are put together to form
terms, formulas, sentences, and proofs and to find out what can and cannot
be proved if certain axioms and rules of inference are assumed. This is one of
the tasks of mathematical logic, and until it is done, there is no basis for com-
paring rival foundations of logic and mathematics. The deep and devastat-
ing results of Godel, Tarski, Church, Rosser, Kleene, and many others have
been ample reward for the labor invested and have earned for mathematical
logic its status as an independent branch of mathematics.

For the absolute novice, a summary will be given here of some of the basic
notations, ideas, and results used in the text. The reader is urged to skip
these explanations now and, if necessary, to refer to them later on.

A set is a collection of objects* The objects in the collection are called
elements or members of the set. We shall write “x € y” for the statement that
x is a member of y. (Synonymous expressions are “x belongs to y” and “y
contains x.”) The negation of “x € y” will be written “x & y.”

By “x C y” we mean that every member of x is also a member of y (synony-
mously, that x is a subset of y or that x is included in y). We shall write “t =s” to
mean that t and s denote the same object. As usual, “t # s” is the negation of
“t =s.” For sets x and y, we assume that x = y if and only if x Cy and y € x—that
is, if and only if x and y have the same members. A set x is called a proper
subset of a set y, written “x C y” if x C y but x # y. (The notation x ¢ y is often
used instead of x C v.)

The union x U y of sets x and y is defined to be the set of all objects that are
members of x or y or both. Hence, xUx=x,xUy=yUx,and (xUy) Uz =
X U (y U 2). The intersection x N y is the set of objects that x and y have in com-
mon. Therefore, xnx=x, xNny=ynNx,and (x Ny) N z=xnN (y N z). Moreover,
xNnyuz=xnyuxnzand xU (y Nz =(xuUy n (x U z). The relative
complement x — y is the set of members of x that are not members of . We also
postulate the existence of the empty set (or null set) @—that is, a set that has no
members atall. ThenxN@ =@, xu@d=x,x-0=x,F—x=g,andx - x=Q.
Sets x and y are called disjoint if x Ny = @.

Given any objects by, ..., b, the set that contains b, ..., b; as its only mem-
bers is denoted {b,, ..., b;}. In particular, {x, y} is a set having x and y as its only
members and, if x # y, is called the unordered pair of x and y. The set {x, x}
is identical with {x} and is called the unit set of x. Notice that {x, y} = {y, x}.
By (b,, ..., by) we mean the ordered k-tuple of b, ..., b;. The basic property of
ordered k-tuples is that (b, ..., b)) = (cy, ..., cpy ifand only if b, =¢;, b, =¢,, ...,
by = ¢,. Thus, (b, b,) = (b,, b,) if and only if b, = b,. Ordered 2-tuples are called

* Which collections of objects form sets will not be specified here. Care will be exercised to
avoid using any ideas or procedures that may lead to the paradoxes; all the results can be
formalized in the axiomatic set theory of Chapter 4. The term “class” is sometimes used as a
synonym for “set,” but it will be avoided here because it has a different meaning in Chapter 4.
If a property P(x) does determine a set, that set is often denoted {x|P(x)}.
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ordered pairs. The ordered 1-tuple () is taken to be b itself. If X is a set and k
is a positive integer, we denote by X* the set of all ordered k-tuples (b, ..., by
of elements b,, ..., b, of X. In particular, X' is X itself. If Y and Z are sets, then
by Y x Z we denote the set of all ordered pairs (y, z) such thaty € Yand z € Z.
Y x Z is called the Cartesian product of Y and Z.

An n-place relation (or a relation with n arguments) on a set X is a subset
of X"—that is, a set of ordered n-tuples of elements of X. For example, the
3-place relation of betweenness for points on a line is the set of all 3-tuples
(x, y, z) such that the point x lies between the points y and z. A 2-place relation
is called a binary relation; for example, the binary relation of fatherhood on
the set of human beings is the set of all ordered pairs (x, y) such that x and y
are human beings and x is the father of y. A 1-place relation on X is a subset
of X and is called a property on X.

Given a binary relation R on a set X, the domain of R is defined to be the set
of all y such that (y, z) € R for some z; the range of R is the set of all z such that
(y, z) € R for some y; and the field of R is the union of the domain and range
of R. The inverse relation R of R is the set of all ordered pairs (y, z) such that
(z, v) € R. For example, the domain of the relation < on the set w of nonnega-
tive integers* is m, its range is ® — {0}, and the inverse of < is > Notation: Very
often xRy is written instead of (x, y) € R. Thus, in the example just given, we
usually write x < y instead of (x, y) € <.

A binary relation R is said to be reflexive if xRx for all x in the field of R; R
is symmetric if xRy implies yRx; and R is transitive if xRy and yRz imply xRz.
The following are examples: The relation < on the set of integers is reflexive
and transitive but not symmetric. The relation “having at least one parent
in common” on the set of human beings is reflexive and symmetric, but not
transitive.

A binary relation that is reflexive, symmetric, and transitive is called an
equivalence relation. Examples of equivalence relations are (1) the identity rela-
tion Iy on a set X, consisting of all pairs (x, x), where x € X; (2) given a fixed
positive integer 7, the relation x = y (mod n), which holds when x and y are
integers and x — vy is divisible by 7; (3) the congruence relation on the set of
triangles in a plane; and (4) the similarity relation on the set of triangles in
a plane. Given an equivalence relation R whose field is X, and given any
y € X, define [y] as the set of all z in X such that yRz. Then [y] is called
the R-equivalence class of y. Clearly, [u] = [v] if and only if uRv. Moreover, if
[u] # [v], then [u] N [v] = @; that is, different R-equivalence classes have no
elements in common. Hence, the set X is completely partitioned into the
R-equivalence classes. In example (1) earlier, the equivalence classes are just
the unit sets {x}, where x € X. In example (2), there are n equivalence classes,
the kth equivalence class (k =0, 1, ..., n — 1) being the set of all integers that
leave the remainder k upon division by #.

* o will also be referred to as the set of natural numbers.
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A function fis a binary relation such that (x, y ) € fand (x, z) € fimply y = z.
Thus, for any element x of the domain of a function f, there is a unique y such
that (x, y) € f; this unique y is denoted f(x). If x is in the domain of f, then f(x)
is said to be defined. A function f with domain X and range Y is said to be a
function from X onto Y. If f is a function from X onto a subset of Z, then f is
said to be a function from X into Z. For example, if the domain of f is the set
of integers and f(x) = 2x for every integer x, then fis a function from the set of
integers onto the set of even integers, and f is a function from the set of inte-
gers into the set of integers. A function whose domain consists of n-tuples is
said to be a function of n arquments. A total function of n arguments on a set X is
a function f whose domain is X". It is customary to write f(x,, ..., x,) instead
of f((x,, ..., x,)), and we refer to f(x,, ..., x,) as the value of f for the arguments
Xy, .. X,- A partial function of n arguments on a set X is a function whose
domain is a subset of X". For example, ordinary division is a partial, but not
total, function of two arguments on the set of integers, since division by 0 is
not defined. If f is a function with domain X and range Y, then the restriction
f. of fto a set Z is the function f N (Z x Y). Then f,(u) =vifand only if u € Z
and f(u) = v. The image of the set Z under the function f is the range of f,. The
inverse image of a set W under the function f is the set of all # in the domain
of f such that f(u) € W. We say that f maps X onto (into) Y if X is a subset of the
domain of f and the image of X under fis (a subset of) Y. By an n-place opera-
tion (or operation with n arguments) on a set X we mean a function from X"
into X. For example, ordinary addition is a binary (i.e., 2-place) operation
on the set of natural numbers {0, 1, 2, ...}. But ordinary subtraction is not a
binary operation on the set of natural numbers.

The composition f o g (sometimes denoted fg) of functions f and g is the
function such that (f o g)(x) = f(g(x)); (f o g)(x) is defined if and only if g(x)
is defined and f(g(x)) is defined. For example, if g(x) = x> and f(x) = x + 1 for
every integer x, then (f o g)(x) = x2 + 1 and (g o f)(x) = (x + 1)%. Also, if h(x) = —x
for every real number x and f(x) = v/x for every nonnegative real number x,
then (f o h)(x) is defined only for x < 0, and, for such x, (foh)(x) = J=x. A func-
tion f such that f(x) = f(y) implies x = y is called a 1-1 (one—one) function. For
example, the identity relation Iy on a set X is a 1-1 function, since Ix(y) = y for
every y € X; the function g with domain w, such that g(x) = 2x for every x € ,
is 1-1 (one—one); but the function # whose domain is the set of integers and
such that h(x) = x* for every integer x is not 1-1, since /(-1) = h(1). Notice that
a function fis 1-1 if and only if its inverse relation f~! is a function. If the
domain and range of a 1-1 function f are X and Y, then f is said to be a 1-1
correspondence between X and Y; then f~! is a 1-1 correspondence between
Y and X, and (f o f) = Iy and (f o f7!) = I,. If fis a 1-1 correspondence
between X and Y and g is a 1-1 correspondence between Y and Z, then g o f
is a 1-1 correspondence between X and Z. Sets X and Y are said to be equinu-
merous (written X = Y) if and only if there is a 1-1 correspondence between
Xand Y. Clearly, X =2 X, X = Yimplies Y = X, and X = Y and Y = Z implies
X =~ Z. It is somewhat harder to show that, if X= Y; C Yand Y = X; C X, then
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X =Y (see Bernstein’s theorem in Chapter 4). If X = Y, one says that X and Y
have the same cardinal number, and if X is equinumerous with a subset of Y but
Y is not equinumerous with a subset of X, one says that the cardinal number
of X is smaller than the cardinal number of Y*

A set X is denumerable if it is equinumerous with the set of positive integers.
A denumerable set is said to have cardinal number R, and any set equinu-
merous with the set of all subsets of a denumerable set is said to have the
cardinal number 2™ (or to have the power of the continuum). A set X is finite
if it is empty or if it is equinumerous with the set {1, 2, ..., n} of all positive
integers that are less than or equal to some positive integer n. A set that is
not finite is said to be infinite. A set is countable if it is either finite or denu-
merable. Clearly, any subset of a denumerable set is countable. A denumerable
sequence is a function s whose domain is the set of positive integers; one usu-
ally writes s, instead of s(n). A finite sequence is a function whose domain is
the empty set or {1, 2, ..., n} for some positive integer n.

Let P(x, y;, ..., ) be some relation on the set of nonnegative integers.
In particular, P may involve only the variable x and thus be a property. If
PQ©,yy, ..., vy holds, and, if, for every n, P(1, y,, ..., y) implies P(n + 1, vy, ..., o),
then P(x, y,, ..., yy) is true for all nonnegative integers x (principle of mathemati-
cal induction). In applying this principle, one usually proves that, for every #,
P, yy, ..., y) implies P(n + 1, y,, ..., y) by assuming P(n, y,, ..., ¥) and then
deducing P(n + 1, y, ..., y3); in the course of this deduction, P(n, vy, ..., o)
is called the inductive hypothesis. If the relation P actually involves variables
Y .- Y other than x, then the proof is said to proceed by induction on x.
A similar induction principle holds for the set of integers greater than some
fixed integer j. An example is as follows: to prove by mathematical induc-
tion that the sum of the first n odd integers 1 + 3 + 5 + -+ + (2n — 1) is n?, first
show that 1 = 12 (i.e,, P(1)), and then, that if 1+3+5+ --- + (21 —1)=n?, then
14345+ - +(2n-1)+(2n+1)=(n+1)* (e, if P(n), then P(n + 1)). From the
principle of mathematical induction, one can prove the principle of complete
induction: If for every nonnegative integer x the assumption that P(i, y,, ..., ;)
is true for all u < x implies that P(x, v, ..., ) holds, then, for all nonnegative
integers x, P(x, y, ..., i) is true. (Exercise: Show by complete induction that
every integer greater than 1 is divisible by a prime number.)

A partial order is a binary relation R such that R is transitive and, for every
x in the field of R, xRx is false. If R is a partial order, then the relation R’ that
is the union of R and the set of all ordered pairs (x, x), where x is in the field
of R, we shall call a reflexive partial order; in the literature, “partial order” is
used for either partial order or reflexive partial order. Notice that (xRy and
yRx) is impossible if R is a partial order, whereas (xRy and yRx) implies x =y
if R is a reflexive partial order. A (reflexive) total order is a (reflexive) partial

* One can attempt to define the cardinal number of a set X as the collection [X] of all sets equi-
numerous with X. However, in certain axiomatic set theories, [X] does not exist, whereas in
others [X] exists but is not a set.
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order such that, for any x and y in the field of R, either x = y or xRy or yRx. For
example, (1) the relation < on the set of integers is a total order, whereas < is
a reflexive total order; (2) the relation C on the set of all subsets of the set of
positive integers is a partial order but not a total order, whereas the relation C
is a reflexive partial order but not a reflexive total order. If B is a subset of the
field of a binary relation R, then an element y of B is called an R-least element
of B if yRz for every element z of B different from y. A well-order (or a well-
ordering relation) is a total order R such that every nonempty subset of the
field of R has an R-least element. For example, (1) the relation < on the set of
nonnegative integers is a well-order, (2) the relation < on the set of nonnega-
tive rational numbers is a total order but not a well-order, and (3) the relation
< on the set of integers is a total order but not a well-order. Associated with
every well-order R having field X, there is a complete induction principle: if P is
a property such that, for any u in X, whenever all z in X such that zRu have
the property P, then u has the property P, then it follows that all members
of X have the property P. If the set X is infinite, a proof using this principle
is called a proof by transfinite induction. One says that a set X can be well-
ordered if there exists a well-order whose field is X. An assumption that is
useful in modern mathematics but about the validity of which there has been
considerable controversy is the well-ordering principle: every set can be well-
ordered. The well-ordering principle is equivalent (given the usual axioms of
set theory) to the axiom of choice: for any set X of nonempty pairwise disjoint
sets, there is a set Y (called a choice set) that contains exactly one element in
common with each set in X.

Let B be a nonempty set, f a function from B into B, and g a function from
B?into B. Write x’ for f(x) and x n y for g(x, ). Then (B, f, ) is called a Boolean
algebra if B contains at least two elements and the following conditions are
satisfied:

1. xny=ynxforall xand yin B.
2.xnyynz=xn(ynzforallx,y,zinB.
3.xny =znz'ifandonlyif xny=xforall x,y, zin B.

Let x U y stand for (x' N y’), and write x < y for x Ny = x. It is easily proved
that znz’ = w n w' for any w and z in B; we denote the value of z n z’ by 0.
Let 1 stand for 0. Then z U z’ = 1 for all z in B. Note also that < is a reflexive
partial order on B, and (B, f, U) is a Boolean algebra. (The symbols n, u, 0, 1
should not be confused with the corresponding symbols used in set theory
and arithmetic.) An ideal | in (B, f, g) is a nonempty subset of B such that (1) if
xeJandy e/, thenxuye] and 2)ifx € Jand y € B, thenx ny € J. Clearly,
{0} and B are ideals. An ideal different from B is called a proper ideal. A maxi-
mal ideal is a proper ideal that is included in no other proper ideal. It can be
shown that a proper ideal | is maximal if and only if, for any u in B, u € ] or
u’ € J. From the axiom of choice it can be proved that every Boolean algebra
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contains a maximal ideal, or, equivalently, that every proper ideal is included
in some maximal ideal. For example, let B be the set of all subsets of a set X;
forYe B, let Y = X =Y, and for Y and Z in B, let Y n Z be the ordinary set-
theoretic intersection of Y and Z. Then (B, n) is a Boolean algebra. The 0 of B
is the empty set @, and 1 is X. For each element u in X, the set |, of all subsets
of X that do not contain u is a maximal ideal. For a detailed study of Boolean
algebras, see Sikorski (1960), Halmos (1963), and Mendelson (1970).
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The Propositional Calculus

1.1 Propositional Connectives: Truth Tables

Sentences may be combined in various ways to form more complicated sen-
tences. We shall consider only truth-functional combinations, in which the
truth or falsity of the new sentence is determined by the truth or falsity of its
component sentences.

Negation is one of the simplest operations on sentences. Although a sen-
tence in a natural language may be negated in many ways, we shall adopt a
uniform procedure: placing a sign for negation, the symbol -, in front of the
entire sentence. Thus, if A is a sentence, then ~A denotes the negation of A.

The truth-functional character of negation is made apparent in the follow-
ing truth table:

A —A
T F
F T
When A is true, —A is false; when A is false, —A is true. We use T and F to
denote the truth values true and false.
Another common truth-functional operation is the conjunction: “and.” The

conjunction of sentences A and B will be designated by A A B and has the
following truth table:

A B AAB
T T T
F T F
T F F
F F F

A A B is true when and only when both A and B are true. A and B are called
the conjuncts of A A B. Note that there are four rows in the table, correspond-
ing to the number of possible assignments of truth values to A and B.

In natural languages, there are two distinct uses of “or”: the inclusive and
the exclusive. According to the inclusive usage, “A or B” means “A or B or
both,” whereas according to the exclusive usage, the meaning is “A or B, but
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not both,” We shall introduce a special sign, v, for the inclusive connective.
Its truth table is as follows:

A B AvVB
T T T
F T T
T F T
F F F

Thus, A v B is false when and only when both A and B are false. “A v B” is
called a disjunction, with the disjuncts A and B.

Another important truth-functional operation is the conditional: “if A, then
B” Ordinary usage is unclear here. Surely, “if A, then B” is false when the
antecedent A is true and the consequent B is false. However, in other cases,
there is no well-defined truth value. For example, the following sentences
would be considered neither true nor false:

1. If 1 + 1 = 2, then Paris is the capital of France.
2. If1 + 1 # 2, then Paris is the capital of France.
3. If 1 + 1 # 2, then Rome is the capital of France.

Their meaning is unclear, since we are accustomed to the assertion of some
sort of relationship (usually causal) between the antecedent and the conse-
quent. We shall make the convention that “if A, then B” is false when and
only when A is true and B is false. Thus, sentences 1-3 are assumed to be
true. Let us denote “if A, then B” by “A = B.” An expression “A = B” is called
a conditional. Then = has the following truth table:

A B A=B

T T T
F T T
T F F
F F T

This sharpening of the meaning of “if A, then B” involves no conflict with
ordinary usage, but rather only an extension of that usage.

* There is a common non-truth-functional interpretation of “if A, then B” connected with
causal laws. The sentence “if this piece of iron is placed in water at time ¢, then the iron will
dissolve” is regarded as false even in the case that the piece of iron is not placed in water at
time t—that is, even when the antecedent is false. Another non-truth-functional usage occurs
in so-called counterfactual conditionals, such as “if Sir Walter Scott had not written any nov-
els, then there would have been no War Between the States.” (This was Mark Twain’s conten-
tion in Life on the Mississippi: “Sir Walter had so large a hand in making Southern character, as
it existed before the war, that he is in great measure responsible for the war.”) This sentence
might be asserted to be false even though the antecedent is admittedly false. However, causal
laws and counterfactual conditions seem not to be needed in mathematics and logic. For a
clear treatment of conditionals and other connectives, see Quine (1951). (The quotation from
Life on the Mississippi was brought to my attention by Professor ].C. Owings, Jr.)
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A justification of the truth table for = is the fact that we wish “if A and
B, then B” to be true in all cases. Thus, the case in which A and B are true
justifies the first line of our truth table for =, since (A and B) and B are both
true. If A is false and B true, then (A and B) is false while B is true. This cor-
responds to the second line of the truth table. Finally, if A is false and B is
false, (A and B) is false and B is false. This gives the fourth line of the table.
Still more support for our definition comes from the meaning of statements
such as “for every x, if x is an odd positive integer, then x? is an odd positive
integer.” This asserts that, for every x, the statement “if x is an odd positive
integer, then x? is an odd positive integer” is true. Now we certainly do not
want to consider cases in which x is not an odd positive integer as coun-
terexamples to our general assertion. This supports the second and fourth
lines of our truth table. In addition, any case in which x is an odd positive
integer and x? is an odd positive integer confirms our general assertion.
This corresponds to the first line of the table.

Let us denote “A if and only if B” by “A < B.” Such an expression is called
a biconditional. Clearly, A < B is true when and only when A and B have the
same truth value. Its truth table, therefore is:

A B A<B
T T T
F T F
T F F
F F T

The symbols —, A, V, =, and < will be called propositional connectives* Any
sentence built up by application of these connectives has a truth value that
depends on the truth values of the constituent sentences. In order to make
this dependence apparent, let us apply the name statement form to an expres-
sion built up from the statement letters A, B, C, and so on by appropriate appli-
cations of the propositional connectives.

1. All statement letters (capital italic letters) and such letters with
numerical subscripts’ are statement forms.

2. If »and 7 are statement forms, then so are (=%), (7 A ©), (2 V ),
(7= 7),and (7 & 7).

* We have been avoiding and shall in the future avoid the use of quotation marks to form
names whenever this is not likely to cause confusion. The given sentence should have quota-
tion marks around each of the connectives. See Quine (1951, pp. 23-27).

* For example, A;, A,, Ay, B3, Cy, ...
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3. Only those expressions are statement forms that are determined
to be so by means of conditions 1 and 2* Some examples of state-
ment forms are B, (-C,), (D; A (—B)), (0B;) Vv B,) = (A; A (), and
(A oA e (C=>BVvO).

For every assignment of truth values T or F to the statement letters that occur
in a statement form, there corresponds, by virtue of the truth tables for the
propositional connectives, a truth value for the statement form. Thus, each
statement form determines a truth function, which can be graphically repre-
sented by a truth table for the statement form. For example, the statement
form ((=A) v B) = C) has the following truth table:

A B C (=4) (=AvB (((=A)vB)=C)
T T T F T T
F T T T T T
T F T F F T
F F T T T T
T T F F T F
F T F T T F
T F F F F T
F F F T T F

Each row represents an assignment of truth values to the statement letters
A, B, and C and the corresponding truth values assumed by the statement
forms that appear in the construction of ((=A) v B) = C).

The truth table for (A < B) = ((-A) A B)) is as follows:

A B (AeB) (H4) (HAAB) (A< B)=((—A)AB)
T T T F F F
F T F T T T
T F F F F T
F F T T F F

If there are n distinct letters in a statement form, then there are 2" possible
assignments of truth values to the statement letters and, hence, 2" rows in
the truth table.

* This can be rephrased as follows: - is a statement form if and only if there is a finite sequence
Sy - 4y (n21) such that 4, =~ and, if 1 <i<n, 4 is either a statement letter or a negation, con-
junction, disjunction, conditional, or biconditional constructed from previous expressions in
the sequence. Notice that we use script letters ., », «, ... to stand for arbitrary expressions,
whereas italic letters are used as statement letters.
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A truth table can be abbreviated by writing only the full statement form,
putting the truth values of the statement letters underneath all occurrences
of these letters, and writing, step by step, the truth values of each component
statement form under the principal connective of the form.* As an example,
for (A < B) = ((—A) A B)), we obtain

(A < B = (=4 ~ B)
T T T F FTI F T
F F T T TF T T
T F F T FI F F
F T F F TF F F

Exercises

1.1 Let @ designate the exclusive use of “or.” Thus, A @ B stands for “A or
B but not both.” Write the truth table for &.

1.2 Construct truth tables for the statement forms (A = B) v (-A4)) and
(A=>B=>0Q0)=>A=>B=>A=>0).
1.3 Write abbreviated truth tables for (A = B) A A) and ((A v (=C)) < B).

1.4 Write the following sentences as statement forms, using statement let-
ters to stand for the atomic sentences—that is, those sentences that are
not built up out of other sentences.

a. If Mr Jones is happy, Mrs Jones is not happy, and if Mr Jones is not
happy, Mrs Jones is not happy.

b. Either Sam will come to the party and Max will not, or Sam will not
come to the party and Max will enjoy himself.

c. A sufficient condition for x to be odd is that x is prime.

A necessary condition for a sequence s to converge is that s be
bounded.

e. A necessary and sufficient condition for the sheikh to be happy is
that he has wine, women, and song.

Fiorello goes to the movies only if a comedy is playing.
The bribe will be paid if and only if the goods are delivered.

5 @ -

If x is positive, x? is positive.

-

Karpov will win the chess tournament unless Kasparov wins
today.

* The principal connective of a statement form is the one that is applied last in constructing the
form.
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1.2 Tautologies

A truth function of n arguments is defined to be a function of n arguments, the
arguments and values of which are the truth values T or F. As we have seen,
any statement form containing n distinct statement letters determines a cor-
responding truth function of n arguments.*

A statement form that is always true, no matter what the truth values of its
statement letters may be, is called a tautology. A statement form is a tautol-
ogy if and only if its corresponding truth function takes only the value T,
or equivalently, if, in its truth table, the column under the statement form
contains only Ts. An example of a tautology is (A Vv (=A)), the so-called law
of the excluded middle. Other simple examples are (=(A A (-4)), (A & (=(-A))),
((AAB)= A),and (A= (A V B)).

#1s said to logically imply « (or, synonymously, ~is a logical consequence of )
if and only if every truth assignment to the statement letters of .»and ~ that
makes .~ true also makes ¢ true. For example, (A A B) logically implies A, A
logically implies (A v B), and (A A (A = B)) logically implies B.

»and « are said to be logically equivalent if and only if .7 and ¢ receive the
same truth value under every assignment of truth values to the statement
letters of ~7and ~. For example, A and (=(—A)) are logically equivalent, as are
(A AB)and (B A A).

* To be precise, enumerate all statement letters as follows: A, B, ..., Z; A}, By, ..., Z;; Ay, ...,. Ifa
statement form contains the i, ..., i s statement letters in this enumeration, where i, < --- <1i,,
then the corresponding truth function is to have x;, ..., x;,, in that order, as its arguments,

where x;; corresponds to the iw statement letter. For example, (A = B) generates the truth
function:

X1 X2 f(xlrxz)
T

e B |
o4 A

T
F
T

whereas (B = A) generates the truth function:

x x g(x,x)

e I e I
o o4 4

= =
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Proposition 1.1

a. .zlogically implies ~if and only if (7= ¢) is a tautology.
b. 7and ¢ are logically equivalent if and only if (< ) is a tautology.

Proof

a. (i) Assume ~ logically implies +. Hence, every truth assignment
that makes .7 true also makes ~ true. Thus, no truth assignment
makes 7 true and  false. Therefore, no truth assignment makes
(# = ) false, that is, every truth assignment makes (» = ¢) true.
In other words, (7 = ») is a tautology. (ii) Assume (7= ¢) is a
tautology. Then, for every truth assignment, (v = ) is true, and,
therefore, it is not the case that ~is true and ~ false. Hence, every
truth assignment that makes  true makes « true, that is, -7 logi-
cally implies .

b. (7% r)isatautology if and only if every truth assignment makes (< ¢)
true, which is equivalent to saying that every truth assignment gives
»and « the same truth value, that is, -vand ~ are logically equivalent.

By means of a truth table, we have an effective procedure for determining
whether a statement form is a tautology. Hence, by Proposition 1.1, we have
effective procedures for determining whether a given statement form logi-
cally implies another given statement form and whether two given statement
forms are logically equivalent.

To see whether a statement form is a tautology, there is another method
that is often shorter than the construction of a truth table.

Examples
1. Determine whether (A < ((—B) v C)) = ((-A) = B)) is a tautology.

Assume that the statement form ((A < ((-B) v C)) = ((-A4) = B))
sometimes is F (line 1). Then (A & F
(=B)v(C)isTand (-A) = B)isF T F
(line 2). Since (—A) = B) is E, (-A) T F
is T and B is F (line 3). Since (-A)is
T, Ais F (line 4). Since A is F and
A< (B VvC)isT (-B)v(C)isF
(line 5). Since (-B) v C) is E, (B) F F
and C are F (line 6). Since (-B) is F, T

Bis T (line7). But Bisboth T and F

(lines 7 and 3). Hence, it is impos-

sible for the form to be false.

i
i
N O Ul W DN =



Introduction to Mathematical Logic

2. Determine whether (A = (B Vv C)) v (A = B)) is a tautology.

Assume that the form is F (A=>BvC)V(A=>B)

(line 1). Then (A = (B v C)) and F

(A = B) are F (line 2). Since F F
(A =B)isFEA isTandBisF T F
(line 3). Since A= (BVv C))is F, T F

Ais Tand (B v Q) is F (line 4). F F

Qs W N -

Since (B v C)is E B and C are
F (line 5). Thus, when A is T, B
is F, and C is E the form is F.
Therefore, it is not a tautology.

Exercises

1.5 Determine whether the following are tautologies.

1.6

1.7

1.8

a.

—

j-

S @ e an T

((A=>B)=B)=B)
((A=>B)=B)=> A)
(A=>B)=>A) =>4
(B=>0C)=>A=B)=>A=>B)
(AvVEBAQ)= (A= C)VB)
(A=>B=>(B=A4)
(AAB)=>(AVv Q)

(AeB) e (Ae (Be A)
(A=>B)v(B=>A)
(=(A=B)=>A)

Determine whether the following pairs are logically equivalent.

R ™ e o0 o

(A=>B)=>A)and A

(A B)and (A= B)A (B> A))

((=A) v B) and ((—B) v A)

(-(A & B)) and (A < (—B))
(Av(Be(C)and (AvB)< (Av Q)
A=>BeC)and (A=>B) < A=>0)
AABeC)and (AAB) < (AAQ)

Prove:

a.
b.

(A = B) is logically equivalent to ((=A) v B).
(A = B) is logically equivalent to (—=(A A (=B))).

Prove that ~is logically equivalent to ~if and only if slogically implies
¢and « logically implies .
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1.9 Show that »and ¢ are logically equivalent if and only if, in their truth
tables, the columns under .7and - are the same.

1.10 Prove that »sand ~ are logically equivalent if and only if (-~) and (=v)
are logically equivalent.

1.11 Which of the following statement forms are logically implied by (A A B)?

a. A

b. B

c. (AvB)

d. (-4 Vv B)

e. (CFB)=>A)

f. A< B)

g. (A=>B)

h. (=B) = (~4))

i. (AA(B))
1.12 Repeat Exercise 1.11 with (A A B) replaced by (A = B) and by (~(A = B)),

respectively.

1.13 Repeat Exercise 1.11 with (A A B) replaced by (A v B).

1.14 Repeat Exercise 1.11 with (A A B) replaced by (A < B) and by (~(A < B)),
respectively.

A statement form that is false for all possible truth values of its statement
letters is said to be contradictory. Its truth table has only Fs in the column
under the statement form. One example is (A & (—A)):

A (=4) (A=(=4)
T F F
F T F

Another is (A A (RA)).

Notice that a statement form .7 is a tautology if and only if (=) is contra-
dictory, and vice versa.

A sentence (in some natural language like English or in a formal theory)*
that arises from a tautology by the substitution of sentences for all the state-
ment letters, with occurrences of the same statement letter being replaced by
the same sentence, is said to be logically true (according to the propositional
calculus). Such a sentence may be said to be true by virtue of its truth-func-
tional structure alone. An example is the English sentence, “If it is raining or
it is snowing, and it is not snowing, then it is raining,” which arises by substi-
tution from the tautology ((A v B) A (=B)) = A). A sentence that comes from

* By a formal theory we mean an artificial language in which the notions of meaningful expres-
sions, axioms, and rules of inference are precisely described (see page 27).
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a contradictory statement form by means of substitution is said to be logically
false (according to the propositional calculus).
Now let us prove a few general facts about tautologies.

Proposition 1.2
If »7and (= ) are tautologies, then so is .

Proof

Assume that .» and (7 = ) are tautologies. If ~ took the value F for some
assignment of truth values to the statement letters of .7 and v, then, since .
is a tautology, .» would take the value T and, therefore, (# = ») would have
the value F for that assignment. This contradicts the assumption that (.7 = »)
is a tautology. Hence, » never takes the value F.

Proposition 1.3

If 7 is a tautology containing as statement letters A,, A,, ..., A,, and »
arises from by substituting statement forms .4, 4, ..., 4, for A;, A,, ..., A,,
respectively, then is a tautology; that is, substitution in a tautology yields
a tautology.

Example
Let v be (A, A Ay = A)), let o,y be (B v C) and let . be (C A D). Then .7 is
((BVC)A(CAD)=>(BvVO)).

Proof

Assume that /~ is a tautology. For any assignment of truth values to the state-
ment letters in ., the forms 4, ..., », have truth values x;, ..., x, (Where each
x;is T or F). If we assign the values x, ..., x, to A,, ..., A,, respectively, then
the resulting truth value of ~~ is the truth value of = for the given assign-
ment of truth values. Since - is a tautology, this truth value must be T. Thus,
»always takes the value T.

Proposition 1.4

If  arises from . by substitution of ~ for one or more occurrences of ., then
(#& 7) > (4 © ) is a tautology. Hence, if .7and ~ are logically equivalent,
then so are 4 and +;.
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Example

Let. . be (v D), let 7 be 7, and let # be (=(=7)). Then ¢, is (~(—~)) Vv D). Since
7 and (—(—7)) are logically equivalent, (+ v D) and ((-(—+)) v D) are also logi-
cally equivalent.

Proof

Consider any assignment of truth values to the statement letters. If .~ and
~ have opposite truth values under this assignment, then (7 & ) takes the
value F, and, hence, (#< ) = (4 © ;) is T. If »and « take the same truth
values, then so do .4 and « ;, since + differs from .4 only in containing
~in some places where .7, contains .. Therefore, in this case, (7 & ») is T,
(o n)isT and, thus, (v 7)) => (4 © 7)) is T.

Parentheses

It is profitable at this point to agree on some conventions to avoid the use
of so many parentheses in writing formulas. This will make the reading of
complicated expressions easier.

First, we may omit the outer pair of parentheses of a statement form. (In the
case of statement letters, there is no outer pair of parentheses.)

Second, we arbitrarily establish the following decreasing order of strength
of the connectives: =, A, V, =, ©. Now we shall explain a step-by-step process
for restoring parentheses to an expression obtained by eliminating some or
all parentheses from a statement form. (The basic idea is that, where possible,
we first apply parentheses to negations, then to conjunctions, then to disjunc-
tions, then to conditionals, and finally to biconditionals.) Find the leftmost
occurrence of the strongest connective that has not yet been processed.

i. If the connective is - and it precedes a statement form .7, restore left
and right parentheses to obtain (= %).

ii. If the connective is a binary connective C and it is preceded by a state-
ment form .»and followed by a statement form 7, restore left and right
parentheses to obtain (#C 7).

iii. If neither (i) nor (ii) holds, ignore the connective temporarily and find
the leftmost occurrence of the strongest of the remaining unprocessed
connectives and repeat (i-iii) for that connective.

Examples
Parentheses are restored to the expression in the first line of each of the fol-
lowing in the steps shown:
1. Ae(B)vC=>A
As(-B)vO)=>A
A (B v(C)=>A
A (EB)vC)=A4)
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2. A=>-B=>C

A=>(-B)=>C

(A= (B)=>C
(A= (=B) =)
B=> A

B = ~(-A)

B = (=(=A))

(B = (=(=A))

AV -(B=AVB)
AV -(B=>(AvVB)
AV ((B=(AvVB)
(Av(=B=(AVBD)

Not every form can be represented without the use of parentheses. For exam-
ple, parentheses cannot be further eliminated from A = (B = C), since A =
B = C stands for (A = B) = C). Likewise, the remaining parentheses cannot
be removed from —(A v B) or from A A (B = C).

Exercises

1.15 Eliminate as many parentheses as possible from the following forms.

1.16

117

a. (B=>CA)A0)

(Av(BvVvO)

((AAEB) AC) v D)

(B V (=C) v (AAB)

(Ae B (CvD)

CCEB V) < (B« 0)
C(ECBVO) < (B < Q)
(A= B)=> (C=>D)AEA) VO
Restore parentheses to the following forms.
a. CV-AAB

b. B=>-—=AAC

¢ C=>-(AAB=>C)AA<B

d C>A=>As-AVB

Determine whether the following expressions are abbreviations of
statement forms and, if so, restore all parentheses.

a. mAAsBvC
b. (A A <BvC
¢ "A=>B)VvCvD=>B

0% -~ 0 & n T
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d.
e.
f.

As (-AVB)=>AABVQO)
“AVBVCADSAA-A
(A=>BA(CVD)AAVD)

1.18 If we write - 7instead of (~.%), =% 7 instead of (7= »), A 7~ instead of
(7 A ¢), vz rinstead of (7V ¢), and © 7 7 instead of (7 < ), then there
is no need for parentheses. For example, (-A) A (B = (=D))), which is
ordinarily abbreviated as ~A A (B = —D), becomes A A = B =D. This
way of writing forms is called Polish notation.

1.19

1.20

a.

b.

Write (C = (—~A)) v B) and (C Vv ((B A (-D)) = C)) in this notation.
If we count =, A, V, and & each as +1, each statement letter as —1
and - as 0, prove that an expression .»7in this parenthesis-free nota-
tion is a statement form if and only if (i) the sum of the symbols of
»is =1 and (ii) the sum of the symbols in any proper initial segment
of .7is nonnegative. (If an expression .7 can be written in the form
<7, where »# -, then ~is called a proper initial segment of ..
Write the statement forms of Exercise 1.15 in Polish notation.
Determine whether the following expressions are statement forms
in Polish notation. If so, write the statement forms in the standard
way.
i == ABCVAB-C

ii. == AB == BC=>-AC

iii. VAV=A-BCAVACV-C-A

iv. VABABBB

Determine whether each of the following is a tautology, is contradic-
tory, or neither.

-

j-

5 ® =~ 0 &0 T

B< (BV B)
(A=>B)AB)=>A
-A)=>(AAB)
A=>B)=>(B=>0C)=>A=>0)
(A-B)=>AVB
AAEAVB)

(A=>B)e(-A) VB

(A= B) < —(AA(-B)
BeBeoA)=>A
AAN-A=>B

If A and B are true and C is false, what are the truth values of the fol-
lowing statement forms?

a.
b.

AvC
AANC
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1.21

1.22

1.23

1.24
1.25

1.26

Introduction to Mathematical Logic

A A-C

As-BvC

Bv-C=>A

(BvA)=B=>-0)
B=>-AsAs0)
B=>A)=>(A=>-C)=>(-C=>B))

If A > Bis T, what can be deduced about the truth values of the
following?

a. AvC=>BvC

b. AANC=>BAC

c. "AANBSAVB

What further truth values can be deduced from those shown?
a. "~AV(A=>B)

5@ - 0 &n

F
b. -(AAB)e -A=>-B
T
c. FAVB)=>A=>-0)
F
d (AeB) e (C=>-A4)
F T
If A & B is F, what can be deduced about the truth values of the
following?
a. AAB
b. AVvB
c. A=>B

d AACeBAC
Repeat Exercise 1.23, but assume that A < Bis T.
What further truth values can be deduced from those given?
a. AAB)e(AVB)
F F
b. (A= -B)=(C=>B)
F
a. Apply Proposition 1.3 when " is A; = A; VA, 4isBAD,and »
is =B.
b. Apply Proposition 1.4 when .4 is (B= C) AD, » is B= C,and
is=BvC.
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1.27 Show that each statement form in column I is logically equivalent to
the form next to it in column IL

ETPNOT[OSE S RTESR S0 A0 TR

I
A=>B=>0)
AANBVC)
AV(BAC
(ANB)v-B
(AvVB)A—-B
A=>B
A B
AeBsC
A< B
-(A < B)
=(A Vv B)
=(A A B)

. AV(AAB)

AAN(AVB)
AANB
AVB
(AANB)AC
(AvB)yvC
A®B
A®BdC
ANB®C)

II
(AAB)=>C
(AAB)V(AACQ)
(AVB)A(AVO)
AvV-B
AAN-B
- B=>-A
Bs A
A Bs ()
(AAB) v(—=AA-B)
As-B
(-A) A (-B)
(=A) v (=B)

A

A

BAA

BV A

AANB ACQC)
Av (B v()
B A

A B&C)
(AAB)®AAQ)

(Distributive law)
(Distributive law)

(Law of the contrapositive)
(Biconditional commutativity)
(Biconditional associativity)

(De Morgan’s law)
(De Morgan’s law)

(Commutativity of conjunction)
(Commutativity of disjunction)
(Associativity of conjunction)
(Associativity of disjunction)
(Commutativity of exclusive “or”)
(Associativity of exclusive “or”)
(Distributive law)

1.28 Show the logical equivalence of the following pairs.

1.29

7 A wand 7, where  is a tautology.

/~V.zand ./, where ./ is a tautology.

7 A wand .7 where .7 is contradictory.

7V .»and .z, where .+ is contradictory.
Show the logical equivalence of =(A = B) and A A —B.
Show the logical equivalence of =(A < B) and (A A =B) v (=A A B).

For each of the following statement forms, find a statement form
that is logically equivalent to its negation and in which negation
signs apply only to statement letters.

i A= Be -0
ii. ~Av(B=>C0C)
iii. AABvV-C)
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1.30 (Duality)

a.

1.31 a.

If . is a statement form involving only —, A, and Vv, and .’ results
from .7 by replacing each A by Vv and each Vv by A, show that .7 is a
tautology if and only if =/’ is a tautology. Then prove that, if 7 = ~
is a tautology, then sois ' =, and if # & ~ is a tautology, then so
is 7' < . (Here  is also assumed to involve only —, A, and V.

Among the logical equivalences in Exercise 1.27, derive (c) from (b),
(e) from (d), (1) from (k), (p) from (o), and (r) from (q).

If 7 is a statement form involving only —, A, and Vv, and .&/* results
from by interchanging A and v and replacing every statement let-
ter by its negation, show that ../* is logically equivalent to -~ Find a
statement form that is logically equivalent to the negation of (A v B
v C) A (FA v =B v D), in which — applies only to statement letters.

Prove that a statement form that contains < as its only connective
is a tautology if and only if each statement letter occurs an even
number of times.

Prove that a statement form that contains - and < as its only con-
nectives is a tautology if and only if = and each statement letter
occur an even number of times.

1.32 (Shannon, 1938) An electric circuit containing only on-off switches
(when a switch is on, it passes current; otherwise it does not) can be
represented by a diagram in which, next to each switch, we put a letter
representing a necessary and sufficient condition for the switch to be on
(see Figure 1.1). The condition that a current flows through this network
can be given by the statement form (A A B) v (C A =A). A statement form
representing the circuit shown in Figure 1.2 is (A A B) v (C v A) A =B),
which is logically equivalent to each of the following forms by virtue
of the indicated logical equivalence of Exercise 1.27.

FIGURE 1.1

FIGURE 1.2

A B
B
—IB

A
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((AAB)v(Cv A)A(AAB)v—B) ©
((AAB)v(Cv A)A(Av—B) )
(AAB)v(AvC)A(Av—B) )
(((AAB)v A)vC) A(Av —B) @)

(AvC)n(Av—B) (p), (m)
Av (C A—B) ©

Hence, the given circuit is equivalent to the simpler circuit shown
in Figure 1.3. (Two circuits are said to be equivalent if current flows
through one if and only if it flows through the other, and one circuit is
simpler if it contains fewer switches.)

a. Find simpler equivalent circuits for those shown in Figures 1.4
through 1.6.

b. Assume that each of the three members of a committee votes yes on
a proposal by pressing a button. Devise as simple a circuit as you
can that will allow current to pass when and only when at least
two of the members vote in the affirmative.

c. We wish a light to be controlled by two different wall switches in a
room in such a way that flicking either one of these switches will
turn the light on if it is off and turn it off if it is on. Construct a
simple circuit to do the required job.

A\
FIGURE 1.3
A
C —
B\
—I A
—] C
-
B8\

FIGURE 1.4
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FIGURE 1.5

FIGURE 1.6
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B c\
A -B c
' - B c
A\_ A A
\_‘
e [}
pD\—]

1.33 Determine whether the following arguments are logically correct by
representing each sentence as a statement form and checking whether
the conclusion is logically implied by the conjunction of the assump-
tions. (To do this, assign T to each assumption and F to the conclusion,
and determine whether a contradiction results.)

a.

b.

If Jones is a communist, Jones is an atheist. Jones is an atheist.
Therefore, Jones is a communist.

If the temperature and air pressure remained constant, there was
no rain. The temperature did remain constant. Therefore, if there
was rain, then the air pressure did not remain constant.

If Gorton wins the election, then taxes will increase if the deficit
will remain high. If Gorton wins the election, the deficit will remain
high. Therefore, if Gorton wins the election, taxes will increase.

If the number x ends in 0, it is divisible by 5. x does not end in 0.
Hence, x is not divisible by 5.

If the number x ends in 0, it is divisible by 5. x is not divisible by 5.
Hence, x does not end in 0.

Ifa=00rb=0,thenab=0.Butab=0. Hence,a=0and b = 0.

A sufficient condition for f to be integrable is that g be bounded.
A necessary condition for / to be continuous is that f is integrable.
Hence, if g is bounded or % is continuous, then f is integrable.

Smith cannot both be a running star and smoke cigarettes. Smith is
not a running star. Therefore, Smith smokes cigarettes.

If Jones drove the car, Smith is innocent. If Brown fired the gun,
then Smith is not innocent. Hence, if Brown fired the gun, then
Jones did not drive the car.
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1.34 Which of the following sets of statement forms are satisfiable, in the
sense that there is an assignment of truth values to the statement let-
ters that makes all the forms in the set true?

a. A=>B
B=C
CvDes -B

b. =(=Bv A)
Av-C
B=-C

c D=>B
AvV-B
(D AA)
D

1.35 Check each of the following sets of statements for consistency by rep-
resenting the sentences as statement forms and then testing their con-
junction to see whether it is contradictory.

a. Either the witness was intimidated or, if Doherty committed
suicide, a note was found. If the witness was intimidated, then
Doherty did not commit suicide. If a note was found, then Doherty
committed suicide.

b. The contract is satisfied if and only if the building is completed
by 30 November. The building is completed by 30 November
if and only if the electrical subcontractor completes his work by
10 November. The bank loses money if and only if the contract is
not satisfied. Yet the electrical subcontractor completes his work by
10 November if and only if the bank loses money.

1.3 Adequate Sets of Connectives

Every statement form containing n statement letters generates a correspond-
ing truth function of n arguments. The arguments and values of the func-
tion are T or F. Logically equivalent forms generate the same truth function.
A natural question is whether all truth functions are so generated.

Proposition 1.5

Every truth function is generated by a statement form involving the connec-
tives =, A, and V.
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Proof

(Refer to Examples 1 and 2 below for clarification.) Let f(x,, ..., x,) be a truth func-
tion. Clearly f can be represented by a truth table of 2" rows, where each row
represents some assignment of truth values to the variables x, ..., x,, followed
by the corresponding value of f(x,, ..., x,). If 1 <7 < 2", let C; be the conjunction
Ui AU A A Uj;, where U/ is A; if, in the ith row of the truth table, x; takes the
value T, and U} is =A; if x; takes the value F in that row. Let D be the disjunction of
all those C;s such that f has the value T for the ith row of the truth table. (If there
are no such rows, then f always takes the value F, and we let D be A; A =A,, which
satisfies the theorem.) Notice that D involves only —, A, and V. To see that D has
f as its corresponding truth function, let there be given an assignment of truth
values to the statement letters A,, ..., A,, and assume that the corresponding
assignment to the variables x,, ..., x,, is row k of the truth table for f. Then C; has
the value T for this assignment, whereas every other C, has the value F. If f has
the value T for row k, then C, is a disjunct of D. Hence, D would also have the
value T for this assignment. If f has the value F for row k, then C, is not a dis-
junct of D and all the disjuncts take the value F for this assignment. Therefore,
D would also have the value F. Thus, D generates the truth function f.

Examples
1. X1 X f(x,x2)
T T F
F T T
T F T
F F T

Dis (A; AAY) V(AL A Ay V (RA; A DA)).

N
=2
=
N
=
&

g(x1, x2, x3)

ol e T B I
=TI I I - I
Ho o333
H T Hm 43

Dis (Al /\A2 /\A3)\/(A1 /\—|A2 /\Ag)V(—|A1 /\—|A2 /\A3)
Y4 (—|A1 A\ —|A2 A\ —|A3)
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Exercise

1.36 Find statement forms in the connectives —, A, and Vv that have the fol-
lowing truth functions.

fx, x2, x3)  g(x1, x2, x3)  h(x1, %2, X3)
T T F

=
=
N
=
@

T - I - I B |
T T T [ S SR Qe
R I I I I
— oo o o
ol B IS I T
I = -

Corollary 1.6

Every truth function can be generated by a statement form containing as
connectives only A and —, or only vV and —, or only = and —.

Proof

Notice that .» v « is logically equivalent to =(=# A =¢). Hence, by the sec-
ond part of Proposition 14, any statement form in A, v, and - is logically
equivalent to a statement form in only A and — [obtained by replacing all
expressions 'V ¢ by =(=# A =)]. The other parts of the corollary are similar
consequences of the following tautologies:

s ne @a(nvar)

2N 4:>(—|//:>/)

G NC C>—'( //:>—|/)
We have just seen that there are certain pairs of connectives—for exam-
ple, A and ~—in terms of which all truth functions are definable. It turns

out that there is a single connective, | (joint denial), that will do the same
job. Its truth table is

A B AlB
T T F
F T F
T F F
F F T
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A | Bis true when and only when neither A nor B is true. Clearly, A & (A |
A)and (AAB) & (Al A) |l (Bl B)) are tautologies. Hence, the adequacy of |
for the construction of all truth functions follows from Corollary 1.6.

Another connective, | (alternative denial), is also adequate for this pur-
pose. Its truth table is

eI I - B B N
oo o+ H W

AlB
F
T
T
T

A|B is true when and only when not both A and B are true. The adequacy
of | follows from the tautologies ~A < (A|A) and (A v B) < ((A|A)|(B|B)).

Proposition 1.7

The only binary connectives that alone are adequate for the construction
of all truth functions are | and |.

Proof

Assume that h(A, B) is an adequate connective. Now, if h(T, T) were T, then
any statement form built up using i alone would take the value T when all
its statement letters take the value T. Hence, ~A would not be definable in
terms of h. So, h(T, T) = F. Likewise, h(E, F) = T. Thus, we have the partial
truth table:

A B hA,B)
T T F

F T

T F

F F T

If the second and third entries in the last column are F, For T, T, then h is |
or |.If they are F, T, then h(A, B) & —B is a tautology; and if they are T, F, then
h(A, B) & —A is a tautology. In both cases, h would be definable in terms of .
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But — is not adequate by itself because the only truth functions of one vari-
able definable from it are the identity function and negation itself, whereas
the truth function that is always T would not be definable.

Exercises

1.37

1.38

1.39

1.40

1.41

1.42

Prove that each of the pairs =, v and —, & is not alone adequate to
express all truth functions.

a. Prove that A v B can be expressed in terms of = alone.

b. Prove that A A B cannot be expressed in terms of = alone.

c. Prove that A © B cannot be expressed in terms of = alone.

Show that any two of the connectives {A, =, <} serve to define the
remaining one.

With one variable A, there are four truth functions:

A —-A Av—-A AAn—-A
T F T F
F T T F

a. With two variable A and B, how many truth functions are there?
b. How many truth functions of n variables are there?

Show that the truth function / determined by (A v B) = —C generates
all truth functions.

By a literal we mean a statement letter or a negation of a statement

letter. A statement form is said to be in disjunctive normal form (dnf)

if it is a disjunction consisting of one or more disjuncts, each of

which is a conjunction of one or more literals—for example, (A A B)

VEAAC),(AABA-A)V(CA-B)V(AA-C),A AAB and AV (B

v C). A form is in conjunctive normal form (cnf) if it is a conjunction

of one or more conjuncts, each of which is a disjunction of one or

more literals—for example, BV C)A(AV B), BV-C)A(AVD),AA

(BvA)A(=BVA),AvV-B, AAB, A Note that our terminology con-

siders a literal to be a (degenerate) conjunction and a (degenerate)

disjunction.

a. The proof of Proposition 1.5 shows that every statement form .7 is
logically equivalent to one in disjunctive normal form. By applying
this result to =, prove that.»7is also logically equivalent to a form
in conjunctive normal form.
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b. Find logically equivalent dnfs and cnfs for =(A = B) v (A A C) and
A & (B A =A) v O). [Hint: Instead of relying on Proposition 1.5, it is
usually easier to use Exercise 1.27(b) and (c).]

¢. Adnf (cnf) is called full if no disjunct (conjunct) contains two occur-
rences of literals with the same letter and if a letter that occurs in
one disjunct (conjunct) also occurs in all the others. For example,
(AAN-AAB)VAAB,BABAC)V(BAC)and (BAC)V Bare
not full, whereas A ABA-C)V(AABAC)V (AA-BA-=-C)and
(A A-B)V (B A A) are full dnfs.

i. Find full dnfs and cnfs logically equivalent to (A A B) v -A
and 7(A = B) v (RA A Q).

ii. Prove that every noncontradictory (nontautologous) state-
ment form . is logically equivalent to a full dnf (cnf) «, and,
if # contains exactly # letters, then - is a tautology (is contra-
dictory) if and only if ~ has 2" disjuncts (conjuncts).

d. For each of the following, find a logically equivalent dnf (cnf), and
then find a logically equivalent full dnf (cnf):

i AVB)A(BVC()
ii. "Av(B=>-0)
iii. AA-B)V(AAC)
iv. (AvB) e -C
e. Construct statement forms in - and A (respectively, in = and Vv or in
- and =) logically equivalent to the statement forms in (d).

1.43 A statement form is said to be satisfiable if it is true for some assignment
of truth values to its statement letters. The problem of determining the
satisfiability of an arbitrary cnf plays an important role in the theory of
computational complexity; it is an example of a so-called . /-complete
problem (see Garey and Johnson, 1978).

a. Show that ~is satisfiable if and only if —~is not a tautology.
b. Determine whether the following are satisfiable:
i AVB)ACAVBVCO)A(CAV-BvV-0)
ii. (A=>BVvCOe(-BAAVO)
c. Given a disjunction 7 of four or more literals: L, VL,V ... VL, let

C,, ..., C,_, be statement letters that do not occur in D, and construct
the enf

(Ll \/L2 \/Cl)/\(ﬂcl \/L3 \/Cz)/\(—|C2 VL4 \/C3)/\...
/\(—|Cn_3 \4 Lyl_l Y4 C,,_z) N (—|Cn_2 \4 Ln \4 —|C1)

Show that any truth assignment satisfying < can be extended
to a truth assignment satisfying . and, conversely, any truth
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assignment satisfying ~is an extension of a truth assignment sat-
isfying 7. (This permits the reduction of the problem of satisfy-
ing cnfs to the corresponding problem for cnfs with each conjunct
containing at most three literals.)

d. For a disjunction = of three literals L, v L, v L;, show that a
form that has the properties of ~in (c) cannot be constructed,
with ~a cnf in which each conjunct contains at most two literals
(R. Cowen).

1.44 (Resolution) Let .7be a cnf and let C be a statement letter. If C is a dis-
junct of a disjunction 7 in »and —-C is a disjunct of another disjunc-
tion % in 7, then a nonempty disjunction obtained by eliminating C
from 2 and -~ from 7 and forming the disjunction of the remaining
literals (dropping repetitions) is said to be obtained from ..z by resolu-
tion on C. For example, if .7is

(Av—Cv—=B)A(-AvDv—-B)A(CvDv A)

the first and third conjuncts yield A v =B v D by resolution on C. In
addition, the first and second conjuncts yield -C v =B v D by resolu-
tion on A, and the second and third conjuncts yield D v =B v C by
resolution on A. If we conjoin to .» any new disjunctions obtained by
resolution on all variables, and if we apply the same procedure to
the new cnf and keep on iterating this operation, the process must
eventually stop, and the final result is denoted -2.(%). In the example,
72.(7) is

(Av—=Cv—=B)A(=wAvDv—-=B)A(CvDvA)A(-Cv—=BvD)
ADV—-BvC)A(Av—-BvD)A(Dv—B)

Notice that we have not been careful about specifying the order in
which conjuncts or disjuncts are written, since any two arrangements
will be logically equivalent.)

a. Find 2.(%) when B is each of the following:
i. (AV-B)AB
ii. AVBVC)AAV-BVC)
iii. AVCOAEFAVBYAAYV-C)A(EAV-B)
b. Show that .~ logically implies .7.(%).

c. If visacnf, let 4 be the cnf obtained from .7by deleting those con-
juncts that contain C or —~C. Let r(#) be the cnf that is the conjunc-
tion of . and all those disjunctions obtained from .~ by resolution
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on C. For example, if .7 is the cnf in the example above, then r-(»)
is A v D v =B) A (A v =B v D). Prove that, if r-() is satisfiable,
then so is .7 (R. Cowen).

d. A onf 7is said to be a blatant contradiction if it contains some letter
C and its negation =C as conjuncts. An example of a blatant contra-
dictionis (A vV B) A B A (C Vv D) A -B. Prove that if .7is unsatisfiable,
then ..2( %) is a blatant contradiction. [Hint: Use induction on the
number # of letters that occur in .« In the induction step, use (c).]

e. Prove that .~ is unsatisfiable if and only if «%.(%) is a blatant
contradiction.

1.45 Let vand 7 be statement forms such that »= ~is a tautology.

a. If »and ~7have no statement letters in common, show that either .~
is contradictory or ~is a tautology.

b. (Craig’s interpolation theorem) If »» and < have the statement letters
B,, ..., B, in common, prove that there is a statement form ~ having
B,, ..., B, as its only statement letters such that »= ~and = ~are
tautologies.

c. Solve the special case of (b) in which .7is (B; = A) A (A = B,) and ~
is (B;AC) = (B, A C).

1.46 a. A certain country is inhabited only by truth-tellers (people who
always tell the truth) and liars (people who always lie). Moreover,
the inhabitants will respond only to yes or no questions. A tourist
comes to a fork in a road where one branch leads to the capital
and the other does not. There is no sign indicating which branch
to take, but there is a native standing at the fork. What yes or
no question should the tourist ask in order to determine which
branch to take? [Hint: Let A stand for “You are a truth-teller”
and let B stand for “The left-hand branch leads to the capital.”
Construct, by means of a suitable truth table, a statement form
involving A and B such that the native’s answer to the question as
to whether this statement form is true will be yes when and only
when B is true.]

b. In a certain country, there are three kinds of people: workers (who
always tell the truth), businessmen (who always lie), and students
(who sometimes tell the truth and sometimes lie). At a fork in the
road, one branch leads to the capital. A worker, a businessman and
a student are standing at the side of the road but are not identifiable
in any obvious way. By asking two yes or no questions, find out
which fork leads to the capital (Each question may be addressed to
any of the three.)

More puzzles of this kind may be found in Smullyan (1978, Chapter 3; 1985,
Chapters 2, 4 through 8).
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1.4 An Axiom System for the Propositional Calculus

Truth tables enable us to answer many of the significant questions concerning
the truth-functional connectives, such as whether a given statement form is a
tautology, is contradictory, or neither, and whether it logically implies or is logi-
cally equivalent to some other given statement form. The more complex parts
of logic we shall treat later cannot be handled by truth tables or by any other
similar effective procedure. Consequently, another approach, by means of for-
mal axiomatic theories, will have to be tried. Although, as we have seen, the
propositional calculus surrenders completely to the truth table method, it will
be instructive to illustrate the axiomatic method in this simple branch of logic.
A formal theory - is defined when the following conditions are satisfied:

1. A countable set of symbols is given as the symbols of ~* A finite
sequence of symbols of ./ is called an expression of ..

2. There is a subset of the set of expressions of ./ called the set of well-
formed formulas (wfs) of . There is usually an effective procedure to
determine whether a given expression is a wf.

3. There is a set of wfs called the set of axioms of ~. Most often, one can
effectively decide whether a given wf is an axiom; in such a case, ./ is
called an axiomatic theory.

4. Thereis a finite set R, ..., R, of relations among wfs, called rules of infer-
ence. For each R, there is a unique positive integer j such that, for every
set of j wfs and each wf , one can effectively decide whether the given
j wfs are in the relation R, to .7, and, if so, .#is said to follow from or to be
a direct consequence of the given wfs by virtue of R,

A proof in v is a sequence .4, ..., .7 of wfs such that, for each i, either . is an
axiom of ./ or 7 is a direct consequence of some of the preceding wfs in the
sequence by virtue of one of the rules of inference of ..

A theorem of v is a wf 7 of such that is the last wf of some proof in ..
Such a proof is called a proof of .zin .

Even if /is axiomatic—that is, if there is an effective procedure for check-
ing any given wf to see whether it is an axiom—the notion of “theorem” is
not necessarily effective since, in general, there is no effective procedure for
determining, given any wf ., whether there is a proof of .. A theory for
which there is such an effective procedure is said to be decidable; otherwise,
the theory is said to be undecidable.

* These “symbols” may be thought of as arbitrary objects rather than just linguistic objects.
This will become absolutely necessary when we deal with theories with uncountably many
symbols in Section 2.12.

* An example of a rule of inference will be the rule modus ponens (MP): + follows from .~ and

s = ¢. According to our precise definition, this rule is the relation consisting of all ordered
triples (4, »= ¢, 7 ), where ~and « are arbitrary wfs of the formal system.
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From an intuitive standpoint, a decidable theory is one for which a machine
can be devised to test wfs for theoremhood, whereas, for an undecidable
theory, ingenuity is required to determine whether wfs are theorems.

A wf ¢ is said to be a consequence in v of a set I' of wfs if and only if there
is a sequence ., ..., .4 of wfs such that ~is .4 and, for each i, either . is an
axiom or .4 is in I, or . is a direct consequence by some rule of inference of
some of the preceding wfs in the sequence. Such a sequence is called a proof
(or deduction) of ~ from I. The members of I'" are called the hypotheses or prem-
isses of the proof. We use I" - ~ as an abbreviation for “~is a consequence of
I'”. In order to avoid confusion when dealing with more than one theory, we
write I' - ~, adding the subscript .~ to indicate the theory in question.

If T is a finite set {7, ..., #,}, we write 7, ..., #, - v instead of {7, ...,
/) 2. If T is the empty set @, then @ I ~if and only if C is a theorem. It is
customary to omit the sign “@” and simply write i+. Thus, -~ is another way
of asserting that ~ is a theorem.

The following are simple properties of the notion of consequence:

1. frcAandT’'++ then Al ~.
2. T'k vif and only if there is a finite subset A of I such that A - .
3. If A+ and foreach #in A,T'F+ », thenT - .

Assertion 1 represents the fact that if ~is provable from a set I" of premisses,
then, if we add still more premisses, « is still provable. Half of 2 follows from
1. The other half is obvious when we notice that any proof of » from I'" uses
only a finite number of premisses from I Proposition 1.3 is also quite simple:
if #is provable from premisses in A, and each premiss in A is provable from
premisses in I then ~is provable from premisses in I.

We now introduce a formal axiomatic theory L for the propositional calculus.

1. The symbols of L are =, =, (, ), and the letters A; with positive integers
i as subscripts: A;, A,, As, .... The symbols - and = are called primitive
connectives, and the letters A, are called statement letters.

2. a. All statement letters are wfs.

b. If B and C are wfs, then so are (—B) and (B =C).* Thus, a wf of L
is just a statement form built up from the statement letters A; by
means of the connectives - and =.

3. If 7 #,and 7 are wfs of L, then the following are axioms of L:
(Al (7= (¢r>2))
A (7= (=27 => (=)= (9=>9))
A3) ()= ) =) =>9) =)

* To be precise, we should add the so called extremal clause: (c) an expression is a wf if and
only if it can be shown to be a wf on the basis of clauses (a) and (b). This can be made rigorous
using as a model the definition of statement form in the footnote on page 4.
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4. The only rule of inference of L is modus ponens: ~is a direct consequence
of .»and (7= ~). We shall abbreviate applications of this rule by MP*

We shall use our conventions for eliminating parentheses.

Notice that the infinite set of axioms of L is given by means of three axiom
schemas (A1)—(A3), with each schema standing for an infinite number of axi-
oms. One can easily check for any given wf whether or not it is an axiom;
therefore, L is axiomatic. In setting up the system L, it is our intention to
obtain as theorems precisely the class of all tautologies.

We introduce other connectives by definition:

(D1) (7 nv) for =(7 =)
(D2) (#v ¢ ) for (~7)= -
(D3) (7<) for (7= )a(r = 7)
The meaning of (D1), for example, is that, for any wfs .7and 7, “(#A ¢)” is an

abbreviation for “=(» = /)"

Lemma1.8: +; »= sforall wfs %

Prooft

We shall construct a proof in L of v = .

1. (v=> (7= 2)=>2)=> Instance of axiom schema (A2)
(7= (72> 2)=> (72> )

* A common English synonym for modus ponens is the detachment rule.

* The word “proof” is used in two distinct senses. First, it has a precise meaning defined above as
a certain kind of finite sequence of wfs of L. However, in another sense, it also designates certain
sequences of the English language (supplemented by various technical terms) that are supposed to
serve as an argument justifying some assertion about the language L (or other formal theories). In
general, the language we are studying (in this case, L) is called the object language, while the language
in which we formulate and prove statements about the object language is called the metalanguage.
The metalanguage might also be formalized and made the subject of study, which we would carry
out in a metametalanguage, and so on. However, we shall use the English language as our (unfor-
malized) metalanguage, although, for a substantial part of this book, we use only a mathematically
weak portion of the English language. The contrast between object language and metalanguage
is also present in the study of a foreign language; for example, in a Sanskrit class, Sanskrit is the
object language, while the metalanguage, the language we use, is English. The distinction between
proof and metaproof (i.e, a proof in the metalanguage) leads to a distinction between theorems of
the object language and metatheorems of the metalanguage. To avoid confusion, we generally use
“proposition” instead of “metatheorem.” The word “metamathematics” refers to the study of logi-
cal and mathematical object languages; sometimes the word is restricted to those investigations
that use what appear to the metamathematician to be constructive (or so-called finitary) methods.
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2. (7= 2)=>9) Axiom schema (A1)
3. (= (v=> ) =>(v=> 2) From 1 and 2 by MP
4. s=> (7> 2) Axiom schema (A1)
5 = v From 3 and 4 by MP*
Exercise
1.47 Prove:

a k. (u=>29)=> 9

b. s, 0k w0

¢ 720> Nk > (> 9)
d. F (r=>9)=> (= 0)

In mathematical arguments, one often proves a statement ~ on the assump-
tion of some other statement .~ and then concludes that “if », then ~” is
true. This procedure is justified for the system L by the following theorem.

Proposition 1.9 (Deduction Theorem)*

IfI' is a set of wfs and -7and ~ are wfs, and I, ¥+ +, thenT &= +. In par-
ticular, if s+ #, then = ~ (Herbrand, 1930).

Proof

Let #, ..., 4, be a proof of # from I U { 4}, where ¢, is «. Let us prove, by induction
onj, that ' = / for 1 <j <n. First of all, 4, must be either in I or an axiom of
L or 7itself. By axiom schema (A1), 4 = (#= ) is an axiom. Hence, in the first
two cases, by MP, ' 2= . For the third case, when ¢ is .7, we have 2= 7 by
Lemma 1.8, and, therefore, I' - &7 = #. This takes care of the case j = 1. Assume
now thatI' - .= v for all k <j. Either /isanaxiom, or isinT; or /is 4 or fol-
lows by modus ponens from some v, and #,,, where { < j, m <j, and +,, has the form
4=>7%In the first three cases, '+ 7= sasin the case j =1 above. In the last case,
we have, by inductive hypothesis, '+ 7= 4 and '+ 7= (4, = ). But, by axiom
schema (A2), - (7= (4= ) = (v= 4) = (#= 7). Hence, by MDT' - (/= /) =
(7= ) and, againby ME T - 7= . Thus, the proof by induction is complete.
The case j = n is the desired result. [Notice that, given a deduction of » fromI" and

* The reader should not be discouraged by the apparently unmotivated step 1 of the proof. As
in most proofs, we actually begin with the desired result, »= 7, and then look for an appro-
priate axiom that may lead by MP to that result. A mixture of ingenuity and experimentation
leads to a suitable instance of axiom (A2).

* For the remainder of the chapter, unless something is said to the contrary, we shall omit the
subscript L in ;. In addition, we shall use I, »F « to stand for I' U { 4} I «. In general, we let
L4 .. 5FcstandforTu{, ..., 4}~
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7, the proof just given enables us to construct a deduction of 7= « from I Also
note that axiom schema (A3) was not used in proving the deduction theorem.]

Corollary 1.10

a. v, > 9k > o
b. == 9),r+ 2> 7

Proof
For part (a):
1. 2=« Hyp (abbreviation for “hypothesis”)
2. =9 Hyp
3. Hyp
4. 1,3, MP
5. 9 2,4, MP

Thus, »= », 7= 7, sk 7.50, by the deduction theorem, 7= 7, v = v+ 2= o.
To prove (b), use the deduction theorem.

Lemma 1.11

For any wfs ..7and v, the following wfs are theorems of L.

a T

b. 7= -

c. w=(w=>7)

d. (r=>a9)=>(v=>0)

e. (v=>7)=>(Cr=>-2)

f. 2= Er=> (v 7))

g (7=2)=>Cr=)=7)

Proof

a. F-u=> 9
1. (=9 =>((v=>2)=> 9) Axiom (A3)
2. ny=> -y Lemma 1.8*

* Instead of writing a complete proof of - 7= =, we simply cite Lemma 1.8. In this way, we indi-
cate how the proof of == »= 7 could be written if we wished to take the time and space to do so.
This is, of course, nothing more than the ordinary application of previously proved theorems.
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1, 2, Corollary 1.10(b)
Axiom (Al)
3, 4, Corollary 1.10(a)

Axiom (A3)

Part (a)

1,2, MP

Axiom (Al)

3, 4, Corollary 1.10(a)

Hyp

Hyp

Axiom (Al)

Axiom (Al)

2,3, MP

1,4, MP

Axiom (A3)

6,7, MP

5,8, MP

1-9

10, deduction theorem
11, deduction theorem

Hyp

Axiom (A3)

Axiom (Al)

1,2, MP

3, 4, Corollary 1.10(a)
1-5

6, deduction theorem

Hyp

Part (a)

1, 2, Corollary 1.10(a)
Part (b)
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® N o w

9.

= oy
o= ) = (e )
=y

D= sy
F(v=0)=> Cr=9)

f. F o= @Er=> (v 90))
Clearly, =, = ++by MP. Hence, 2= ((#= ) = »)) by two uses of
the deduction theorem. Now, by (e), H(v= ) = ») = (nr= (= ©)).
Hence, by Corollary 1.10(a), % = (-7 = (7= 7).

g ()= (=)0

1. 7=«

2. >

3. (v=>)=> (r=>19)

4. —r=> -y

5. w=>7)=> (r=> )

6. ">y

7. (=) (= n9) > 0)

8 (r=>)=>v

9. ¢

10. =7, vk«

1. vy=>rk(Cu=>0)=>0

12. Hw=> )= (Cv=>70)=>7)
Exercises
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3, 4, Corollary 1.10(a)
Part (d)

5, 6, MP

1-7

8, deduction theorem

Hyp

Hyp

Part (e)

1,3, MP

Part (e)

2,5, MP

Axiom (A3)

6,7, MP

4,8, MP

1-9

10, deduction theorem
11, deduction theorem

1.48 Show that the following wfs are theorems of L.

1.49

a.
b
C.
d.
e
f
g

h.

G=>(2V )
2= (V%)
VN 4= 4N v
N>

. DN
(72 )= (v )= (sV = 9)

(z=>7)=> 29)=>9
7= (c=> (7N 7))

Exhibit a complete proof in L of Lemma 1.11(c). [Hint: Apply the proce-
dure used in the proof of the deduction theorem to the demonstration
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given earlier of Lemma 1.11(c).] Greater fondness for the deduction the-
orem will result if the reader tries to prove all of Lemma 1.11 without
using the deduction theorem.

It is our purpose to show that a wf of L is a theorem of L if and only if it is
a tautology. Half of this is very easy.

Proposition 1.12

Every theorem of L is a tautology.

Proof

As an exercise, verify that all the axioms of L are tautologies. By Proposition
1.2, modus ponens leads from tautologies to other tautologies. Hence, every
theorem of L is a tautology.

The following lemma is to be used in the proof that every tautology is a
theorem of L.

Lemma 1.13

Let ~be a wf and let B,, ..., B, be the statement letters that occur in . For
a given assignment of truth values to By, ..., B,, let B;- be B, if B, takes the
value T; and let B} be —B; if B; takes the value F. Let ' be 7if 7 takes the
value T under the assignment, and let s’ be = ~if B takes the value F. Then
B, ..., BiF .

For example, let ..7be =(=A, = A;). Then for each row of the truth table

A2 A5 —|(—|A2 = A5)

= R
-
= oo

Lemma 1.13 asserts a corresponding deducibility relation. For instance, cor-
responding to the third row there is A,, ~A; F ~=(=A, = A;), and to the fourth
row, "A,, 7As; F (04, = Aj).

Proof

The proof is by induction on the number 7 of occurrences of - and = in ..
(We assume .7 written without abbreviations.) If n = 0, . is just a statement
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letter B;, and then the lemma reduces to B, + B; and —B, I —B,. Assume now
that the lemma holds for all j < 7.

Case 1: .#is —v. Then + has fewer than n occurrences of - and =.

Subcase 1a: Let « take the value T under the given truth value assignment.
Then . takes the value F. So, ' is ~and %' is = . By the inductive hypoth-
esis applied to », we have Bj, ..., B; - ~. Then, by Lemma 1.11(b) and MP,
Bi, ..., B == . But -—~is 7.

Subcase 1b: Let ~ take the value F. Then ~takes the value T. So, «’ is -~and %’
is ., By inductive hypothesis, Bi, ..., B -7 . But—ris 4.

Case 2: .zis »= 2. Then »~ and ~ have fewer occurrences of - and = than .
So, by inductive hypothesis, B, ..., By - and B, ..., B, ="

Subcase 2a: + takes the value F. Then .~ takes the value T. So, »’ is = ~and .2’
is . Hence, By, ..., B, = . By Lemma 1.11(c) and MP, B, ..., BiF+ = 7.
But = 7is %"

Subcase 2b: - takes the value T. Then ~ takes the value T. So, ' is 7 and %’
is ». Hence, Bi, ..., B, I 7. Then, by axiom (A1) and MP, B;, ..., By -+ = 7.
But r= vis 7.

Subcase 2c: ~ takes the value T and ~takes the value F. Then . ~takes the value F.
So, 7’is v, 7'is 7, and ' is ~ . Therefore, By, ..., By 7 and By, ..., By - —.
Hence, by Lemma 1.11(f) and MP, B, ..., Bi =(+ = 7). But ~(- = ) is /.

Proposition 1.14 (Completeness Theorem)
If a wf vof L is a tautology, then it is a theorem of L.

Proof

(Kalmar, 1935) Assume .7 is a tautology, and let B,, ..., B, be the statement
letters in B. For any truth value assignment to B, ..., B;, we have, by Lemma
1.13,By, ..., B+ . (' is sbecause always takes the value T.) Hence, when
B is given the value T, we obtain Bi, ..., Biy, B, + 7 and, when B, is given
the value F, we obtain B;, ..., Bi1, —-B, + . So, by the deduction theorem,
B, ..., By F B,= sand By, ..., Bi4, F -B, = . Then by Lemma 1.11(g) and
MP By, ..., Bia + Similarly, B, ; may be chosen to be T or F and, again
applying the deduction theorem, Lemma 1.11(g) and MP, we can eliminate
Biy just as we eliminated By. After k such steps, we finally obtain .

Corollary 1.15

If ~ is an expression involving the signs =, =, A, V, and < that is an abbrevia-
tion for a wf »of L, then s a tautology if and only if .7is a theorem of L.
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Proof

In definitions (D1)—~(D3), the abbreviating formulas replace wfs to which
they are logically equivalent. Hence, by Proposition 1.4, .»and - are logically
equivalent, and ~ is a tautology if and only if B is a tautology. The corollary
now follows from Propositions 1.12 and 1.14.

Corollary 1.16

The system L is consistent; that is, there is no wf .7 such that both ..7and ~~
are theorems of L.

Proof

By Proposition 1.12, every theorem of L is a tautology. The negation of a
tautology cannot be a tautology and, therefore, it is impossible for both .7
and —to be theorems of L.

Notice that L is consistent if and only if not all wfs of L are theorems. In fact,
if L is consistent, then there are wfs that are not theorems (e.g, the negations of
theorems). On the other hand, by Lemma 1.11(c), | v = (v = v), and so, if L
were inconsistent, that is, if some wf ..»and its negation —~~ were provable, then
by MP any wf ~ would be provable. (This equivalence holds for any theory that
has modus ponens as a rule of inference and in which Lemma 1.11(c) is provable.)
A theory in which not all wfs are theorems is said to be absolutely consistent, and
this definition is applicable even to theories that do not contain a negation sign.

Exercise

1.50 Let ~be a statement form that is not a tautology. Let L* be the formal
theory obtained from L by adding as new axioms all wfs obtainable
from by substituting arbitrary statement forms for the statement let-
ters in .7, with the same form being substituted for all occurrences of a
statement letter. Show that L* is inconsistent.

1.5 Independence: Many-Valued Logics

A subset Y of the set of axioms of a theory is said to be independent if some
wf in Y cannot be proved by means of the rules of inference from the set of
those axioms not in Y.

Proposition 1.17

Each of the axiom schemas (A1)-(A3) is independent.
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Proof

To prove the independence of axiom schema (Al), consider the following
tables:

A —-A A B A=B
0 1 0 0 0
1 1 1 0 2
2 0 2 0 0
0 1 2
1 1 2
2 1 0
0 2 2
1 2 0
2 2 0

For any assignment of the values 0, 1, and 2 to the statement letters of a wf
., these tables determine a corresponding value of .. If -7 always takes the
value 0, «~is called select. Modus ponens preserves selectness, since it is easy
to check that, if vand . = ~ are select, so is . One can also verify that all
instances of axiom schemas (A2) and (A3) are select. Hence, any wf deriv-
able from (A2) and (A3) by modus ponens is select. However, A; = (A, = A)),
which is an instance of (A1), is not select, since it takes the value 2 when A,
island A, is 2.

To prove the independence of axiom schema (A2), consider the following
tables:

A -A A B A=8B
0 1 0 0 0
1 0 1 0 0
2 1 2 0 0
0 1 2
1 1 2
2 1 0
0 2 1
1 2 0
2 2 0

Let us call a wf that always takes the value 0 according to these tables
grotesque. Modus ponens preserves grotesqueness and it is easy to verify
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that all instances of (Al) and (A3) are grotesque. However, the instance
A=A =2 A) = (A => Ay = (A, > Ay)) of (A2) takes the value 2 when A,
is 0, A, is 0, and A; is 1 and, therefore, is not grotesque.

The following argument proves the independence of (A3). Let us call a wf
7 super if the wf h(») obtained by erasing all negation signs in .7 is a tautol-
ogy. Each instance of axiom schemas (Al) and (A2) is super. Also, modus
ponens preserves the property of being super; for if h(» = ») and h(») are
tautologies, then h(~) is a tautology. (Just note that h(» = ») is h(») = h(v)
and use Proposition 1.2.) Hence, every wf .» derivable from (Al) and (A2) by
modus ponens is super. But (-4, = =A)) = (FA; = A) > A)is(A, = A) >
((A; => A) = A)), which is not a tautology. Therefore, (-A; = -A;)) = (-4, =
A)) = A)), an instance of (A3), is not super and is thereby not derivable from
(Al) and (A2) by modus ponens.

The idea used in the proof of the independence of axiom schemas (A1)
and (A2) may be generalized to the notion of a many-valued logic. Select a
positive integer n, call the numbers 0, 1, ..., n truth values, and choose a num-
ber m such that 0 <m < n. The numbers 0, 1, ..., m are called designated values.
Take a finite number of “truth tables” representing functions from sets of
the form {0, 1, ..., n}finto {0, 1, ..., n}. For each truth table, introduces a sign,
called the corresponding connective. Using these connectives and state-
ment letters, we may construct “statement forms,” and every such state-
ment form containing j distinct letters determines a “truth function” from
{0,1, .., njinto {0, 1, ..., n}. A statement form whose corresponding truth
function takes only designated values is said to be exceptional. The numbers
m and n and the basic truth tables are said to define a (finite) many-valued
logic M. A formal theory involving statement letters and the connectives of
M is said to be suitable for M if and only if the theorems of the theory coin-
cide with the exceptional statement forms of M. All these notions obviously
can be generalized to the case of an infinite number of truth values. If n =1
and m = 0 and the truth tables are those given for - and = in Section 1.1,
then the corresponding two-valued logic is that studied in this chapter. The
exceptional wfs in this case were called tautologies. The system L is suit-
able for this logic, as proved in Propositions 1.12 and 1.14. In the proofs of
the independence of axiom schemas (Al) and (A2), two three-valued logics
were used.

Exercises

1.51 Prove the independence of axiom schema (A3) by constructing appro-
priate “truth tables” for - and =.

1.52 (McKinsey and Tarski, 1948) Consider the axiomatic theory P in which
there is exactly one binary connective # the only rule of inference is
modus ponens (that is, ~ follows from 7 and . * »), and the axioms
are all wfs of the form .+ .. Show that P is not suitable for any (finite)
many-valued logic.
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1.53 For any (finite) many-valued logic M, prove that there is an axiomatic
theory suitable for M.

Further information about many-valued logics can be found in Rosser
and Turquette (1952), Rescher (1969), Bolc and Borowik (1992), and
Malinowski (1993).

1.6 Other Axiomatizations

Although the axiom system L is quite simple, there are many other systems
that would do as well. We can use, instead of = and =, any collection of
primitive connectives as long as these are adequate for the definition of all
other truth-functional connectives.

Examples

L;: v and - are the primitive connectives. We use /= ~as an abbreviation for
-7V . We have four axiom schemas: (1) vV v= =, (2) 7= sV 7;(3) 4V =
vV .zand @) (= %) = (#V #=> .V ). The only rule of inference is modus
ponens. Here and below we use the usual rules for eliminating parentheses.
This system is developed in Hilbert and Ackermann (1950).

L,: A and — are the primitive connectives. » = « is an abbreviation for
(2 A 7). There are three axiom schemas: (1) 7= (7 A 2); Q) 2 A 7=
and (3) (v= 7) = (=(v A 7) = (7 A )). Modus ponens is the only rule of
inference. Consult Rosser (1953) for a detailed study.

L;: This is just like our original system L except that, instead of the axiom
schemas (A1)-(A3), we have three specific axioms: (1) A; =(A, = A)); (2) (A,
>(A,=> Ay) =(A, = A) =(A, =2 Ay);and B) (A, = —A) =(CA, = A) = A)).
In addition to modus ponens, we have a substitution rule: we may substitute
any wf for all occurrences of a statement letter in a given wf.

L,: The primitive connectives are =, A, Vv, and . Modus ponens is the only rule,
and we have 10 axiom schemas: (1) 7= (v= 2); 2) (7= (r= 2)) = (7= )
=> (22 9);B8) A= 2,(8) vAr=> 74 5) v=> (= (7A0)); (6) 2= (7V v);
@) r=2(ave);,B) (= 9)=>((r=> )= (V= 9));,09) (v= 7)=> (v=> )
= —.9); and (10) ~—.»= . This system is discussed in Kleene (1952).
Axiomatizations can be found for the propositional calculus that contain
only one axiom schema. For example, if = and = are the primitive connec-
tives and modus ponens the only rule of inference, then the axiom schema

[((( s =)= (o :—v')): f/): sl = 7)== (o :w‘)}
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is sufficient (Meredith, 1953). Another single-axiom formulation, due to
Nicod (1917), uses only alternative denial |. Its rule of inference is: - follows
from 7 |(+ | 7) and 7 and its axiom schema is

(7

(v

N UL TN T AT N

Further information, including historical background, may be found
in Church (1956) and in a paper by Lukasiewicz and Tarski in Tarski
(1956, 1V).

Exercises

1.54 (Hilbert and Ackermann, 1950) Prove the following results about the
theory L.
a. s>k 9V 2= 9V

Ful=>)=>(9=2> 2)=> (7= 7))

T=> G, d=> by T

Fuo 2= 2@de, 7V .9)

Fiy 2V

R

Fu-7=(2=7)

Fu2VveV )= (V(zV 2)V.29)

Fu@Vv(zVv o)V o=V (2V )

Fu 2V (Vv o)=eV(zV 9)

FL (72 (2 NS (= (1= )

Fu(s )= (720> (0= 0)

== N, vk 9> (v=> 9)

=2 (> 9), 2>ty 2> T

IfT, st , 7, thenT I ; .= 7~ (Deduction theorem)

= g0 g2

5@ - 0 &0 T

-

2w o p B~ r—

F 1, ~if and only if 7is a tautology.
1.55

~~

Rosser, 1953) Prove the following facts about the theory L,.
p=> 0,0 => Ik (TN D)

Fr=G2A2)

Fu=s

Fo(2A0)=> (7= -2)

b 7=

Fo@=79)=>@Cr=>-9)

- 0 & n T
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=k, .7

v b NG TN
D00 T, T, v
Fov=> 2

L AN D

D=0, > T, 7> T

D> 0, T=> ey GN TN
= Ik, INTDS TN T
FLo@=>=29)=>(9A0)=> 9)
FL(zA0)=> 2)=> (7= (r=> 2))
=0, 2> (= )bk, > 0
Fo2=2(=> 7M7)

Foo= (= .9)

IfT, #+ , ¢, thenT F |, = » (Deduction theorem)
FoCECz=> 29)=> 9

e R Al RPN

7 @

-

a8 o B3 B~ F

< B =+ »

w. o, 7zif and only if is a tautology.
1.56 Show that the theory L; has the same theorems as the theory L.
1.57 (Kleene, 1952) Derive the following facts about the theory L,.
Fiy 729
IfT, s+ 47, thenT F |, 7= 7 (deduction theorem)
D=, > Ty 7= T
(=)= 0r=22)
ALl ul PN
b 2=
Fu—v=>(2=7)
= e (0= 0)
Fu—7= 0= =(2v0)
o PG )= (> 9)=> )
k. k4 »if and only if ~1is a tautology.

5 ® -0 &0 T p

e

1.58P Consider the following axiomatization of the propositional calculus
(due to Lukasiewicz). « has the same wfs as our system L. Its only rule
of inference is modus ponens. Its axiom schemas are:

a. (v=>9)=>9
b. 7= (Cw=>7)
¢ (1202 (= N> (1= 9)
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Prove that a wf »of o is provable in « if and only if »is a tautology.
[Hint: Show that L and & have the same theorems. However, remember
that none of the results proved about L (such as Propositions 1.8-1.13)
automatically carries over to «. In particular, the deduction theorem is
not available until it is proved for « ]

1.59 Show that axiom schema (A3) of L can be replaced by the schema
(~»= ~v) = (= .») without altering the class of theorems.

1.60 If axiom schema (10) of L, is replaced by the schema (10): ~»= (v = ),
then the new system L, is called the intuitionistic propositional calcu-
lus* Prove the following results about L.

a. Consider an (n + 1)-valued logic with these connectives: =% is 0
when 7 is n, and otherwise it is n; # A + has the maximum of the
values of #and ~, whereas .~ Vv ~has the minimum of these values;
and .= ~is 0if ~has a value not less than that of ~, and otherwise
it has the same value as «. If we take 0 as the only designated value,
all theorems of L, are exceptional.

b. A,V -A,;and - -A; = A, are not theorems of L;.
For any m, the wf

(A1 @Az)\/ V(A1 @Am)V(Az C>A3)V
v(Az <:>Am)v V(Am,l <:>Am)

is not a theorem of L
d. (Godel, 1933) L is not suitable for any finite many-valued logic.
e. i. IfT, sk ;7 thenT F ;.= v (deduction theorem)
. ==k 929
iii. ko=
iv. Fy(v=>7)=>@Cr=>9)
v. Fua=sEu=9)
vi. by )
vil. (7= 7)), ke
vili. b0y oy

f°. F; vif and only if ~is a tautology.

* The principal origin of intuitionistic logic was L.E.J. Brouwer’s belief that classical logic is
wrong. According to Brouwer, » V «is proved only when a proof of = or a proof of « has
been found. As a consequence, various tautologies, such as .» v =, are not generally accept-
able. For further information, consult Brouwer (1976), Heyting (1956), Kleene (1952), Troelstra
(1969), and Dummett (1977). Jaskowski (1936) showed that L; is suitable for a many-valued
logic with denumerably many values.
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g. i —vifand only if = ~is a tautology.

h.P If 7 has v and - as its only connectives, then |- | ~if and only if »
is a tautology.

1.61* Let »and ~be in the relation R if and only if - | ~ < ~. Show that R is
an equivalence relation. Given equivalence classes [ 7] and [~], let [ /] U
[[1=[»Vv ] [#1n][]=[#A 7], and [ 7] = [-~]. Show that the equiva-
lence classes under R form a Boolean algebra with respect ton, U, and -,
called the Lindenbaum algebra L* determined by L. The element 0 of L* is
the equivalence class consisting of all contradictions (i.e., negations of
tautologies). The unit element 1 of L* is the equivalence class consisting
of all tautologies. Notice that - | 7= ~if and only if [ #] <[] in L, and
that - | 7 & ~if and only if [ 4] = [7]. Show that a Boolean function f
(built up from variables, 0, and 1, using U, N, and -) is equal to the con-
stant function 1 in all Boolean algebras if and only if - f #, where f# is
obtained from f by changing u,n, -, 0,and 1 to v, A, =, A; A =A,, and
A, v A, respectively.
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First-Order Logic and Model Theory

2.1 Quantifiers

There are various kinds of logical inference that cannot be justified on the
basis of the propositional calculus; for example:

1. Any friend of Martin is a friend of John.
Peter is not John’s friend.
Hence, Peter is not Martin’s friend.

2. All human beings are rational.
Some animals are human beings.
Hence, some animals are rational.

3. The successor of an even integer is odd.
2 is an even integer.

Hence, the successor of 2 is odd.

The correctness of these inferences rests not only upon the meanings of the
truth-functional connectives, but also upon the meaning of such expressions
as “any,” “all,” and “some,” and other linguistic constructions.

In order to make the structure of complex sentences more transparent, it
is convenient to introduce special notation to represent frequently occur-
ring expressions. If P(x) asserts that x has the property P, then (Vx)P(x) means
that property P holds for all x or, in other words, that everything has the
property P. On the other hand, (3x)P(x) means that some x has the property
P—that is, that there is at least one object having the property P. In (Vx)P(x),
“(Vx)” is called a universal quantifier; in (Ix)P(x), “(3x)” is called an existential
quantifier. The study of quantifiers and related concepts is the principal sub-
ject of this chapter.

45
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Examples

1". Inference 1 above can be represented symbolically:

(Vx)(F(x,m) = F(x, ]))

—F(p, j)
—F(p,m)

Here, F(x, y) means that x is a friend of y, while m, j, and p denote
Martin, John, and Peter, respectively. The horizontal line above
“=F(p, m)” stands for “hence” or “therefore.”

2'. Inference 2 becomes:

(Vx)(H(x) = R(x))
(3x)(A(x) A H(x))
(3x)(A(x) A R(x))

Here, H, R, and A designate the properties of being human, rational,
and an animal, respectively.

3. Inference 3 can be symbolized as follows:

(Vx)(I(x) A E(x) = D(s(x)))
1(b) AE(D)
D(s(b))

Here, I, E, and D designate respectively the properties of being an
integer, even, and odd; s(x) denotes the successor of x; and b denotes
the integer 2.

Notice that the validity of these inferences does not depend upon the par-
ticular meanings of F, m, j,p, H, R, A, L E, D, s, and b.

Just as statement forms were used to indicate logical structure dependent
upon the logical connectives, so also the form of inferences involving quan-
tifiers, such as inferences 1-3, can be represented abstractly, as in 1-3". For
this purpose, we shall use commas, parentheses, the symbols -~ and = of the
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propositional calculus, the universal quantifier symbol V, and the following
groups of symbols:

Individual variables: x;, x,, ..., X,,, ...
Individual constants: a;, a,, ..., 4,, ...
Predicate letters: Ay (n and k are any positive integers)

Function letters: f' (n and k are any positive integers)

The positive integer n that is a superscript of a predicate letter A or of a
function letter fi' indicates the number of arguments, whereas the subscript
k is just an indexing number to distinguish different predicate or function
letters with the same number of arguments.*

In the preceding examples, x plays the role of an individual variable; m,
j, p, and b play the role of individual constants; F is a binary predicate letter
(i.e, a predicate letter with two arguments); H, R, A, I, E, and D are monadic
predicate letters (i.e., predicate letters with one argument); and s is a function
letter with one argument.

The function letters applied to the variables and individual constants gen-
erate the terms:

1. Variables and individual constants are terms.

2. If f{'is a function letter and t,, t,, ..., t, are terms, then f'(t, to, ..., t,)
is a term.

3. An expression is a term only if it can be shown to be a term on the
basis of conditions 1 and 2.

Terms correspond to what in ordinary languages are nouns and noun
phrases—for example, “two,” “two plus three,” and “two plus x.”

The predicate letters applied to terms yield the atomic formulas; that is, if Ay
is a predicate letter and #,, t,, ..., f, are terms, then A{(t, t,,...,t,) is an atomic
formula.

The well-formed formulas (wfs) of quantification theory are defined as follows:

1. Every atomic formula is a wf.

2. If -7and ~ are wfs and y is a variable, then (-.%), (# = ), and (Vy).»)
are wfs.

3. An expression is a wf only if it can be shown to be a wf on the basis
of conditions 1 and 2.

* For example, in arithmetic both addition and multiplication take two arguments. So, we
would use one function letter, say f12, for addition, and a different function letter, say fz2 for
multiplication.
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In (Vy).»), “#” is called the scope of the quantifier “(Vy).” Notice that . need
not contain the variable y. In that case, we understand ((Vy).») to mean the
same thing as ..

The expressions (# A ), (#V 7), and (7« ) are defined as in system L (see
page 29). It was unnecessary for us to use the symbol 3 as a primitive symbol
because we can define existential quantification as follows:

((3@x).#) stands for (—((Vx)(—.%)))

This definition is faithful to the meaning of the quantifiers: .»(x) is true for
some x if and only if it is not the case that () is false for all x.*

2.1.1 Parentheses

The same conventions as made in Chapter 1 (page 11) about the omission of
parentheses are made here, with the additional convention that quantifiers
(Vy) and (Jy) rank in strength between —, A, v and =, <. In other words,
when we restore parentheses, negations, conjunctions, and disjunctions are
handled first, then we take care of universal and existential quantifications,
and then we deal with conditionals and biconditionals. As before, for con-
nectives of the same kind, we proceed from left to right. For consecutive
negations and quantifications, we proceed from right to left.

Examples

Parentheses are restored in the following steps.

1 (Vxl)All(xl) = Alz(le X1)
(Vx1)Af(x1)) = Af(x2, x1)

(Vx1) Al (x1)) = Af(x2,x1))
2. (Vx1)Ai(x1) v Af(x2,x7)

(Vxl)(All(xl) Vv Alz(x21 x1))

(Va1)(AL (1)) v AR (x2, 31)))

* We could have taken 3 as primitive and then defined ((Vx) ») as an abbreviation for (=((3x)
(=), since () is true for all x if and only if it is not the case that (x) is false for some x.
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3. (Vx1)—=(3x )Alz(xlz X)
(Vxq )_‘((Ele)Alz(xl/ X))
(V1) (—~((3x2) Af (31, 12)))

((vxl)(_‘((axZ)Alz(xll X2))))

Exercises

2.1 Restore parentheses to the following.

a. (Vx1)Ai(x) A=Al (xa)
b. (Vi2)Ai(x) & Ai(x)
. (Vx)(3x1)Af (x1, X2)
d. (Va)(Vas)(Vag) Al (1) = Af(x2) A AL (x7)
e (In)(Vx)(3x3) Al (x1) v (3x2)—(Vx3) Af (x5, x2)
f. (Vo)A (x1) = A7 (x1, %1, 00) v (V1) Al (x1)
& —(Vx1)Al(x1) = (Ix2) Al (x2) = Af(x1,X%2) A Af(x2)

2.2 Eliminate parentheses from the following wfs as far as is possible.
a. ((Ya)(Ai(x1) = Al(x) v (Fx)Ai (x1))
b. (H@x)(A1(x2) v Ai(@))) & Al(x2))
¢ (Va)(—(=A1 (@) = (Al (1) = Al(x2))

An occurrence of a variable x is said to be bound in a wf . if either it is the
occurrence of x in a quantifier “(Vx)” in .z or it lies within the scope of a quan-
tifier “(Vx)” in . Otherwise, the occurrence is said to be free in ..

Examples
L Af(x1, %)
2. AR (x1,22) = (V1) Ai (1)
3. (Vx1)(Af (x1,x2) = (Vx1) Al (x1))
4. (3x) AT (x1,x2)

In Example 1, the single occurrence of x; is free. In Example 2, the occurrence
of x,in Af(x,x,) is free, but the second and third occurrences are bound. In
Example 3, all occurrences of x; are bound, and in Example 4 both occur-
rences of x, are bound. (Remember that (3x;)A7(x, x,) is an abbreviation of
—(Vx1)=A7 (x1, x5) .) In all four wfs, every occurrence of x, is free. Notice that,



50 Introduction to Mathematical Logic

as in Example 2, a variable may have both free and bound occurrences in the
same wf. Also observe that an occurrence of a variable may be bound in some
wf . but free in a subformula of .. For example, the first occurrence of x, is free
in the wf of Example 2 but bound in the larger wf of Example 3.

A variable is said to be free (bound) in a wf if it has a free (bound) occur-
rence in .. Thus, a variable may be both free and bound in the same wf; for
example, x, is free and bound in the wf of Example 2.

Exercises

2.3 Pick out the free and bound occurrences of variables in the following wfs.
a. (Vaa)((Vx) A (x1, %2)) = AT (X3, 1))
b. (Vx2)Af(x3,22) = (Vx3)Af (x5, X3)
. ((Vx2)(3x1) A7 (31, xZI_flz(xll X2))) Vv _‘(vxl)Alz(Xerll(xl))

2.4 Indicate the free and bound occurrences of all variables in the wfs of
Exercises 2.1 and 2.2.

2.5 Indicate the free and bound variables in the wfs of Exercises 2.1-2.3.

We shall often indicate that some of the variables x;, ..., x; are free vari-
ables in a wf .~ by writing .» as #(x;, ..., x; ). This does not mean that ~
contains these variables as free variables, nor does it mean that .~ does not
contain other free variables. This notation is convenient because we can then
agree to write as .(t,, ..., ;) the result of substituting in . the terms f,, ..., t,
for all free occurrences (if any) of x;, ..., x;,, respectively.

If » isawfandtisa term, then tis said to be free for x; in .7 if no free occurrence
of x; in 7 lies within the scope of any quantifier (Vx), where ; is a variable in .
This concept of ¢ being free for x;in a wf .~ (x,) will have certain technical applica-
tions later on. It means that, if ¢ is substituted for all free occurrences (if any) of
x;in 7 (x;), no occurrence of a variable in t becomes a bound occurrence in . (f).

Examples

1. The term x, is free for x, in A{(x;), but x, is not free for x, in (Vx,) A1 (x;).
2. The term f7(x;,x3) is free for x, in (Vx,)Af(x;, x,) = Ai(x;) but is not
free for x; in (3x3)(Vx2) A7 (x1,%,) = Ai(xy).

The following facts are obvious.

1. A term that contains no variables is free for any variable in any wf.

2. A term t is free for any variable in .7 if none of the variables of ¢ is
bound in ..

3. x;1s free for x; in any wf.

4. Any term is free for x; in .7if .. contains no free occurrences of x;.
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Exercises

2.6 Istheterm ff(xl,xz) free for x, in the following wfs?

a.
b.
C.
d.

e.
2.7 Just

Af(x1,%2) = (V22) Al (x2)
(Vx2)Af (x2, m)) v (3x2) Af (31, X2)
(V1) Af (x1, X2)

(Vx2) Af (x1, X2)

(sz)All(xz) = A12(x1,xz)
ify facts 1-4 above.
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When English sentences are translated into formulas, certain general guide-
lines will be useful:

1. A sentence of the form “All As are Bs” becomes (Vx)(A(x) = B(x)). For
example, Every mathematician loves music is translated as (Vx)(M(x) =
L(x)), where M(x) means x is a mathematician and L(x) means x loves

music.

2. A sentence of the form “Some As are Bs” becomes (3x)(A(x) A B(x)).
For example, Some New Yorkers are friendly becomes (3x)(N(x) A F(x)),
where N(x) means x is a New Yorker and F(x) means x is friendly.

3. A sentence of the form “No As are Bs” becomes (Vx)(A(x) = —B(x)).*
For example, No philosopher understands politics becomes (Vx)(P(x) =
—~U(x)), where P(x) means x is a philosopher and U(x) means x under-

stan

ds politics.

Let us consider a more complicated example: Some people respect everyone.
This can be translated as (3x)(P(x) A (Vy)(P(y) = R(x, y))), where P(x) means x
is a person and R(x, y) means x respects y.

Notice that, in informal discussions, to make formulas easier to read we
may use lower-case letters u, v, x, y, z instead of our official notation x; for
individual variables, capital letters A, B, C,... instead of our official notation
A for predicate letters, lower-case letters f, g, h,... instead of our official nota-
tion fi' for function letters, and lower-case letters 4, b, c,... instead of our
official notation g, for individual constants.

Exercises

2.8 Translate the following sentences into wfs.

a. Anyone who is persistent can learn logic.

b. No politician is honest.

* As we shall see later, this is equivalent to =(3x)(A(x) A B(x)).
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Not all birds can fly.

All birds cannot fly.

x is transcendental only if it is irrational.
Seniors date only juniors.

If anyone can solve the problem, Hilary can.
Nobody loves a loser.

Nobody in the statistics class is smarter than everyone in the logic
class.

John hates all people who do not hate themselves.

Everyone loves somebody and no one loves everybody, or some-
body loves everybody and someone loves nobody.

You can fool some of the people all of the time, and you can fool all
the people some of the time, but you can't fool all the people all the
time.

Any sets that have the same members are equal.
Anyone who knows Julia loves her.

There is no set belonging to precisely those sets that do not belong
to themselves.

There is no barber who shaves precisely those men who do not
shave themselves.

Translate the following into everyday English. Note that everyday
English does not use variables.

a.

b.

o

(VO)(M(x) A (Vy) ~W(x, y) = U(x)), where M(x) means x is a man, W(x, y)
means x is married to y, and U(x) means x is unhappy.

(VX)(V(x) A P(x) = A(x, b)), where V(x) means x is an even integer, P(x)
means x is a prime integer, A(x, y) means x = y, and b denotes 2.

=(3Uy) A (vx)(x) = L(x, v))), where I(y) means y is an integer and
L(x, y) means x <.

In the following wfs, Aj(x) means x is a person and A7(x,y) means
x hates y.

L @0)(AIX) A (TY)(AL(y) = A (x, 1))
i (V)(A1(x) = (Vy)(Al(y) = Al (x, )
iii. (3x)(AL(x) A (VY)(AL(y) = (Al(x,y) < AL(y, 1))
(Vx)(H() = Qy)3F2)(~A(Y, 2) A (Yu)(Pu, x) < (A, y) Vv Au, 2))))), where

H(x) means x is a person, A(u, v) means “u = v,” and P(u, x) means u is
a parent of x.
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2.2 First-Order Languages and Their Interpretations:
Satisfiability and Truth: Models

Well-formed formulas have meaning only when an interpretation is given for
the symbols. We usually are interested in interpreting wfs whose symbols
come from a specific language. For that reason, we shall define the notion of
a first-order language*

Definition
A first-order language - contains the following symbols.

a. The propositional connectives - and =, and the universal quantifier
symbol V.

. Punctuation marks: the left parenthesis “(”, the right parenthesis “)”,
and the comma “”}

. Denumerably many individual variables x,, x,, ....

. A finite or denumerable, possibly empty, set of function letters.

. A finite or denumerable, possibly empty, set of individual constants.

. A nonempty set of predicate letters.

o

- 0 &N

By a term of -~ we mean a term whose symbols are symbols of ~.
By a wf of ~'we mean a wf whose symbols are symbols of v.

Thus, in a language v, some or all of the function letters and individual con-
stants may be absent, and some (but not all) of the predicate letters may be
absent.t The individual constants, function letters, and predicate letters of a
language - are called the nonlogical constants of ~. Languages are designed
in accordance with the subject matter we wish to study. A language for arith-
metic might contain function letters for addition and multiplication and a

* The adjective “first-order” is used to distinguish the languages we shall study here from
those in which there are predicates having other predicates or functions as arguments or in
which predicate quantifiers or function quantifiers are permitted, or both. Most mathemati-
cal theories can be formalized within first-order languages, although there may be a loss
of some of the intuitive content of those theories. Second-order languages are discussed in
the appendix on second-order logic. Examples of higher-order languages are studied also in
Godel (1931), Tarski (1933), Church (1940), Leivant (1994), and van Bentham and Doets (1983).
Differences between first-order and higher-order theories are examined in Corcoran (1980)
and Shapiro (1991).

The punctuation marks are not strictly necessary; they can be avoided by redefining the
notions of term and wf. However, their use makes it easier to read and comprehend formulas.
+ If there were no predicate letters, there would be no wfs.

-+
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predicate letter for equality, whereas a language for geometry is likely to
have predicate letters for equality and the notions of point and line, but no
function letters at all.

Definition

Let ~ be a first-order language. An interpretation M of & consists of the fol-
lowing ingredients.

a. A nonempty set D, called the domain of the interpretation.

b. For each predicate letter A} of -, an assignment of an n-place relation
(AHMin D.

c. For each function letter f;' of », an assignment of an n-place opera-
tion ( f]-”)M in D (that is, a function from D" into D).

d. For each individual constant g; of , an assignment of some fixed ele-
ment (@)M of D.

Given such an interpretation, variables are thought of as ranging over the
set D, and —, = and quantifiers are given their usual meaning. Remember
that an n-place relation in D can be thought of as a subset of D", the set of all
n-tuples of elements of D. For example, if D is the set of human beings, then
the relation “father of” can be identified with the set of all ordered pairs (x, y)
such that x is the father of y.

For a given interpretation of a language ~, a wf of - without free variables
(called a closed wf or a sentence) represents a proposition that is true or false,
whereas a wf with free variables may be satisfied (i.e., true) for some values
in the domain and not satisfied (i.e., false) for the others.

Examples

Consider the following wfs:

]-' Alz(xllxz)
2. (sz)Alz(xllxz)
3. (3x1)(Vx2)Af (x1, X2)

Let us take as domain the set of all positive integers and interpret Alz(y, z) as
y < z. Then wf 1 represents the expression “x; < x,”, which is satisfied by all
the ordered pairs (g, b) of positive integers such that a < b. Wf 2 represents the
expression “For all positive integers x,, x; < x,”* which is satisfied only by the
integer 1. W 3is a true sentence asserting that there is a smallest positive integer.

If we were to take as domain the set of all integers, then wf 3 would be false.

* In ordinary English, one would say “x, is less than or equal to all positive integers.”
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Exercises

2.10 For the following wfs and for the given interpretations, indicate for
what values the wfs are satisfied (if they contain free variables) or
whether they are true or false (if they are closed wfs).

2.11

i AT(fP (21, x2),a1)

ii. Alz(xl, XZ) = Alz(-XZ/ xl)
iii. (V) (V) (Vs )(AF (x1, %2) A A (32, X3) = Af (31, %3))

a. Thedomainis the set of positive integers, Alz(y, z)isy >z, flz(y, z)
isy-z, and a, is 2.

b. The domain is the set of integers, Af(y,z) is y =z, fi(y,z) is
y+z anda, is 0.

c. The domain is the set of all sets of integers, Af(y,z) is
ycz, ff(y,z)is y Nz and a, is the empty set @.

Describe in everyday English the assertions determined by the follow-
ing wfs and interpretations.

a.

(V) (YY) (AL (x,y) = (F2)(Al(2) A AT(x,2) A Al (2, 1)), Where  the
domain D is the set of real numbers, A7 (x, y) means x < I, and Al(z)
means z is a rational number.

(Vx)(A1(x) = (Fy)(Az2(y) A Af(y, x))), where D is the set of all days
and people, Aj(x) means x is a day, A3(y) means y is a sucker, and
Alz(y,x) means Yy is born on day x.

(VX)(VY)(Al(x) A Al (y) = As(fL(x,v))), where D is the set of integers,
Aj(x) means x is odd, Ay(x) means x is even, and f{(x,y) denotes x + .

For the following wfs, D is the set of all people and Af(1,v) means u
loves v.

i (30)(Vy) (A (x,y)

ii. (Yy)(30)A (x,y)
iii. (3x0)(Yy)(V2)(AL(y,2)) = Af(x,y))
iv. (3x)(Vy)-AL (x,y)
(Vx) (Vu) (Vo) (Vw)(E(f(u, u), x) A E(f(v, v), x) A E(flw, w), x) = E(u, v) v
E(u, w) v E(v, w)), where D is the set of real numbers, E(x, y) means
x =y, and f denotes the multiplication operation.
AL(x1) A(3x3)(A3(x1, x3) A A3(x3,X,)) where D is the set of people,
A{(u) means u is a woman and A3(u,v) means u is a parent of v.
(V1) (VX)) (A1 (1) A Al (x2) = A3(f2 (x1,%,))) where D is the set of real
numbers, A1(it) means u is negative, A}(1) means u is positive, and
fi(u,0) is the product of u and v.

The concepts of satisfiability and truth are intuitively clear, but, following
Tarski (1936), we also can provide a rigorous definition. Such a definition is
necessary for carrying out precise proofs of many metamathematical results.
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Satisfiability will be the fundamental notion, on the basis of which the notion
of truth will be defined. Moreover, instead of talking about the n-tuples of objects
that satisfy a wf that has 7 free variables, it is much more convenient from a tech-
nical standpoint to deal uniformly with denumerable sequences. What we have
in mind is that a denumerable sequence s = (s, s,, S5, ...) is to be thought of as
satisfying a wf » that has x;, x;, ..., x;, as free variables (where j; < j, < -+ <j,)
if the n-tuple (s;, sj,, ..., s;,) satisfies .»in the usual sense. For example, a denu-
merable sequence (s, s,, s, ...) of objects in the domain of an interpretation M
will turn out to satisfy the wf A7(x,, x5) if and only if the ordered pair, (s, s5) is
in the relation (Af)™ assigned to the predicate letter A7 by the interpretation M.

Let M be an interpretation of a language ~ and let D be the domain of M.
Let X be the set of all denumerable sequences of elements of D. For a wf .. of

v, we shall define what it means for a sequence s = (s, 5,, ...) in Z to satisfy .»
in M. As a preliminary step, for a given s in £ we shall define a function s*
that assigns to each term ¢ of © an element s*(t) in D.

1. If t is a variable x; let s * (f) be s;.

2. If tis an individual constant 4, then s*(f) is the interpretation (a)M of
this constant.

3. If f{is a function letter, (f{')" is the corresponding operation in D,
and ¢, ..., t, are terms, then

S*(fi' (b e ta)) = ()Y (8% (1), - 8% (1))

Intuitively, s*(f) is the element of D obtained by substituting, for each j, a
name of s; for all occurrences of x; in t and then performing the operations
of the interpretation corresponding to the function letters of ¢. For instance,
if tis fz (x3, f1 (xl,al)) and if the interpretation has the set of integers as its
domain, f5 and f7 are interpreted as ordinary multiplication and addition,
respectively, and g, is interpreted as 2, then, for any sequence s = (s, s, ...)
of integers, s*(t) is the integer s; - (s; + 2). This is really nothing more than the
ordinary way of reading mathematical expressions.

Now we proceed to the definition of satisfaction, which will be an induc-

tive definition.

1. If »~is an atomic wf A} (t,...,t,) and (A})M is the corresponding

n-place relation of the interpretation, then a sequence s = (s, s,, ...)

satisfies 7if and only if (A¢ WM(s*(t), ..., s*(t,))—that is, if the n-tuple
(s*(t,), ..., s*(t,)) is in the relation (Af )M.*

* For example, if the domain of the interpretation is the set of real numbers, the interpreta-
tion of A7 is the relation <, and the interpretation of ff is the function ¢*, then a sequence
s =(sy, Sy, -..) of real numbers satisfies Alz(fll(xz),xs) if and only if e < ss. If the domain is the
set of integers, the interpretation of Al(x, Y, U, v)is x-v =u.y, and the interpretation of a, is 3,
then a sequence s = (s, s,, ...) of integers satisfies Al(xs, m, x1, x3) if and only if (s5)? = 3s,.
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2. s satisfies —~if and only if s does not satisfy ..
3. s satisfies .»= « if and only if s does not satisfy .7 or s satisfies ~.

4. s satisfies (Vx;).» if and only if every sequence that differs from s in at
most the ith component satisfies .».*

Intuitively, a sequence s = (s, s,, ...) satisfies a wf .7 if and only if, when, for
each i, we replace all free occurrences of x; (if any) in .~ by a symbol repre-
senting s; the resulting proposition is true under the given interpretation.

Now we can define the notions of truth and falsity of wfs for a given
interpretation.

Definitions

1. A wf . is true for the interpretation M (written F; .»») if and only if
every sequence in X satisfies ..

2. »is said to be false for M if and only if no sequence in X satisfies ..

3. Aninterpretation M is said to be a model for a set " of wfs if and only
if every wf in T is true for M.

The plausibility of our definition of truth will be strengthened by the fact
that we can derive all of the following expected properties I-XI of the notions
of truth, falsity, and satisfaction. Proofs that are not explicitly given are left
to the reader (or may be found in the answer to Exercise 2.12). Most of the
results are also obvious if one wishes to use only the ordinary intuitive
understanding of the notions of truth, falsity, and satisfaction.

I. a. 7is false for an interpretation M if and only if =« is true for M.
b. .zis true for M if and only if —is false for M.
IL. Tt is not the case that both k,, .7 and F,, =7 that is, no wf can be both
true and false for M.
IIL. If By, wand k7= ~, then k, 7.
IV. 2= ris false for M if and only if Fy; »and ky; ~~.
V. f*Consider an interpretation M with domain D.
a. A sequence s satisfies 7 A ~ if and only if s satisfies ..» and s satisfies «.
b. s satisfies .7 v~ if and only if s satisfies ..z or s satisfies «.
c. s satisfies v & « if and only if s satisfies both . and  or s satisfies
neither . nor .

" In other words, a sequence s = (s, 5, ..., 5;, ...) satisfies (Vx;). »if and only if, for every element
c of the domain, the sequence (s, s, ..., ¢, ...) satisfies .. Here, (s, 5,, ..., ¢, ...) denotes the
sequence obtained from (s, s, ..., 5, ...) by replacing the ith component s; by c. Note also that,
if s satisfies (Vx;) 7, then, as a special case, s satisfies .

* Remember that 7 A 7, 2V 7, 2 < +and (3x;)~ are abbreviations for (v = —7), "z = 7,
(7= 7) A (= ») and =(Vx,) =, respectively.
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d. ssatisfies (Ix,).7if and only if there is a sequence s’ that differs from s
in at most the ith component such that s” satisfies . (In other words
§ = (51, 5y ..., Sy, ...) satisfies (3x;).»if and only if there is an element c
in the domain D such that the sequence (s, 5,, ..., ¢, ...) satisfies .2,
VL Ey zif and only if Fy(Vx;). 2.
We can extend this result in the following way. By the closure* of 7 we
mean the closed wf obtained from .7 by prefixing in universal quanti-
fiers those variables, in order of descending subscripts, that are free
in . If #has no free variables, the closure of . 7is defined to be . 7itself.
For example, if 7 is Af(x,,%5) = —(3x2) A7 (x1,X,%3), its closure is (Vxs)
(Vx3)(Vx,)(Vx,).2. It follows from (VI) that a wf 7is true if and only if its
closure is true.

VIL Every instance of a tautology is true for any interpretation. (An instance
of a statement form is a wf obtained from the statement form by sub-
stituting wfs for all statement letters, with all occurrences of the same
statement letter being replaced by the same wf. Thus, an instance of
A= —A, VA s Al(xn) = ((Va) Al () v Al (x2))

To prove (VII), show that all instances of the axioms of the system L are
true and then use (III) and Proposition 1.14.

VIIL If the free variables (if any) of a wf .7 occur in the list x;, ..., x; and if
the sequences s and s’ have the same components in the ith, ..., ith
places, then s satisfies .~ if and only if s’ satisfies v [Hint: Use induc-
tion on the number of connectives and quantifiers in .. First prove this
lemma: If the variables in a term t occur in the list x;, ..., x;, and if s
and s’ have the same components in the i th, ..., j;th places, then s*(f) =
(s")*(t). In particular, if ¢ contains no variables at all, s*() = (s')*(f) for any
sequences s and s']

Although, by (VIII), a particular wf »with k free variables is essentially satis-
fied or not only by k-tuples, rather than by denumerable sequences, it is more
convenient for a general treatment of satisfaction to deal with infinite rather
than finite sequences. If we were to define satisfaction using finite sequences,
conditions 3 and 4 of the definition of satisfaction would become much more
complicated.

Let x;, ..., x;, be k distinct variables in order of increasing subscripts. Let
7 (Xy, ..., x;) be a wf that has x;, ..., x; as its only free variables. The set of
k-tuples (b,, ..., b;) of elements of the domain D such that any sequence with
by, ..., byinits ijth, ..., ith places, respectively, satisfies .7 (x;, ..., x;.) is called
the relation (or property®) of the interpretation defined by ». Extending our ter-
minology, we shall say that every k-tuple (b, ..., b;) in this relation satisfies
2(Xi, ..., x; ) in the interpretation M; this will be written ky; . /[b,, ..., b;] . This
extended notion of satisfaction corresponds to the original intuitive notion.

* A better term for closure would be universal closure.
* When k = 1, the relation is called a property.
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Examples

1. If the domain D of M is the set of human beings, Alz(x,y) is inter-
preted as x is a brother of y, and A3(x,y) is interpreted as x is a par-
ent of y, then the binary relation on D corresponding to the wf

2(x1,%2): (Ax3)(AZ(x1,%3) A A3(x3,X,)) is the relation of unclehood.
Eum - #lb, c] when and only when b is an uncle of c.

2. If the domain is the set of positive integers, A7 is interpreted as =, f7’ is
interpreted as multiplication, and 4, is interpreted as 1, then the wf . (x,):

—'A12(x1/ a1) A (Vx2)((3x3 )Alz(xl/ f12(x2/ X3)) = Alz(le x1)V Alz(x2/ m))

determines the property of being a prime number. Thus ky, #[k] if
and only if k is a prime number.

IX. If »is a closed wf of a language v, then, for any interpretation M,
either k,, .7 or Fy; ~s—that is, either .7 is true for M or .7 1is false for
M. [Hint: Use (VIII).] Of course, »» may be true for some interpreta-
tions and false for others. (As an example, consider Aj(a). If M is
an interpretation whose domain is the set of positive integers, A{ is
interpreted as the property of being a prime, and the interpretation
of a, is 2, then Aj(a ) is true. If we change the interpretation by inter-
preting a, as 4, then A{(a;) becomes false.)

If 7 is not closed—that is, if ..» contains free variables—: may be
neither true nor false for some interpretation. For example, if . is
A}(x1,%,) and we consider an interpretation in which the domain
is the set of integers and Af(y,z) is interpreted as y < z, then  is
satisfied by only those sequences s = (s;, s,, ...) of integers in which
s; < s,. Hence, .7 is neither true nor false for this interpretation. On
the other hand, there are wfs that are not closed but that neverthe-
less are true or false for every interpretation. A simple example is the
wf Al(x1) v —Ai(x;), which is true for every interpretation.

X. Assume t is free for x; in .(x;). Then (Vx,).#(x) = #(t) is true for all
interpretations.

The proof of (X) is based upon the following lemmas.

Lemmal

If t and u are terms, s is a sequence in %, t' results from t by replacing all
occurrences of x; by u, and s’ results from s by replacing the ith component
of s by s*(u), then s*(t") = (s)*(t). [Hint: Use induction on the length of t*]

* The length of an expression is the number of occurrences of symbols in the expression.
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Lemma 2

Let t be free for x; in .#(x)). Then:

a. A sequences s = (5, s,, ...) satisfies .(t) if and only if the sequence s/,
obtained from s by substituting s*(t) for s; in the ith place, satisfies ..(x)).
[Hint: Use induction on the number of occurrences of connectives and
quantifiers in .»(x;), applying Lemma 1.]

b. If (Vx)) #(x,) is satisfied by the sequence s, then .s(t) also is satisfied by s.

XL If .7 does not contain x; free, then (Vx)(7= ») = (%= (Vx;)7) is true for
all interpretations.

Proof

Assume (XI) is not correct. Then (Vx)(7= ©) = (7= (Vx)~) is not true for some
interpretation. By condition 3 of the definition of satisfaction, there is a sequence
s such that s satisfies (Vx;)(-#= ~) and s does not satisfy ..»= (Vx;)~. From the latter
and condition 3, s satisfies ..7and s does not satisfy (Vx;)~. Hence, by condition 4,
there is a sequence s', differing from s in at most the ith place, such that s’ does
not satisfy . Since x; is free in neither (Vx;)(-# = ) nor .z, and since s satisfies
both of these wfs, it follows by (VIII) that s’ also satisfies both (Vx;)(= ) and ..
Since s’ satisfies (Vx;))(~= v), it follows by condition 4 that s’ satisfies .= ~. Since
s satisfies »»= ~and ., condition 3 implies that s’ satisfies ~, which contradicts
the fact that s’ does not satisty . Hence, (XI) is established.

Exercises

2.12 Verify (I)—(X).
2.13 Prove that a closed wf .7is true for M if and only if ..»is satisfied by some

sequence s in X. (Remember that X is the set of denumerable sequences
of elements in the domain of M.)

2.14 Find the properties or relations determined by the following wfs and

interpretations.

a. [Fu)AL(f(x,u), NIAL(F0)AT(fL(x,0),2)], where the domain D is the
set of integers, A?is =, and f12 is multiplication.

b. Here, D is the set of nonnegative integers, A?is =, a, denotes 0, f12 is
addition, and f is multiplication.
i [B2)(—A%(z,m) A AR (fE(x,2), y))]
ii. @YAL(x, f2(y,y)

c. (Fx3)AT(fi(x1,x3),x2), where D is the set of positive integers, A7 is =,
and f{ is multiplication,



First-Order Logic and Model Theory 61

d. Al(x1) A(Vx2)=Af(x1, x,), where D is the set of all living people, A{(x)
means x is 2 man and A7(x,y) means x is married to y.

e i (Hxl)(axz)(Alz(xl, xX3) A A12(x2, X4) A A%(xl, X))
i, (3x3)(AL(x1,%3) A Af(x3,X2))

where D is the set of all people, Af(x,y) means x is a parent of y,
and A3(x, y) means x and y are siblings.

£ (V) (Fxa)(AT(fE(xs, X3), 1) A G )(AT(F (x4, %3), %2)) = Af (x5, m1),
where D is the set of positive integers, Af is =, f{ is multiplication,
and a, denotes 1.

g. —=AL(x2,x1) A FY)(AL(y, x1) A A3 (%2, 1)), where D is the set of all peo-
ple, Af(u,v) means u is a parent of v, and A3(u,v) means u is a wife
of v.

2.15 For each of the following sentences and interpretations, write a transla-
tion into ordinary English and determine its truth or falsity.

a. The domain D is the set of nonnegative integers, Afis =, flz is addi-
tion, f: 7 is multiplication, 4, denotes 0, and a, denotes 1.

L (YOEYAL(, fAy, ) v Al(x, fR(fE (Y, ), a2)))
i, (VXA y), ) = A, a0) v ALY, @)
iii. @) A (f2(y, ), @)

b. Here, D is the set of integers, A?is = and f12 is addition.
i (Vxl)(sz)Alz(flz(xl,xz),flz(xz,xl))
ii. (Vx1)(sz)(Vx3)A12(f12(x1,ﬁz(xZ,x3)),f12(f12(x1,xz),xg,))
iii. (vxl)(VXZ)(HX3)A12(f12(xlrx3)l X2)

c. The wfs are the same as in part (b), but the domain is the set of posi-
tive integers, A is =, and fi’(x,y) is .

d. The domain is the set of rational numbers, A?is =, A?is <, flz is mul-
tiplication, ff(x) is x + 1, and a, denotes 0.

i @)AT(f(xx), A (fl (@)
ii. (Vx)(Yy)(A3(x,y) = (32)(A3(x, 2) A A3(z, 1))
iii. (Va)(—A7 (x, 1) = A AT(F(x, y), fil(@)))

e. The domain is the set of nonnegative integers, A#(u,v) means u < v,
and A} (u,v,w) means u + v = w.

L (VX)(Vy)(V2)(AD(x,y,2) = Al(y, x,2))
i (V)(Vy)(AL(x, x, ) = Af(x, )

iii. (V) (Vy) (AT (x, y) = Al(x, x, 1))

iv. 3x)(Yy)AL(x,y,y)
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v. (Fy)(Vx)Ai(x,y)
vi. (V) (VY)(Af (x, y) < (32)Al(x, 2, 1))

f. The domain is the set of nonnegative integers, Af(u,v) means
u=v, ff(u,0)=u+v,and f7(u,0)=u-v

(V)@y)B)AL(x, fE(f2 (v, y), £3(2,2))

Definitions

A wf » is said to be logically valid if and only if 7 is true for every
interpretation.*

~1s said to be satisfiable if and only if there is an interpretation for which .~
is satisfied by at least one sequence.

It is obvious that ..#is logically valid if and only if =7is not satisfiable, and
7is satisfiable if and only if —~is not logically valid.

If »is a closed wf, then we know that .~is either true or false for any given
interpretation; that is, ..#is satisfied by all sequences or by none. Therefore, if
#is closed, then 7is satisfiable if and only if »7is true for some interpretation.

A setT" of wfs is said to be satisfiable if and only if there is an interpretation
in which there is a sequence that satisfies every wf of I

It is impossible for both a wf »and its negation —7 to be logically valid.
For if #is true for an interpretation, then - ~is false for that interpretation.

We say that .7 is contradictory if and only if »7is false for every interpreta-
tion, or, equivalently, if and only if - ~is logically valid.

7 is said to logically imply « if and only if, in every interpretation, every
sequence that satisfies ..7also satisfies ~. More generally, « is said to be a logi-
cal consequence of a set I' of wfs if and only if, in every interpretation, every
sequence that satisfies every wf in I" also satisfies .

»and « are said to be logically equivalent if and only if they logically imply
each other.

The following assertions are easy consequences of these definitions.

1. 7 logically implies « if and only if .»=  is logically valid.

2. 7 and « are logically equivalent if and only if < « is logically valid.

3. If 7 logically implies ~ and . is true in a given interpretation, then
sois «.

4. If » is a logical consequence of a set I" of wfs and all wfs inI" are true
in a given interpretation, then so is «.

* The mathematician and philosopher G.W. Leibniz (1646-1716) gave a similar definition: ~is
logically valid if and only if 7is true in all “possible worlds.”
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Exercise

2.16

Prove assertions 1-4.

Examples

1.
2.
3.

Every instance of a tautology is logically valid (VII).

If t is free for x in . #(x), then (Vx).2(x) = .4(t) is logically valid (X).

If 7 does not contain x free, then (Vx)(» = ») = (v = (¥x)7) is logi-
cally valid (XI).

. .zis logically valid if and only if (Vy,) ... (Vy,).~#is logically valid (VI).
. The wf (Vx2)@x1)AT(x1,%2) = (3x,)(Vx2) AT (%1, x2) is not logically

valid. As a counterexample, let the domain D be the set of integers
and let Af(y,z) mean y < z. Then (Vx;)(3x)A7(x1,x;) is true but
(3x1) (V) A (1, x,) is false.

Exercises

2.17

2.18

2.19

Show that the following wfs are not logically valid.

a. [(Vx)AL(x) = (VX)) A (x1)] = [(Var) (Al (x1) = Ax(x1))]
b. [(vxl)(A%(xl) \% A%(xl))] = [((Vxl))A%(xl)) Vv (vxl)A%(xl)]
Show that the following wfs are logically valid.*

o

#(t) = (3x,).#(x) if t is free for x;in .#(x))
(Vx) 2= (3x)~

(Vx;)(Vx)) 2 = (Vx)(Vx) »

(Vx) 7 < =(3x)~z

(Vx)(7=> 7) = (Yx) 7= (Vx)7)

((Vx).2) A (Vx)r o (Vx)( 2 A7)

(Vx) 2) v (Vx) 7 = (Yx)( 7V 7)

(Fx)(3x) 7 & Fx)(Ix) 7

@Fx)(Vx) 2= (Vx)@Ex,) ~

5 ® -~ 0o & n T

-

a. If »is a closed wf, show that vlogically implies « if and only if ~is

true for every interpretation for which .~is true.

b. Although, by (VI), (Vx;)Ai(x,) is true whenever Aj(x;) is true, find
an interpretation for which Al(x1) = (Vx;)A{(x,) is not true. (Hence,

the hypothesis that .»7is a closed wf is essential in (a).)

* At this point, one can use intuitive arguments or one can use the rigorous definitions of
satisfaction and truth, as in the argument above for (XI). Later on, we shall discover another

method for showing logical validity.
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2.20 Prove that, if the free variables of .vare y,, ..., y,, then .7 is satisfiable if
and only if (Jy,), ..., Jy,).~1s satisfiable.

2.21

2.22

Produce counterexamples to show that the following wfs are not logi-
cally valid (that is, in each case, find an interpretation for which the wf
is not true).

a.

>

o &0

-~

g’
h.

i

[(Vx)(Vy)(V2)(AL (x, y) A ALy, 2) = Af(x,2)) A (VX)=AT(x, X)]
= (3Ax)(Vy)-Af (x, y)
(VX)By) AL (x, y) = GAL(Y, y)
(B0 EY)AL (x,y) = EY)AL (Y, y)
[(A)Ai(x) & (3x)Ax ()] = (Vx)(Ai (x) < Ax(x))
(3x)(Al(x) = Az(x)) = (Ex)Ai(x) = (Fx) A3 (x))
[(Vx)(Vy)(AT(x,y) = AT(y, ) A (V) (VY)(V2)(AT(x,y) A AT (Y, 2)
= Af(x,2))] = (Vx)Af(x,x)
@x) (YY) (AL (x,y) A—AL(Y,x) = [Af(x,x) < AL(y,y)])
(V) (YY) (V2)(AL (x,%) A (AT (x,2) = A (x,y) v Af(Y,2)))
= (Fy)(V2)Ai(y,2)
(3x)(Vy)3z)((A(y,2) = Af(x,2)) = (Af(x,x) = Af(y,x)))

By introducing appropriate notation, write the sentences of each of the
following arguments as wfs and determine whether the argument is
correct, that is, determine whether the conclusion is logically implied
by the conjunction of the premisses

a.

b.

All scientists are neurotic. No vegetarians are neurotic. Therefore,
no vegetarians are scientists.

All men are animals. Some animals are carnivorous. Therefore,
some men are carnivorous.

Some geniuses are celibate. Some students are not celibate.
Therefore, some students are not geniuses.

Any barber in Jonesville shaves exactly those men in Jonesville who
do not shave themselves. Hence, there is no barber in Jonesville.

For any numbers x, y, z, if x > y and y > z, then x > z. x > x is false for
all numbers x. Therefore, for any numbers x and y, if x >y, then it is
not the case that y > x.

No student in the statistics class is smarter than every student in
the logic class. Hence, some student in the logic class is smarter
than every student in the statistics class.

Everyone who is sane can understand mathematics. None of
Hegel’s sons can understand mathematics. No madmen are fit to
vote. Hence, none of Hegel’s sons is fit to vote.



First-Order Logic and Model Theory 65

h.

For every set x, there is a set y such that the cardinality of y is greater
than the cardinality of x. If x is included in y, the cardinality of x
is not greater than the cardinality of y. Every set is included in V.
Hence, V is not a set.

For all positive integers x, x < x. For all positive integers x, y, z, if
x <yandy < z, then x < z. For all positive integers x and y, x <y or
y < x. Therefore, there is a positive integer y such that, for all posi-
tive integers x, y < x.

For any integers x, , z, if x > y and y > z, then x > z. x > x is false for
all integers x. Therefore, for any integers x and y, if x > y, then it is
not the case that y > x.

2.23 Determine whether the following sets of wfs are compatible—that is,
whether their conjunction is satisfiable.

2.24

2.25

a.

(B0 Ey)AL (x,y)

(VX)(Vy)(3F2)(AL(x,2) A Ai(z, ¥))

(V) Fy)AL(y, x)

(Vx)(VY)(AL(x, y) = =Al(y, X))
(Vx)(YY)(V2)(AL(x, y) A Al (Y, 2) = AR (x, 2))
All unicorns are animals.

No unicorns are animals.

Determine whether the following wfs are logically valid.

a.
b.
C.

d.

i

j-

—(@)(Vx)(AL(x,y) & =AL(x, X))

[3x)A1(x) = (30)A2(x)] = (3x)(A1(x) = A3(x))
(3)(A1(x) = (VY)Ai(y))

(Va)(AL(x) v A2(x)) = ((Vx)A1(x)) v (3x) Az(x))
(F)EY)(AL(x,y) = (V2)Al(z, y))

(@) y)(A1(x) = Ax(y)) = (32)(A1(x) = Ax(x))
(Va)(A1(x) = Az(x)) = —~(Vx)(A(x) = =Az(x))
(F0)AL (x,x) = F)Fy) A (x, )

((Bx)AL(x)) A (3x)A2(x) = (3x)(Al (x) A Az(x))

(Y2)AL(2)) v (Vx)A2(x) = (Vx)(A1 (x) v A3(x))

Exhibit a logically valid wf that is not an instance of a tautology.
However, show that any logically valid open wf (that is, a wf without
quantifiers) must be an instance of a tautology.
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2.26 a. Find a satisfiable closed wf that is not true in any interpretation
whose domain has only one member.

b. Find a satisfiable closed wf that is not true in any interpretation
whose domain has fewer than three members.

2.3 First-Order Theories

In the case of the propositional calculus, the method of truth tables provides an
effective test as to whether any given statement form is a tautology. However,
there does not seem to be any effective process for determining whether a
given wf is logically valid, since, in general, one has to check the truth of a
wf for interpretations with arbitrarily large finite or infinite domains. In fact,
we shall see later that, according to a plausible definition of “effective,” it may
actually be proved that there is no effective way to test for logical validity. The
axiomatic method, which was a luxury in the study of the propositional cal-
culus, thus appears to be a necessity in the study of wfs involving quantifiers,*
and we therefore turn now to the consideration of first-order theories.

Let v be a first-order language. A first-order theory in the language - will
be a formal theory K whose symbols and wfs are the symbols and wfs of
and whose axioms and rules of inference are specified in the following way.f

The axioms of K are divided into two classes: the logical axioms and the
proper (or nonlogical) axioms.

2.3.1 Logical Axioms
If =, #,and v are wfs of -, then the following are logical axioms of K:
A1) 7= (- )

(A2) (7= (r= 7)) 2> (7= )= (7= 2))
(A3) (7= 2 => (r=> 2)=> )

* There is still another reason for a formal axiomatic approach. Concepts and propositions
that involve the notion of interpretation and related ideas such as truth and model are often
called semantical to distinguish them from syntactical concepts, which refer to simple rela-
tions among symbols and expressions of precise formal languages. Since semantical notions
are set-theoretic in character, and since set theory, because of the paradoxes, is considered
a rather shaky foundation for the study of mathematical logic, many logicians consider a
syntactical approach, consisting of a study of formal axiomatic theories using only rather
weak number-theoretic methods, to be much safer. For further discussions, see the pioneer-
ing study on semantics by Tarski (1936), as well as Kleene (1952), Church (1956), and Hilbert
and Bernays (1934).

The reader might wish to review the definition of formal theory in Section 1.4. We shall use
the terminology (proof, theorem, consequence, axiomatic, - ., etc.) and notation (I' - 4, - )
introduced there.

-+
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(A4) (Vx).2(x;) = () if #(x)) is a wf of &~ and t is a term of ~ that is free
for x; in .(x;). Note here that t may be identical with x; so that all
wfs (Vx,)).7 = .~ are axioms by virtue of axiom (A4).

(A5) (Vx)(7= 7) = (2= (Vx)7) if 7 contains no free occurrences of x;.

2.3.2 Proper Axioms

These cannot be specified, since they vary from theory to theory. A first-
order theory in which there are no proper axioms is called a first-order predi-
cate calculus.

2.3.3 Rules of Inference

The rules of inference of any first-order theory are:

1. Modus ponens: « follows from v and 7= .
2. Generalization: (Vx,).7 follows from ..

We shall use the abbreviations MP and Gen, respectively, to indicate applica-
tions of these rules.

Definition

Let K be a first-order theory in the language . By a model of K we mean an
interpretation of ~for which all the axioms of K are true.

By (III) and (VI) on page 57, if the rules of modus ponens and general-
ization are applied to wfs that are true for a given interpretation, then the
results of these applications are also true. Hence every theorem of K is true in
every model of K.

As we shall see, the logical axioms are so designed that the logical conse-
quences (in the sense defined on pages 63-64) of the closures of the axioms of
K are precisely the theorems of K. In particular, if K is a first-order predicate
calculus, it turns out that the theorems of K are just those wfs of K that are
logically valid.

Some explanation is needed for the restrictions in axiom schemas (A4)
and (A5). In the case of (A4), if t were not free for x; in (x;), the following
unpleasant result would arise: let 27(x;) be —(Vx,)A7(x1,x,) and let t be X,
Notice that ¢ is not free for x; in .(x;). Consider the following pseudo-
instance of axiom (A4):

(V) (Vx1) (Vi) AT (31, %2) ) = ~(Vx2) AT (%2, %2)
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Now take as interpretation any domain with at least two members and let
A7 stand for the identity relation. Then the antecedent of (V) is true and the
consequent false. Thus, (V) is false for this interpretation.

In the case of axiom (Ab), relaxation of the restriction that x; not be free in
»would lead to the following disaster. Let »and «both be A{(x,). Thus, x, is
free in .». Consider the following pseudo-instance of axiom (A5):

(V) (va)(Al(x) = Al () = (Al() = (V) Al (x1))

The antecedent of (VV) is logically valid. Now take as domain the set of
integers and let A{(x) mean that x is even. Then (Vx;)Ai(x,) is false. So, any
sequence s = (5, Sy, ...) for which s, is even does not satisfy the consequent of
(VV)X* Hence, (VV) is not true for this interpretation.

Examples of first-order theories

1. Partial order. Let the language ~ have a single predicate letter A7 and
no function letters and individual constants. We shall write x; < x;
instead of A3(x;,x;). The theory K has two proper axioms.

a. (V) x<xy) (irreflexivity)
b.  (Vx)(Vx)(Vx5)(x; <X, AX, <X3=> x; <X3)  (transitivity)
A model of the theory is called a partially ordered structure.

2. Group theory. Let the language ~ have one predicate letter A7, one
function letter f, and one individual constant a,. To conform with
ordlnary notation, we shall write ¢ = s instead of AZ(t,s), t +s instead
of f£(t,5), and 0 instead of a,. The proper axioms of K are:

a. (V)W) (W) (g +(x, + x3) (associativity)
= (x; + xp) + x3)
b. (vx)0 + x; = xy) (identity)
¢ (Vx)@E@x)(x, + x,=0) (inverse)
d. (Vx)(xy = xy) (reflexivity of =)
e. (Vx)(Vx)(x, =x, = x,=x,) (symmetry of =)
£ (Vx)(Vx)(Vxs) (g = X5 A Xp = X3 = Xq = X3) (transitivity of =)
g (Vx)(Va)(Vx)(x, = x5 = X1 + X, (substitutivity of =)

=X+ X3 AXy + X = X3+ Xg)
A model for this theory, in which the interpretation of = is the identity rela-

tion, is called a group. A group is said to be abelian if, in addition, the wf (Vx;)
(Vx,)(x; + X, = X, + X;) is true.

* Such a sequence would satisfy A}(xl ), since s, is even, but would not satisfy (Vx; )A} (x1), since
no sequence satisfies (Vx;)A{ (x;).



First-Order Logic and Model Theory 69

The theories of partial order and of groups are both axiomatic. In general,
any theory with a finite number of proper axioms is axiomatic, since it is
obvious that one can effectively decide whether any given wf is a logical
axiom.

2.4 Properties of First-Order Theories

All the results in this section refer to an arbitrary first-order theory K. Instead
of writing k¢ .7, we shall sometimes simply write |- 2. Moreover, we shall
refer to first-order theories simply as theories, unless something is said to the
contrary.

Proposition 2.1

Every wf .7 of K that is an instance of a tautology is a theorem of K, and it
may be proved using only axioms (A1)—(A3) and MP.

Proof

v arises from a tautology .~ by substitution. By Proposition 1.14, there is a
proof of vin L. In such a proof, make the same substitution of wfs of K for
statement letters as were used in obtaining - from ., and, for all statement
letters in the proof that do not occur in ., substitute an arbitrary wf of K.
Then the resulting sequence of wfs is a proof of .7, and this proof uses only
axiom schemes (A1)-(A3) and MP.

The application of Proposition 2.1 in a proof will be indicated by writing
“Tautology.”

Proposition 2.2
Every theorem of a first-order predicate calculus is logically valid.

Proof

Axioms (A1)—(A3) are logically valid by property (VII) of the notion of truth
(see page 58), and axioms (A4) and (A5) are logically valid by properties (X)
and (XI). By properties (III) and (VI), the rules of inference MP and Gen pre-
serve logical validity. Hence, every theorem of a predicate calculus is logi-
cally valid.
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Example

The wf (Vax,)(3x1)Af (x1,%2) = (3x1)(Vx2)Af(x1,X,) is not a theorem of any first-
order predicate calculus, since it is not logically valid (by Example 5, page 63).

Definition

A theory Kis consistent if no wf 7and its negation -~ are both provable in K.
A theory is inconsistent if it is not consistent.

Corollary 2.3

Any first-order predicate calculus is consistent.

Proof

If a wf -~ and its negation - were both theorems of a first-order predicate
calculus, then, by Proposition 2.2, both ..» and = would be logically valid,
which is impossible.

Notice that, in an inconsistent theory K, every wf ~ of Kis provable in K. In
fact, assume that ..7and - »are both provable in K. Since the wf .7 = (=7 = )
is an instance of a tautology, that wf is, by Proposition 2.1, provable in K.
Then two applications of MP would yield .

It follows from this remark that, if some wf of a theory K is not a theorem
of K, then K is consistent.

The deduction theorem (Proposition 1.9) for the propositional calculus can-
not be carried over without modification to first-order theories. For example,
for any wf ., .7 F(Vx,).7, but it is not always the case that ¢ .7 = (Vx).2.
Consider a domain containing at least two elements c and d. Let K be a predi-
cate calculus and let »be A{(x,). Interpret Alasa property that holds only
for c. Then Aj(x;) is satisfied by any sequence s = (s, s,, ...) in which s; = ¢,
but (Vx;)Ai(x,) is satisfied by no sequence at all. Hence, A{(x;) = (Vx1)A1(x;)
is not true in this interpretation, and so it is not logically valid. Therefore, by
Proposition 2.2, Ai(x;) = (Vx;)A{(x;) is not a theorem of K.

A modified, but still useful, form of the deduction theorem may be derived,
however. Let .» be a wf in a set I' of wfs and assume that we are given a
deduction %, ..., 7, from I' , together with justification for each step in the
deduction. We shall say that 7; depends upon »in this proof if and only if:

1. % is .7and the justification for 7 is that it belongs to I or

2. 7;isjustified as a direct consequence by MP or Gen of some preced-
ing wfs of the sequence, where at least one of these preceding wfs
depends upon .
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Example

2, (Vxy) = 7 (Vxy)«

() 7 Hyp

(7)) (V) 7 (71), Gen
(73) (Vx)). =+ Hyp

(7)) 7 (%), (73), MP
(75)  (Vxp)7 (74), Gen

Here, (#) depends upon ., (7,) depends upon ., (#;) depends upon (Vx;)
7= v, (7,) depends upon .7 and (Vx,).» = ~, and () depends upon .~ and
(Vxy). 7= 7.

Proposition 2.4

If ~does not depend upon .~in a deduction showing that I, ~+ «, thenT' - ~.

Proof

Let % ..., 7, be a deduction of » from I" and ., in which ~ does not depend
upon . (In this deduction, 7, is ».) As an inductive hypothesis, let us
assume that the proposition is true for all deductions of length less than n. If
« belongs to I or is an axiom, then I F ~. If ~ is a direct consequence of one
or two preceding wfs by Gen or MP, then, since » does not depend upon .,
neither do these preceding wfs. By the inductive hypothesis, these preceding

wfs are deducible from I" alone. Consequently, so is .

Proposition 2.5 (Deduction Theorem)

Assume that, in some deduction showing that I, .7+ «, no application of Gen
to a wf that depends upon . has as its quantified variable a free variable
of . ThenT'F z= «.

Proof

Let %, ..., 7, be a deduction of » from I" and .7, satisfying the assumption of
our proposition. (In this deduction, 7, is ) Let us show by induction that I
F.2= 7 foreachi < n.If 7is an axiom or belongs to I, thenT" - .= 7, since
% = (7= 9)is an axiom. If % is =, thenI' v = 7, since, by Proposition
21, 2= 2. 1f there exist j and k less than i such that 7 is 7 = 7, then, by
inductive hypothesis, ' = 7 and 't »= (4 = ). Now, by axiom (A2),
F(7= (%> %)= (7> %) = (7= %)). Hence, by MP twice, I' - 7= 7,
Finally, suppose that there is some j < i such that 7; is (Vx;) 7. By the inductive
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hypothesis, I' = 7= 7, and, by the hypothesis of the theorem, either 7; does
not depend upon .7 or x; is not a free variable of 2. If 7; does not depend
upon .7, then, by Proposition 2.4, I' - Z and, consequently, by Gen, I' - (Vxy)
7. Thus, I' = 2. Now, by axiom (A1), - %, = (7= %).So, ' »= 7, by MP. If,
on the other hand, x; is not a free variable of .7, then, by axiom (A5), I (Vxy)
(7= 7) = (7= (Vx))7). Since ' - »= 7, we have, by Gen, I' - (Vx)(~7 = ),
and so, by MP, T' - 7= (Vxy) Z thatis, I' - .»= 4. This completes the induc-
tion, and our proposition is just the special case i = .

The hypothesis of Proposition 2.5 is rather cumbersome; the following

weaker corollaries often prove to be more useful.

Corollary 2.6

If a deduction showing that I, 7+ ~ involves no application of Gen of which
the quantified variables is free in .7, then '+ = .

Corollary 2.7

If visaclosedwfand T, #F «, thenT F »= «.

Extension of Propositions 2.4-2.7

In Propositions 2.4-2.7, the following additional conclusion can be drawn from
the proofs. The new proof of I v = « (in Proposition 2.4, of " - ) involves
an application of Gen to a wf depending upon a wf < of I only if there is an
application of Gen in the given proof of I, s F ~ that involves the same quan-
tified variable and is applied to a wf that depends upon ~. (In the proof of
Proposition 2.5, one should observe that 7; depends upon a premiss  of I' in
the original proof if and only if /= 7 depends upon in the new proof.)

This supplementary conclusion will be useful when we wish to apply the
deduction theorem several times in a row to a given deduction—for example,
toobtainI' - 7= (7= ¥) fromT, 7, 7 ¢; from now on, it is to be considered
an integral part of the statements of Propositions 2.4-2.7.

Example
F(Vx)(Vx2) 7 = (V) (V) 7
Proof
1. (Vaey)(Vxy) 7 Hyp

2. (Vxy)(Vx,) 7 =(Vx,) 7 (A4)
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3. (Vxp).7 1,2, MP
4. (Vx)v=> v (A4)

5 3,4, MP
6. (Vx)).z 5, Gen
7. (Vx,)(Vx,) 7 6, Gen

Thus, by 1-7, we have (Vx;)(Vx,).% - (Vx,)(Vx,)., where, in the deduction, no
application of Gen has as a quantified variable a free variable of (Vx;)(Vx,).~.
Hence, by Corollary 2.6, - (Vx,)(Vx,).7 = (Vx,)(Vxy) .

Exercises

2.27 Derive the following theorems.
a. F(Yx)(z7=> 72) = (Vx)7=> (VX))
b. F (Vx)(7= ) = (3x) v= (3x)7)
c. F(V)(ZA ) (VX)) A (Vx)7
d FMy) ... (YY) 7= 7
e. F(Vx) 7= (Ix) ~~
2.28" Let K be a first-order theory and let K* be an axiomatic theory having
the following axioms:
a. (Vyy) ... (Vy,)% where 7is any axiom of K and vy, ..., y,(n > 0) are
any variables (none at all when n = 0);
b. (Vyy) ... Yy => ) = [(Vyy) ... (Vy,)2=> (Vyy) ... (Vy,)7] where 7
and - are any wfs and y; ..., y, are any variables.
Moreover, K* has modus ponens as its only rule of inference. Show
that K* has the same theorems as K. Thus, at the expense of adding
more axioms, the generalization rule can be dispensed with.

2.29 Carry out the proof of the Extension of Propositions 2.4-2.7 above.

2.5 Additional Metatheorems and Derived Rules

For the sake of smoothness in working with particular theories later, we
shall introduce various techniques for constructing proofs. In this section it
is assumed that we are dealing with an arbitrary theory K.
Often one wants to obtain () from (Vx).#(x), where t is a term free for x in
#(x). This is allowed by the following derived rule.
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2.5.1 Particularization Rule A4

If t is free for x in #(x), then (Vx) #(x) = (t)*

Proof

From (Vx).#(x) and the instance (Vx).#(x) = 4(t) of axiom (A4), we obtain .(f)
by modus ponens.

Since x is free for x in .(x), a special case of rule A4 is: (Vx).7F 2.

There is another very useful derived rule, which is essentially the contra-
positive of rule A4.

2.5.2 Existential Rule E4

Let t be a term that is free for x in a wf .(x, t), and let (¢, f) arise from .(x, t) by
replacing all free occurrences of x by t. (#(x, ) may or may not contain occur-
rences of t.) Then, (¢, t) F (3x) #(x, t)

Proof

It suffices to show that (¢, t) = (3x).#(x, t). But, by axiom (A4), H(Vx)—.(x, t)
= —(t, t). Hence, by the tautology (A = -B) = (B = —-A) and MP, -4, t) =
—(Vx)m.(x, t), which, in abbreviated form, is - (¢, t) = (3x).#(x, 1).

A special case of rule E4 is .4(f) F (3x).#(x), whenever ¢ is free for x in .#(x).
In particular, when t is x itself, .(x) - (3x).#(x).

Example

F (Vx).2= (3x)»

1. (¥x).z Hyp

2. v 1, rule A4

3. (A2 2, rule E4

4, (Vx) 7+ (3x).z 1-3

5. F (Yx).v=> 3x).» 1-4, Corollary 2.6

The following derived rules are extremely useful.

Negation elimination: patAnlt

Negation introduction: it

Conjunction elimination: JNctE
2Nl

(ZA) sV s

* From a strict point of view, (Vx).#(x) - 4(t) states a fact about derivability. Rule A4 should be
taken to mean that, if (Vx) #(x) occurs as a step in a proof, we may write (t) as a later step
(if t is free for x in #(x)). As in this case, we shall often state a derived rule in the form of the
corresponding derivability result that justifies the rule.
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Conjunction introduction:
Disjunction elimination:

Disjunction introduction:

Conditional elimination:

Conditional introduction:

Conditional contrapositive:

Biconditional elimination:

Biconditional introduction:

Biconditional negation:

s, el oA

2N ¢, b

2N ¢,k
“(7V)bEasA-r
2= 9, 0> 9, 7N kg
Al AV

A AV
7=,y
=, cbkay
=,k
BV
(7> )k
(7= )k v
2, (2= 7)
v=>cbknr=say
> gk > ¢

ve v, b v e,k e
v, i vue e,k
A= T R I

D=0, => 9k we v

ke

ek ve v

75

Proof by contradiction: If a proof of I, = F ~ A =~ involves no application
of Gen using a variable free in 7, then I" . (Similarly, one obtains I" - —~»

fromT, 77 A—7)

Exercises

2.30 Justify the derived rules listed above.

2.31 Prove the following.

a. - (Vx)(Vy)AX(x, y) = (Vx)Al(x, x)

5 ® -~ 0 & n T

F[(VxX) 4] V [(Vx) 7] = (Vx)(2V ©)

F-3x).7= (Vx) ~o

F (Vx).7=> (V) (2 V 7)

= (VX)(Y)(AL(x, y) = ~AT(y, X)) = (Vx)=AT(x, x)
F[(3Ex).2= (Yx)7] = (Vx)(7= )

F (Vx)(2V 7)) = [(VX).2] v (3x)~

= (VX)(Af(x, ) = (3y) AT (x, y))
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i FWx)(7=> 7)) = [(Vx) 7= (Vx) 7]

- F@EIAI(Y) = (YY) AL(y)]

k. E (Y)Y (4(x, y) = Ay, X) A (VY)Y (A(x, y) A
Y, 2) = 4(x, 2))] = (V)Y (2(x, y) = 2(x, X))
L FEDAxx) = @E0ENA(,Y)
2.32 Assume that ~ and » are wfs and that x is not free in . Prove the

following.

a. ko= (W)

b. F@x)v=>2

¢ FH(z=> (Wx)r)e (Yx)(7= 7)
d F@r=>2) e W)(=>2)

We need a derived rule that will allow us to replace a part ~ of a wf
by a wf that is provably equivalent to . For this purpose, we first must
prove the following auxiliary result.

Lemma 2.8

For any wfs 7and 7, - (Vx)(7 & ») = (¥x) v & (Vx)7).

Proof

1. (W)(ze )

2. (Vx)w

3. v v

4. »

5.«

6. (Vx)~

7. (VX)(z & ), (Vx) 7k (Vx)¢

8. (V)(7e )k (Vx) 7= (Vx)«
9. (Va(ze ) F (Vx)r = (Vx) 7
10. (Vx) (v ?) E (WxX) 7o (VX)r
11. F (Vx) (7o ) = (Vx) 7z < (VX)7)

Proposition 2.9

Hyp

Hyp

1, rule A4

2, rule A4

3, 4, biconditional elimination
5, Gen

1-6

1-7, Corollary 2.6

Proof like that of 8

8, 9, Biconditional introduction
1-10, Corollary 2.6

If ~is a subformula of 4, ' is the result of replacing zero or more occur-
rences of ~in ~by a wf 7, and every free variable of ~ or - that is also a
bound variable of v occurs in the list y,, ..., y;, then:

a. F[(Vyy) ... Vy(r & 9)] = (v & ') (Equivalence theorem)
b. If - & 7, thent v ' (Replacement theorem)

cIfF7e 7and + 7 then - »’
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Example
a. F (V2)(Al(x) & Az(x)) = [(30) Al (x) & (30)A3(x)]

Proof

a. We use induction on the number of connectives and quantifiers in ..
Note that, if zero occurrences are replaced, ' is .» and the wf to be
proved is an instance of the tautology A = (B < B). Note also that, if ~
is identical with .. and this occurrence of « is replaced by 7, the wf to
be proved, [(Vy,) ... (Vy)(r & 9)] = (# & %), is derivable by Exercise
2.27(d). Thus, we may assume that - is a proper part of -~ and that at
least one occurrence of ~is replaced. Our inductive hypothesis is that the
result holds for all wfs with fewer connectives and quantifiers than .

Case 1. »is an atomic wf. Then ~ cannot be a proper part of ..

Case 2. »is =~. Let .»' be =". By inductive hypothesis, - [(Vy,) ... (Vi)
(v 2)] = (& ). Hence, by a suitable instance of the tautology (C =
(A e B)) = (C=> (wA & =B)) and MP, we obtain F [(Vy,) ... (Vy)(r & 2)]
=> (v 7).

Case 3. 7is #= 7. Let ' be ' = 7. By inductive hypothesis, - [(Vy) ...
Vyd(re 2] = (v )and F [(Vyy) ... Vy)(r & 2)] = (4 7). Using a
suitable instance of the tautology

A=>Beo O)A(A(DeE) > (A= [(B=>D)< (C=E))

we obtain F [(Vy)) ... (Vy)(r & 9)] = (v & 7).
Case 4. is (Vx). Let #" be (¥x)~'. By inductive hypothesis, - [(Vy,) ...
My (v & 2)] = (< #'). Now, x does not occur free in (Vy,) ... (Yy,)
(v © 2) because, if it did, it would be free in ~ or & and, since it is
bound in ., it would be one of v, ..., ¥, and it would not be free in
(Myy) ... (Vy)(~ & 2). Hence, using axiom (A5), we obtain  (Vy,) ...
My)(r e 2) = (Vx)(- < ~'). However, by Lemma 2.8, - (Vx)(« & ) =
((Vx) < (Vx)~'). Then, by a suitable tautology and MP, F [(Vy,) ... (V)
(re D)= (ve 7).

b. From I ~ < 7, by several applications of Gen, we obtain I (Vy,) ... (Vi)
(< 7). Then, by (a) and MP, - v & "

c. Use part (b) and biconditional elimination.

Exercises

2.33 Prove the following:
a. F@x)~ve (Vx).z
b. F(¥x) v -~(3x)~s
¢ F@AX)(z=-(rv 2)=> @x)N(7=>-vA-9)
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d. FMW)EY(r=> ) e (W)EYEsV o)
e. F(Vx)(7=> ) @AxX)(7A )

2.34 Show by a counterexample that we cannot omit the quantifiers (Vy,) ...
(Vyp in Proposition 2.9(a).

2.35 If ~ is obtained from . by erasing all quantifiers (Vx) or (3x) whose
scope does not contain x free, prove that - 7 < ».

2.36 For each wf ~below, find a wf » such that - © < = ~and negation signs
in ~ apply only to atomic wfs.

a. (Vx(Vy)E)A(x, Y, 2)
b. (Ve)e>0= (3B >0 A (Vx)(|x —c| <d= [f(x) —fl0) | <¥)
c. (Ve)e>0=> An)(Ym)(m>n= |a,-Db| <¢))
2.37 Let .~ be a wf that does not contain = and <. Exchange universal and

existential quantifiers and exchange A and V. The result ./* is called the
dual of ..

a. Inany predicate calculus, prove the following.
i. F »ifand only if F =%
ii. F »= sifand only if - «* = »*
iii. - v& rifand only if - »* & «*
iv. F@x)(zV )< [(3x).2) Vv (3x)~]. [Hint: Use Exercise 2.27(c).]

b. Show that the duality results of part (a), (i)—(iii), do not hold for arbi-
trary theories.

2.6 Rule C

It is very common in mathematics to reason in the following way. Assume
that we have proved a wf of the form (3x).#(x). Then we say, let b be an object
such that .»(b). We continue the proof, finally arriving at a formula that does
not involve the arbitrarily chosen element b.

For example, let us say that we wish to show that (Fx)(» (x) = ~ (x)),
(Vx).2(x) F (3x) 7 (x).

1. (@A)(7(x) = < (x)) Hyp

2. (Vx).7(x) Hyp

3. 2(b) = ~ (b) for some b 1

4. () 2, rule A4
5. #(b) 3,4, MP

6. (Fx)~ (x) 5, rule E4
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Such a proof seems to be perfectly legitimate on an intuitive basis. In fact,
we can achieve the same result without making an arbitrary choice of an ele-
ment b as in step 3. This can be done as follows:

1. (Vx).7(x) Hyp
2. (Vx) = (x) Hyp
3. 7(x) 1, rule A4
4. =7 (x) 2, rule A4
5. 2(7(x) = »(x)) 3, 4, conditional introduction
6. (Vx) 7(7(x) = ~ (%)) 5, Gen
7. (¥x).2(x), (Vx) =7 (x) 1-6
F () ~(2(x) = (%))
8. (Vx).z(x) - (Vx) =7 (x) = 1-7, corollary 2.6

(V) =(2(x) = ~ (x))
9. (Vx).7(x) F ~(Vx) ~(7(x) = 8, contrapositive
() = =(Vx) = (x)

10. (Vx).#(x) = Fx)(#(x) > Abbreviation of 9
(X)) = (Ax) 7 (x)
11. @x)(2(x) = < (x)), 10, MP

(Vx).2(x) = 3Fx) 7 (x)

In general, any wf that can be proved using a finite number of arbitrary
choices can also be proved without such acts of choice. We shall call the rule
that permits us to go from (3x).~(x) to . (b), rule C (“C” for “choice”). More
precisely, a rule C deduction in a first-order theory K is defined in the follow-
ing manner: I' . 7if and only if there is a sequence of wfs 7, ..., 7, such that
7, is and the following four conditions hold:

1. For each i < n, either
a. 7isan axiom of K, or
b. #isinT, or
c. 7 follows by MP or Gen from preceding wfs in the sequence, or
d

there is a preceding wf (3x)~ (x) such that 7 is ~(d), where d is a
new individual constant (rule C).
2. As axioms in condition 1(a), we also can use all logical axioms that

involve the new individual constants already introduced in the
sequence by applications of rule C.
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3. No application of Gen is made using a variable that is free in some
(3x) # (x) to which rule C has been previously applied.

4. - contains none of the new individual constants introduced in the
sequence in any application of rule C.

A word should be said about the reason for including condition 3. If an appli-
cation of rule C to a wf (3x)~ (x) yields « (d), then the object referred to by 4
may depend on the values of the free variables in (3x)(x). So that one object
may not satisfy ¢ (x) for all values of the free variables in (3x)~ (x). For exam-
ple, without clause 3, we could proceed as follows:

1 (Vx)3y)At(x, y) Hyp

2. Ay)Ai(x,y) 1, rule A4
3. Al(x,d) 2, rule C
4. (Vx)Af(x,d) 3, Gen

5. (Fy)(Vx)AL(x,y) 4, rule E4

However, there is an interpretation for which (Vx)(Jy)A7(x,y) is true but
(Jy)(Vx)Ai(x,y) is false. Take the domain to be the set of integers and let
Af(x,y) mean that x < .

Proposition 2.10

IfI' F¢ ., thenT' F . Moreover, from the following proof it is easy to verify
that, if there is an application of Gen in the new proof of .7 from I' using a
certain variable and applied to a wf depending upon a certain wf of I, then
there was such an application of Gen in the original proof*

Proof

Let (Jy,) (), --., Qv 4(y) be the wfs in order of occurrence to which rule C
is applied in the proof of I" . % and let d,, ..., d; be the corresponding new
individual constants. ThenT, #(d,), ..., 4(d;) . Now, by condition 3 of the
definition above, Corollary 2.6 is applicable, yielding I', #(d,), ..., %_1(di_1) F
(dy) = .. We replace d, everywhere by a variable z that does not occur in
the proof.

Then

F, /1(d1), ey /k—l(dk—l) - /k(2)2 z

* The first formulation of a version of rule C similar to that given here seems to be due to Rosser
(1953).
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and, by Gen,

L, a(d), ..., aa(dea) E (V2)(4(z) = 2)
Hence, by Exercise 2.32(d),

T, a(d), ..., aa(dea) Qi) a(ye) =
But,

L, a(dy), ..., aa(dia) F Qy)a(ve)
Hence, by MP,
L, a(dy), ..., aa(dia) 2

Repeating this argument, we can eliminate +,_,(d,), ..., #1(d;) one after the
other, finally obtaining I' - .

Example
V()= - (1) = () ()= (G (1)
L (vo((7x) = < (x) Hyp
2. (Fx).z(x) Hyp
3. .2(d) 2,rule C
4. z@d)=> @) 1, rule A4
5. #(d) 3,4, MP
6. (Fx)~ (x) 5, rule E4
7. (Vx)(2(x) = 7(x)), (3Fx).2(x) Fc (Fx) 7 (x) 1-6
8. (V) (7(x) = ~(x), @x).z(x) - (Ax)~ (x) 7, Proposition 2.10
9. (Vx)(#(x) = 7 (x)) F (3x).2(x) = (Fx)~ (x) 1-8, corollary 2.6

10. F (Yx)(2(x) = #(¥) = (Fx).z(®) = 3x)~(x)) 1-9, corollary 2.6

Exercises

Use rule C and Proposition 2.10 to prove Exercises 2.38-2.45.

2.38 F (@)(7(x) = 7 (x) = (V). 2z(x) = (Fx) 7 (x))
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2.39 F-(3y)(Vx)(Af(x, y) & —Af(x, X))

240 F[(VxX)(Al(x) = As(x) v A3(x)) A (YX)(AL(x) = Ax(x)] = Bx)(Al(x) A
A3(x))

241 +[@x)2@)] A [(Vo)r ()] = @x)(2(x) A «(x))

242 F (I (x) = @Ax)(7(x) Vv 7 (x)

2.43 F @3y #(x, y) © FyEx) 2 (x, y)

244 + (@A)(Vy) .z (x, y) = (Yy)(Ex).2(x, v)

245 F @x) (2 (@) A 7 (%) = (Fx). 2 () A (Fx) < (x)

2.46 What is wrong with the following alleged derivations?

a. 1. Fxn)z®) Hyp
2. 7(d) 1, rule C
3. @x)~(x) Hyp
4. 7@d) 3, rule C
5. ) A7) 2, 4, conjunction introduction
6. (Ax)(7(x) A 7(x)) 5, rule E4
7. (3x).2(x), (Ax)~ (x) 1-6, Proposition 2.10
F @07 A~ (x)
b. 1. @x)(z7E) = 7 (x) Hyp
2. (Fx).z(x) Hyp
3. 2@d)=> @) 1, rule C
4. (@) 2, rule C
5. () 3,4, MP
6. (FAv) (x) 5, rule E4
7. (Ax)(2(x) = ~(x), 1-6, Proposition 2.10
Fx)z(x) F Fx) 7 (x)
|

2.7 Completeness Theorems

We intend to show that the theorems of a first-order predicate calculus K are
precisely the same as the logically valid wfs of K. Half of this result was proved
in Proposition 2.2. The other half will follow from a much more general prop-
osition established later. First we must prove a few preliminary lemmas.

If x; and x; are distinct, then #(x;)) and /(x) are said to be similar if and only
if x; is free for x; in .7(x;) and .#(x;) has no free occurrences of x.. It is assumed

] ]

here that (x) arises from /(x)) by substituting x; for all free occurrences

of x;. It is easy to see that, if #(x;) and /(x) are similar, then x; is free for x; in
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#(x) and #(x;) has no free occurrences of x;. Thus, if /(x;) and . 4(x) are simi-
lar, then #(x) and #(x;) are similar. Intuitively, #(x) and #(x) are similar if
and only if #(x;) and (x) are the same except that /(x) has free occurrences
of x; in exactly those places where (x) has free occurrences of x;.

Example

(Vx3)[Af(x1,x3)vA}(x1)] and (sz[[Af(xz,xgvA}(xz)] are similar.

Lemma 2.11

If 7(x) and ~(x) are similar, then - (Vx;) #(x;) & (Vx) #(x).
Proof
F (Vx).2(x;) = »(x;) by axiom (A4). Then, by Gen, F (Vx)((Vx;) #(x;)) = #(x))),

and so, by axiom (A5) and MP, - (Vx;) #(x;) = (Vx;).Ax;). Similarly, - (Vx;) #(x;)
= (Vx;).#(x;). Hence, by biconditional introduction, I (Vx;) #(x;) < (Vx;) #(x)).

Exercises
2.47 If »(x) and »(x) are similar, prove that - (3x,) #(x) & (3x) 7 (x).
2.48 Change of bound variables. If 7(x) is similar to .=(y), (Vx).7(x) is a subfor-

mula of +, and «’ is the result of replacing one or more occurrences of
(Vx).#(x) in ~ by (Vy).#(y), prove that - v & .

Lemma 2.12

If a closed wf =7 of a theory K is not provable in K, and if K’ is the theory
obtained from K by adding ‘7as a new axiom, then K’ is consistent.

Proof

Assume K’ inconsistent. Then, for some wf 7, -’ ~and k' =7 Now, ' « =
(=7 = =%) by Proposition 2.1. So, by two applications of MP, I’ —.. Now,
any use of .~ as an axiom in a proof in K’ can be regarded as a hypothesis
in a proof in K. Hence, .# ¢ =.2. Since .7 is closed, we have k¢ . = =% by
Corollary 2.7. However, by Proposition 2.1, F¢(» = %) = =4 Therefore, by
MP, -y =%, contradicting our hypothesis.

Corollary

If a closed wf 7 of a theory K is not provable in K, and if K’ is the theory
obtained from K by adding —sas a new axiom, then K’ is consistent.
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Lemma 2.13

The set of expressions of a language ~ is denumerable. Hence, the same is
true of the set of terms, the set of wfs and the set of closed wfs.

Proof

First assign a distinct positive integer g(u) to each symbol u as follows:
30=3890)=5g()=78-)=92g=)=11,g(V) =13, 3(x) =13 + 8k, g(a) =7 +
8k, g(fi')=1+ 8(2"3"), and 2(A})=3+8(2"3") . Then, to an expression ugu; ...
u, associate the number 28038 pst") where p; is the jth prime number,
starting with p, = 2. (Example: the number of Aj(x,) is 2°'33575) We can enu-
merate all expressions in the order of their associated numbers; so, the set of
expressions is denumerable.

If we can effectively tell whether any given symbol is a symbol of -, then this
enumeration can be effectively carried out, and, in addition, we can effectively
decide whether any given number is the number of an expression of «. The
same holds true for terms, wfs and closed wfs. If a theory K in the language - is
axiomatic, that is, if we can effectively decide whether any given wf is an axiom
of K, then we can effectively enumerate the theorems of K in the following man-
ner. Starting with a list consisting of the first axiom of K in the enumeration just
specified, add to the list all the direct consequences of this axiom by MP and by
Gen used only once and with x, as quantified variable. Add the second axiom to
this new list and write all new direct consequences by MP and Gen of the wfs in
this augmented list, with Gen used only once and with x, and x, as quantified
variables. If at the kth step we add the kth axiom and apply MP and Gen to the
wfs in the new list (with Gen applied only once for each of the variables x;, ..., x}),
we eventually obtain in this manner all theorems of K. However, in contradis-
tinction to the case of expressions, terms, wfs and closed wfs, it turns out that
there are axiomatic theories K for which we cannot tell in advance whether any
given wf of K will eventually appear in the list of theorems.

Definitions
i. A theory K is said to be complete if, for every closed wf .7 of K, either
Fx . z0or g .

ii. A theory K' is said to be an extension of a theory K if every theorem of K
is a theorem of K'. (We also say in such a case that K is a subtheory of K')

Proposition 2.14 (Lindenbaum’s Lemma)

If K is a consistent theory, then there is a consistent, complete extension of K.
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Proof

Let .4, ., ... be an enumeration of all closed wfs of the language of K, by
Lemma 2.13. Define a sequence J,, J;, J,, ... of theories in the following way.
Jois K. Assume J, is defined, with n > 0. If it is not the case that -, —=.%,,,, then
let],., be obtained from J,, by adding .,,; as an additional axiom. On the other
hand, if b, =%, let],,; =],.. Let] be the theory obtained by taking as axioms
all the axioms of all the J;s. Clearly, J;,, is an extension of J;, and ] is an exten-
sion of all the J;s, including J, = K. To show that ] is consistent, it suffices to
prove that every J; is consistent because a proof of a contradiction in J, involv-
ing as it does only a finite number of axioms, is also a proof of a contradiction
in some J;. We prove the consistency of the J;s, by induction. By hypothesis,
Jo = Kis consistent. Assume that J; is consistent. If J,,; =], then ], is consistent.
If J; # J..1, and therefore, by the definition of J;,;, =.#,, is not provable in J;, then,
by Lemma 2.12, J;,, is also consistent. So, we have proved that all the J;s are
consistent and, therefore, that J is consistent. To prove the completeness of J,
let # be any closed wf of K. Then = o for some j > 0. Now, either b, = 7, or
Hja 7, since, if it is not the case that T, then Z4 18 added as an axiom
in J;,;- Therefore, either k) =, or by ;. Thus, ] is complete.

Note that even if one can effectively determine whether any wf is an axiom
of K, it may not be possible to do the same with (or even to enumerate effec-
tively) the axioms of J; that is, ] may not be axiomatic even if K is. This is due
to the possibility of not being able to determine, at each step, whether or not
—.%,,1 is provable in J,,.

Exercises
2.49 Show that a theory K is complete if and only if, for any closed wfs .
and v of K, if ¢ .7V 7, then ¢ . 7or b 7.

2.50° Prove that every consistent decidable theory has a consistent, decid-
able, complete extension.

Definitions

1. A closed term is a term without variables.
2. A theory K is a scapegoat theory* if, for any wf .7(x) that has x as its
only free variable, there is a closed term f such that

e (3x)= 2 (x) = = 4 (t)

* If a scapegoat theory assumes that a given property B fails for at least one object, then there
must be a name (that is, a suitable closed term t) of a specific object for which B provably fails.
So, t would play the role of a scapegoat, in the usual meaning of that idea. Many theories lack
the linguistic resources (individual constants and function letters) to be scapegoat theories,
but the notion of scapegoat theory will be very useful in proving some deep properties of first-
order theories.
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Lemma 2.15

Every consistent theory K has a consistent extension K’ such that K’ is a
scapegoat theory and K’ contains denumerably many closed terms.

Proof

Add to the symbols of K a denumerable set {b,, b,, ...} of new individual con-
stants. Call this new theory K. Its axioms are those of K plus those logical
axioms that involve the symbols of K and the new constants. K is consistent.
For, if not, there is a proof in K of a wf 2 A =.4. Replace each b; appearing in
this proof by a variable that does not appear in the proof. This transforms
axioms into axioms and preserves the correctness of the applications of the
rules of inference. The final wf in the proof is still a contradiction, but now
the proof does not involve any of the b;s and therefore is a proof in K. This
contradicts the consistency of K. Hence, K, is consistent.

By Lemma 2.13, let Fi(x;,), B(x;,), ..., F(x;), ... be an enumeration of all wfs
of K, that have one free variable. Choose a sequence bj,, bj,, ... of some of the
new individual constants such that each b; is not contained in any of the
wfs F(x;),..., F(x;) and such that b;, is different from each of b;, ..., b;_,.
Consider the wf

(S¢)  (Bxi)=F(x;,) = —F(bj,)

Let K,, be the theory obtained by adding (S), ..., (5,) to the axioms of K,
and let K, be the theory obtained by adding all the (S;)s as axioms to K.
Any proof in K contains only a finite number of the (5)s and, therefore,
will also be a proof in some K,. Hence, if all the K,s are consistent, so is
K. To demonstrate that all the K,s are consistent, proceed by induction.
We know that K is consistent. Assume that K,,_, is consistent but that K,
is inconsistent (7 > 1). Then, as we know, any wf is provable in K, (by the
tautology =A = (A = B), Proposition 2.1 and MP). In particular, F, —(S,).
Hence, (S,)Fx,, —(S,). Since (S,) is closed, we have, by Corollary 2.7,
Fx,. (Si) = —(S,). But, by the tautology (A = —A) = —A, Proposition 2.1 and
MP, we then have k, , =(S,); that is, I, , =[(3x;,)~F.(x;,) = —F.(b;,)]. Now,
by conditional elimination, we obtain t, , (3x;,)=F,(x;,) and , , ==F,(b;,),
and then, by negation elimination, I, , F,(b;,). From the latter and the fact
that b;, does not occur in (S), ..., (5,), we conclude , , F,(x,), where x,
is a variable that does not occur in the proof of F,(b;,). (Simply replace in
the proof all occurrences of b;, by x,.) By Gen, k¢, , (Vx,)F,(x,), and then, by
Lemma 2.11 and biconditional elimination, r,, (Vx;, )E.(x;, ). (We use the
factthatF,(x,) and F,(x;,) are similar.) But we already havet, , (3x;,)-F,(x;,),
which is an abbreviation of , , =(Vx;, )==F,(x;,), whence, by the replace-
ment theorem, k¢, , =(Vx;, )F,(x;,), contradicting the hypothesis that K, _; is
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consistent. Hence, K, must also be consistent. Thus K_, is consistent, it is
an extension of K, and it is clearly a scapegoat theory.

Lemma 2.16

Let ] be a consistent, complete scapegoat theory. Then ] has a model M whose
domain is the set D of closed terms of J.

Proof

For any individual constant a; of ], let (@) = 4,. For any function letter £
of ] and for any closed terms ¢, ..., t, of ], let (fk")M(tl, v b)) = fll(t, oo, B).
(Notice that f'(ty, ..., t,) is a closed term. Hence, ( fk")M is an n-ary operation
on D) For any predicate letter A} of ], let (A{)" consist of all n-tuples {t,, ..., t,,)
of closed terms t,, ..., t, of ] such that A (ty, ..., t,). It now suffices to show
that, for any closed wf ~ of J:

() By~ if and only if H«

(If this is established and .#is any axiom of ], let ~be the closure of .». By Gen,
2. By (O0), Em - By (VI) on page 58, Fy, ~. Hence, M would be a model of ].)
The proof of ([J) is by induction on the number r of connectives and quanti-
fiers in ~. Assume that ([J) holds for all closed wfs with fewer than r connec-
tives and quantifiers.

Case 1.  is a closed atomic wf Aj(fy, ..., t,). Then ([J) is a direct consequence
of the definition of (A} )™.

Case 2. vis ~ 7. If v is true for M, then 7 is false for M and so, by inductive
hypothesis, not--; 7. Since ] is complete and 7 is closed, - ~~—that is, I-; ~.
Conversely, if - is not true for M, then = is true for M. Hence, I, 7. Since | is
consistent, not--; =7, that is, not-k .

Case 3. 7is 7= . Since ~is closed, so are 7 and . If ~1is false for M, then ~
is true and  is false. Hence, by inductive hypothesis, -, ~ and not-+; . By
the completeness of |, - =~ Therefore, by an instance of the tautology D =
(=E = (D = E)) and two applications of MP, -, =(~ = /), that is, -; =+, and
so, by the consistency of ], not--; <. Conversely, if not--; , then, by the com-
pleteness of ], -, =7, that is, -, =(~ = ). By conditional elimination, -; 7 and
=« Hence, by ((J) for 7, 7 is true for M. By the consistency of ], not-; ~
and, therefore, by ([J) for ~, ~is false for M. Thus, since ~is true for M and ~
is false for M, ~is false for M.

Case 4. #is (Vx,,) 7.

Case 4a. 7 is a closed wf. By inductive hypothesis, ky; 7 if and only if
;2. By Exercise 2.32(a), F; © & (Vx,)7. So, k-, ~ if and only if k(Vx,)~, by
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biconditional elimination. Moreover, Fy; 7 if and only if k\(Vx,)~ by prop-
erty (VI) on page 58. Hence, k), ~if and only if I-; ~.

Case 4b. ~ is not a closed wf. Since ~ is closed, ~ has x,, as its only free vari-
able, say 7is F(x,,). Then ~is (Vx,,)F(x,,).

i. Assume Fy; < and not-; ». By the completeness of ], i -, that is,
Fy =(Vx,)F(x,). Then, by Exercise 2.33(a) and biconditional elimina-
tion, F(3x,) —F(x,). Since | is a scapegoat theory, I, —~F(f) for some
closed term t of J. But ky, 7, that is, Fy(Vx,,)F(x,,). Since (Vx,,)F(x,) = F(t)
is true for M by property (X) on page 59, E\F(f). Hence, by ((J) for F(f),
FF(t). This contradicts the consistency of J. Thus, if ky, ¢, then, - .

ii. Assume F; ~ and not-Fy ». Thus,

#) H(vx,)F(x,) and (##) not—Fy (Vx,)F(x,).

By (##), some sequence of elements of the domain D does not satisfy (Vx,,)
F(x,,). Hence, some sequence s does not satisfy F(x,,). Let ¢ be the ith compo-
nent of s. Notice that s*() = u for all closed terms u of ] (by the definition of
@)™ and (£")"). Observe also that F(f) has fewer connectives and quantifiers
than « and, therefore, the inductive hypothesis applies to F(t), that is, ((J)
holds for F(t). Hence, by Lemma 2(a) on page 60, s does not satisty F(t). So, F(t)
is false for M. But, by (#) and rule A4, - F(t), and so, by ((J) for F(t), F\F(t). This
contradiction shows that, if -, 7, then ky, .

Now we can prove the fundamental theorem of quantification theory. By
a denumerable model we mean a model in which the domain is denumerable.

Proposition 2.17*

Every consistent theory K has a denumerable model.

Proof

By Lemma 2.15, K has a consistent extension K’ such that K’ is a scapegoat
theory and has denumerably many closed terms. By Lindenbaum’s lemma,
K’ has a consistent, complete extension ] that has the same symbols as K
Hence, ] is also a scapegoat theory. By Lemma 2.16, ] has a model M whose
domain is the denumerable set of closed terms of J. Since J is an extension of
K, M is a denumerable model of K.

* The proof given here is essentially due to Henkin (1949), as simplified by Hasenjaeger (1953).
The result was originally proved by Goédel (1930). Other proofs have been published by
Rasiowa and Sikorski (1951, 1952) and Beth (1951), using (Boolean) algebraic and topologi-
cal methods, respectively. Still other proofs may be found in Hintikka (1955a,b) and in Beth
(1959).
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Corollary 2.18

Any logically valid wf -7 of a theory K is a theorem of K.

Proof

We need consider only closed wfs ., since a wf ~is logically valid if and only
if its closure is logically valid, and = is provable in K if and only if its closure
is provable in K. So, let v be a logically valid closed wf of K. Assume that
not-Hy .. By Lemma 2.12, if we add —7as a new axiom to K, the new theory
K’ is consistent. Hence, by Proposition 2.17, K’ has a model M. Since ~~is an
axiom of K/, ~is true for M. But, since .7 is logically valid, .~ is true for M.
Hence, 7is both true and false for M, which is impossible (by (II) on page 57).
Thus, » must be a theorem of K.

Corollary 2.19 (Godel’s Completeness Theorem, 1930)

In any predicate calculus, the theorems are precisely the logically valid wfs.

Proof

This follows from Proposition 2.2 and Corollary 2.18. (Godel’s original proof
runs along quite different lines. For other proofs, see Beth (1951), Dreben
(1952), Hintikka (1955a,b) and Rasiowa and Sikorski (1951, 1952).)

Corollary 2.20

Let K be any theory.

a. A wf 7is true in every denumerable model of K if and only if k- .

b. If, in every model of K, every sequence that satisfies all wfs in a setI"
of wfs also satisfies a wf ., then T ¢ ..

c. Ifawf »of Kis alogical consequence of a set I" of wfs of K, thenT" - 2.

d. If awf »of Kis a logical consequence of a wf < of K, then » k¢ .

Proof

a. We may assume .~ is closed (Why?). If not-+y ., then the theory K' =
K+ {=#} is consistent, by Lemma 2.12.* Hence, by Proposition 2.17, K’
has a denumerable model M. However, -, being an axiom of K, is
true for M. By hypothesis, since M is a denumerable model of K, . 7is
true for M. Therefore, ~is true and false for M, which is impossible.

* If Kis a theory and A is a set of wfs of K, then K + A denotes the theory obtained from K by
adding the wfs of A as axioms.
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b. Consider the theory K + I By the hypothesis, . is true for every
model of this theory. Hence, by (a), Fy,-.#. So, I' by ..

Part (c) is a consequence of (b), and part (d) is a special case of ().

Corollaries 2.18-2.20 show that the “syntactical” approach to quantifica-
tion theory by means of first-order theories is equivalent to the “semantical”
approach through the notions of interpretations, models, logical validity,
and so on. For the propositional calculus, Corollary 1.15 demonstrated the
analogous equivalence between the semantical notion (tautology) and the
syntactical notion (theorem of L). Notice also that, in the propositional cal-
culus, the completeness of the system L (see Proposition 1.14) led to a solu-
tion of the decision problem. However, for first-order theories, we cannot
obtain a decision procedure for logical validity or, equivalently, for prov-
ability in first-order predicate calculi. We shall prove this and related results
in Section 3.6.

Corollary 2.21 (Skolem-Lowenheim Theorem, 1920, 1915)
Any theory that has a model has a denumerable model.

Proof

If K has a model, then K is consistent, since no wf can be both true and
false for the same model M. Hence, by Proposition 2.17, K has a denumer-
able model.

The following stronger consequence of Proposition 2.17 is derivable.

Corollary 2.224

For any cardinal number m2 ¥, any consistent theory K has a model of car-
dinality m.

Proof

By Proposition 2.17, we know that K has a denumerable model. Therefore, it
suffices to prove the following lemma.

Lemma

If m and n are two cardinal numbers such that m < n and if K has a model
of cardinality m, then K has a model of cardinality n.
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Proof

Let M be a model of K with domain D of cardinality m. Let D’ be a set of
cardinality #n that includes D. Extend the model M to an interpretation M’
that has D’ as domain in the following way. Let ¢ be a fixed element of D. We
stipulate that the elements of D’ — D behave like c. For example, if B} is the
interpretation in M of the predicate letter A} and (B}') is the new interpreta-
tion in M, then for any d,, ..., d, in D', (B}')" holds for (d,, ..., d,) if and only
if B} holds for (u,, ..., u,), where u; = d;if ;€ D and u; = cif d; € D' — D. The
interpretation of the function letters is extended in an analogous way, and
the individual constants have the same interpretations as in M. It is an easy
exercise to show, by induction on the number of connectives and quantifiers
in a wf ., that 7 is true for M’ if and only if it is true for M. Hence, M’ is a
model of K of cardinality n.

Exercises

2.51 For any theory K, if I" b ..7and each wf in T is true for a model M of K,
show that »is true for M.

2.52 If a wf s without quantifiers is provable in a predicate calculus, prove
that v is an instance of a tautology and, hence, by Proposition 2.1, has
a proof without quantifiers using only axioms (A1)—(A3) and MP. [Hint:
if v were not a tautology, one could construct an interpretation, having
the set of terms that occur in .~ as its domain, for which .~ is not true,
contradicting Proposition 2.2.]

Note that this implies the consistency of the predicate calculus and
also provides a decision procedure for the provability of wfs without
quantifiers.

2.53 Show that ¢ »if and only if there is a wf ~ that is the closure of the
conjunction of some axioms of K such that » = ~is logically valid.

2.54 Compactness. If all finite subsets of the set of axioms of a theory K have
models, prove that K has a model.

2.55 a. For any wf o, prove that there is only a finite number of interpreta-
tions of v on a given domain of finite cardinality k.

b. For any wf ., prove that there is an effective way of determining
whether & is true for all interpretations with domain of some
fixed cardinality k.

c. Letawf »be called k-valid if it is true for all interpretations that
have a domain of k elements. Call . precisely k-valid if it is k-valid
but not (k + 1)-valid. Show that (k + 1)-validity implies k-validity
and give an example of a wf that is precisely k-valid. (See Hilbert
and Bernays (1934, § 4-5) and Wajsberg (1933).)
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Show that the following wf is true for all finite domains but is false for
some infinite domain.

(Vx)(vy)(VZ)[Af(x, ) A (A7 y) A AR, 2)= AT D) A (ARG ) v ALY, )|

2.57

2.58

2.59

2.60

2.614

2.624

2.63

= (Fy)(Vx)Ai(y, x)

Prove that there is no theory K whose models are exactly the interpre-
tations with finite domains.

Let 2be any wf that contains no quantifiers, function letters, or indi-
vidual constants.

a. Show that a closed prenex wf (Vx;) ... (Vx,)(3y,) ... Qy,) 2 withm >0
and n > 1,is logically valid if and only if it is true for every interpre-
tation with a domain of # objects.

b. Prove that a closed prenex wf (3y,) ... (3y,,).~is logically valid if and
only if it is true for all interpretations with a domain of one element.

c. Show that there is an effective procedure to determine the logical
validity of all wfs of the forms given in (a) and (b).

Let K; and K, be theories in the same language v. Assume that any
interpretation M of «is a model of K, if and only if M is not a model
of K,. Prove that K, and K, are finitely axiomatizable, that is, there are
finite sets of sentences I" and A such that, for any sentence ., b, . if
and only if ' + ., and F, .~ if and only if A - ¥

A setT of sentences is called an independent axiomatization of a theory K
if (a) all sentences in I" are theorems of K, (b) I' - . for every theorem ..~
of K, and (c) for every sentence ~ of T, it is not the case thatI" — {~} - ~.*
Prove that every theory K has an independent axiomatization.

If, for some cardinal m > R, a wf 7 is true for every interpretation of
cardinality m, prove that is logically valid.

If a wf ~is true for all interpretations of cardinality m prove that is
true for all interpretations of cardinality less than or equal to m.

a. Prove that a theory K is a scapegoat theory if and only if, for any wf
#(x) with x as its only free variable, there is a closed term f such that
Fx (3x).2(x) = 4(t).

b. Prove that a theory K is a scapegoat theory if and only if, for any wf
#(x) with x as its only free variable such that - (3x).7(x), there is a
closed term t such that k- . (f).

c. Prove that no predicate calculus is a scapegoat theory.

* Here, an expression I' - ., without any subscript attached to I, means that ~is derivable
from I' using only logical axioms, that is, within the predicate calculus.
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2.8 First-Order Theories with Equality

Let K be a theory that has as one of its predicate letters A7. Let us write t = s
as an abbreviation for Af(t,s), and t # s as an abbreviation for —Af(t,s). Then
K is called a first-order theory with equality (or simply a theory with equality) if
the following are theorems of K:

(A6) (Vx1)x; =x; (reflexivity of equality)
(A7) x=y=(»7(x,x)= 7(x,y)) (substitutivity of equality)

where x and y are any variables, #(x, x) is any wf, and .(x, y) arises from
#(x, x) by replacing some, but not necessarily all, free occurrences of x by y,
with the proviso that y is free for x in .«(x, x). Thus, #(x, y) may or may not
contain free occurrences of x.

The numbering (A6) and (A7) is a continuation of the numbering of the
logical axioms.

Proposition 2.23

In any theory with equality,

a. -t =t for any term ¢
b. Ft=5=s=tforany terms f and s;
cHt=s=>(s=r=>t=r)forany termst s, and r.

Proof

a. By (A6), F (Vxy)x; = x;. Hence, by rule A4, -t =t.

b. Let x and y be variables not occurring in t or s. Letting . #(x, x) be x = x
and .#(x, y) be y = x in schema (A7), - x =y = (x =x = y = x). But,
by (a), F x = x. So, by an instance of the tautology (A = (B = C)) =
(B = (A = ()) and two applications of MP, we have - x =y = y = x.
Two applications of Gen yield F (Vx)(Vy)(x =y = y = x), and then two
applications of rule Ad give -t =5=>s=*t.

c. Let x, y, and z be three variables not occurring in ¢, s, or r. Letting
#(y, y) be y = z and .#(y, x) be x = z in (A7), with x and y inter-
changed, we obtain -y =x = (y =z = x = 2). But, by (b), - x =
y = vy = x. Hence, using an instance of the tautology (A = B) =
(B= C) = (A= Q) and two applications of MP, we obtain I x =
y =(y = z = x = z). By three applications of Gen, I (Vx)(Vy)(Vz)(x =
y = (y =z = x = z)), and then, by three uses of rule A4, -t =5 =
(s=r=>t=r).
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Exercises

2.64 Show that (A6) and (A7) are true for any interpretation M in which
(AD)M is the identity relation on the domain of the interpretation.

2.65 Prove the following in any theory with equality.
a. F(¥x)(2(x) e Ay)(x =y A 2(y)) if y does not occur in .(x)
F (Yx)(2(x) © (Yy)(x =y = () if y does not occur in .»(x)
- ()@y)r =y
F x =y = f(x) = f(y), where f is any function letter of one argument
F 2 Ax=y = 2(y),if yis free for x in ..7(x)

- 0o 2 n o

F.2(x) A =2(y) = x #y, if y is free for x in ./ (x)

We can reduce schema (A7) to a few simpler cases.

Proposition 2.24

Let K be a theory for which (A6) holds and (A7) holds for all atomic wfs
#(x, x) in which there are no individual constants. Then K is a theory with
equality, that is, (A7) holds for all wfs .(x, x).

Proof

We must prove (A7) for all wfs .~ (x, x). It holds for atomic wfs by assump-
tion. Note that we have the results of Proposition 2.23, since its proof used
(A7) only with atomic wfs without individual constants. Note also that we
have (A7) for all atomic wfs .7 (x, x). For if .7 (x, x) contains individual con-
stants, we can replace those individual constants by new variables, obtaining
a wf .*(x, x) without individual constants. By hypothesis, the correspond-
ing instance of (A7) with .»*(x, x) is a theorem; we can then apply Gen with
respect to the new variables, and finally apply rule A4 one or more times to
obtain (A7) with respect to .(x, x).

Proceeding by induction on the number n of connectives and quantifiers in
7(x, x), we assume that (A7) holds for all k < n.

Case 1. .»(x, x) is =7 (x, x). By inductive hypothesis, we have -y = x = (v (x, v)
= 7(x, x)), since ~(x, x) arises from « (x, y) by replacing some occurrences of
y by x. Hence, by Proposition 2.23(b), instances of the tautologies (A = B) =
(~7=>-A)and (A= B)=> (B=>C)=> (A= () and MP, we obtain - x =y =
(7(x, x) = 2(x, y)).

Case 2. .#(x, x) is #(x, x) = 7 (x, x). By inductive hypothesis and Proposition
223(b), Fx=y=>(-(x,y) = 7(x,x)) and - x =y = (4(x, x) = 7(x, y)). Hence,
by the tautology (A= (C;=>C)=>[(A=>D=>D)=>A=>(C=>D)=>C >
D))l ,wehave - x =y = (#(x, x) = 2(x, y)).
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Case 3. 4(x, x) is (V2)~ (x, x, z). By inductive hypothesis, - x =y = (“(x, x, 2) =
7(x, ¥, 2)). Now, by Gen and axiom (A5), - x =y =(V2) (© (x, x, 2) = < (x, ¥, 2)).
By Exercise 2.27(a), - (V2)(< (x, x, 2) = < (x, y, 2)) = [(V2) < (x, x, 2) = (V2) < (x, y, 2)],
and so, by the tautology (A= B) = (B=>C)=>A=>Q),Fx=y=> (2 x) >
7(x, ).

The instances of (A7) can be still further reduced.

Proposition 2.25

Let K be a theory in which (A6) holds and the following are true.

a. Schema (A7) holds for all atomic wfs .7 (x, x) such that no function
letters or individual constants occur in #(x, x) and .7 (x, y) comes
from 2(x, x) by replacing exactly one occurrence of x by v.

b.Fx=y= f(z1, ..., z.)= f{'(w1, ..., w,), where f/'is any function
letter of K, z,, ..., z, are variables, and f/'(w,,..., w,) arises from
ﬁ”(zl, ..., Zy) by replacing exactly one occurrence of x by v.

Then K is a theory with equality.

Proof

By repeated application, our assumptions can be extended to replacements
of more than one occurrence of x by y. Also, Proposition 2.23 is still deriv-
able. By Proposition 2.24, it suffices to prove (A7) for only atomic wfs without
individual constants. But, hypothesis (a) enables us easily to prove

"(]/1 SN AN Yy :Zn):( //(]/1/ ceey yn):> //(le ceey Zn))

for all variables vy, ..., ¥,, Z, ..., z, and any atomic wf ..y, ..., y,) without
function letters or individual constants. Hence, it suffices to show:

(*) If t(x, x) is a term without individual constants and f(x, y) comes from
t(x, x) by replacing some occurrences of x by y, then - x =y = #(x, x) = t(x, y)*

But (*) can be proved, using hypothesis (b), by induction on the number of
function letters in t(x,x), and we leave this as an exercise.

It is easy to see from Proposition 2.25 that, when the language of K has only
finitely many predicate and function letters, it is only necessary to verify
(A7) f;)r a finite list of special cases (in fact, n wfs for each A} and n wfs for
each f).

* The reader can clarify how (*) is applied by using it to prove the following instance of (A7):
Fx=y= (Al(ff(x)) = A} (ff (1)))- Let t(x, x) be fll(x) and let f(x, y) be ff ().
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Exercises
2.66 Let K be a theory whose language has only = as a predicate letter and

2.67

2.68

no function letters or individual constants. Let its proper axioms be
(Voxpxy = xp, (V) (VX)) = X = x; = xy), and (Vo) (Vx)(Vaa)(xy = X, = (x, =
X3 = X; = X3)). Show that K is a theory with equality. [Hint: It suffices
toprovethatFx, =x;=2> (n=x, > =x)and Fx, =x; = (x, = x, =
x, = x3).] K| is called the pure first-order theory of equality.

Let K, be a theory whose language has only = and < as predicate letters
and no function letters or individual constants. Let K, have the follow-
ing proper axioms.

(Vxy)x; = x4

(Vx)(Va)(x; = X, = X, = xy)
(Vx)(VX)(VX5)(x1 = X, = (X, = X3 = Xy = X))
(V1) (F2) (3x5)(0y < 25 A X3 < X9)
(Vxl)(sz)(Vx3)(xl <Xy A Xy <Xz => Xy <X3)
(V) (V) (x; = X < Xp)

(V) (V) (X < X, VX =X, V X, < Xy)

5 ® -~ 0 & n T o

(V) (V) (xy <2, = (35)(x; < X3 A X3 < X))
Using Proposition 2.25, show that K, is a theory with equality. K, is
called the theory of densely ordered sets with neither first nor last element.

Let K be any theory with equality. Prove the following.

a. Fxy=y A Ax, =Y, > Hxy, .., x,) =Ky, ..., y,), where £y, ..., ,)
arises from the term f(x,, ..., x,) by substitution of y,, ..., y, for x,, ...,
x,, respectively.

b. Fx;=y; A AX, =Y, =2 (4(xy, ..., x,) & 2y, ..., ), where 2(y, ...,
Y,) is obtamed by substituting y,, ..., y, for one or more occurrences
of xy, ..., x,, respectively, in the wf . (x,, ..., x,), and y,, ..., y, are free
for xy, ..., x,, respectively, in the wf .z (x,, ..., x,).

Examples

(In the literature, “elementary” is sometimes used instead of “first-order.”)

1.

Elementary theory G of groups: predicate letter =, function letter f7,
and individual constant a,. We abbreviate f{(t,s) by t + s and a, by 0.
The proper axioms are the following.

a. Xy + (g4 x3) = +x,) + x5
b. x;+0=x,
c. (Vx)@xy)x; +x,=0
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d x=x
e X =X, X=X
foxi=x=>0=x2>x =X
8 X=X (X +X3=X + X3 A X+ X = X3+ Xp)
That G is a theory with equality follows easily from Proposition 2.25.
If one adds to the axioms the following wrf:
h. x;+x,=x+x
the new theory is called the elementary theory of abelian groups.
2. Elementary theory F of fields: predicate letter =, function letters fi’ and
fzz, and individual constants a, and a,. Abbreviate flz(t, s)by t +s,
f3(t, s)by t-s,and a4, and 4, by 0 and 1. As proper axioms, take (a)—(h)
of Example 1 plus the following.
Lo =x2 0 X3=0 X3 A X3 Xy = X5 Xp)
Jooxpe (- x5) = (- xp) - X

koo (4 x5) = (0 ) + (g - x3)
L ox-x=x,-x;

m. x-1l=x

n x#0=>3x)x -x,=1

o 0#1

F is a theory with equality. Axioms (a)-(m) define the elementary theory R
of commutative rings with unit. If we add to F the predicate letter A3, abbre-
viate A3(t,s) by t < s, and add axioms (e), (f), and (g) of Exercise 2.67, as well
as X, <X, = X + X3 <X, + x;and x; <x, A 0 <x; = Xy X3 <X, - X3, then the new
theory F_ is called the elementary theory of ordered fields.

Exercise

2.69 a. What formulas must be derived in order to use Proposition 2.25 to
conclude that the theory G of Example 1 is a theory with equality?

b. Show that the axioms (d)—(f) of equality mentioned in Example 1
can be replaced by (d) and

(f'):xlzxzj(x3:x2:>x1:x3).

One often encounters theories K in which=may be defined; that is, there
is a wf #(x, y) with two free variables x and y, such that, if we abbreviate
“(t, s) by t = s, then axioms (A6) and (A7) are provable in K. We make the
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convention that, if t and s are terms that are not free for x and y, respectively,
in #(x, ), then, by suitable changes of bound variables (see Exercise 2.48), we
replace ~(x, y) by a logically equivalent wf *(x, y) such that f and s are free for
x and y, respectively, in «*(x, y); then ¢ = s is to be the abbreviation of /*(, 5).
Proposition 2.23 and analogues of Propositions 2.24 and 2.25 hold for such
theories. There is no harm in extending the term theory with equality to cover
such theories.

In theories with equality it is possible to define in the following way phrases
that use the expression “There exists one and only one x such that....”

Definition
@) #(x) for (3x) 7(0) AV /(@) A #(y) = x =)

In this definition, the new variable y is assumed to be the first variable that
does not occur in #(x). A similar convention is to be made in all other defini-
tions where new variables are introduced.

Exercise

2.70 In any theory with equality, prove the following.
a. F(M)@Eyx=y
b F @) & @)WY =y < (1Y)
¢. FE)(/() e ()= [E:x)70) & @) W]
d. F@Ex)(2V)=2(3Fx)2)V@Ex)-
e. F@Ew ) e @70 A (W4 (y) =y =)

In any model for a theory K with equality, the relation E in the model corre-
sponding to the predicate letter = is an equivalence relation (by Proposition
2.23). If this relation E is the identity relation in the domain of the model,
then the model is said to be normal.

Anymodel M for K canbe contracted to anormal model M* for Kby taking the
domain D* of M* to be the set of equivalence classes determined by the relation
Einthedomain D of M. For a predicate letter Af and for any equivalence classes
[by], ..., [b,] in D* determined by elements b,, ..., b, in D, we let (A ™ hold for
([by), ..., [b,])ifand onlyif (A})*holdsfor (b, ..., b,). Notice that it makes no differ-
ence which representatives b, ..., b, we select in the given equivalence classes
because, from (A7), Fx;=y; Ao AX, =y, = (Al (X1, ..., x,) < AN (Y1, ..., Yn)).
Likewise, for any function letter f* and any equivalence classes [b], ...,
[b,] in D% let (f) ((B:], ..., D) = [(fi)V By, ..., b)), Again note that this is
independent of the choice of the representatives b, ..., b,, since, from (A7),
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we can prove Ex; =y AL AX, =Y, = f' (X, ..., %) = f (Y1, ..., Yu). For any
individual constant g; let (@)™* = [(a)™]. The relation E* corresponding to = in
the model M* is the identity relation in D* E*([by], [b,]) if and only if E(b,, ),
that is, if and only if [b;] = [b,]. Now one can easily prove by induction the
following lemma: If s = (b, b,, ...) is a denumerable sequence of elements of
D, and s" = ([by], [b,], ...) is the corresponding sequence of equivalence classes,
then a wf .is satisfied by s in M if and only if .7is satisfied by s’ in M*. It fol-
lows that, for any wf ., 7is true for M if and only if .#is true for M* Hence,
because M is a model of K, M* is a normal model of K.

Proposition 2.26 (Extension of Proposition 2.17)

(Godel, 1930) Any consistent theory with equality K has a finite or denumer-
able normal model.

Proof

By Proposition 2.17, K has a denumerable model M. Hence, the contraction
of M to a normal model yields a finite or denumerable normal model M*
because the set of equivalence classes in a denumerable set D is either finite
or denumerable.

Corollary 2.27 (Extension of the Skolem-Lowenheim Theorem)

Any theory with equality K that has an infinite normal model M has a denu-
merable normal model.

Proof

Add to K the denumerably many new individual constants b,, b,, ... together
with the axioms b; # b; for i # j. Then the new theory K’ is consistent. If K’
were inconsistent, there would be a proof in K’ of a contradiction » A -7,
where we may assume that ~ is a wf of K. But this proof uses only a finite
number of the new axioms: b, # by, ..., b;, # b;,. Now, M can be extended to a
model M* of K plus the axioms b, # by, ..., b;, # b;,; in fact, since M is an infi-
nite normal model, we can choose interpretations of b, b, ..., b, b;, so that
the wfs b, # by, ..., b, # b;, are true. But, since ~ A -~ is derivable from these
wfs and the axioms of K, it would follow that © A =~ is true for M*¥, which is
impossible. Hence, K' must be consistent. Now, by Proposition 2.26, K’ has a
finite or denumerable normal model N. But, since, for i # j, the wfs b; # bj are
axioms of K/, they are true for N. Thus, the elements in the domain of N that
are the interpretations of b,, b,, ... must be distinct, which implies that the
domain of N is infinite and, therefore, denumerable.
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Exercises

2.71 We define (3,x).~(x) by induction on n > 1. The case n = 1 has already
been taken care of. Let (3,,,,%) #(x) stand for (Fy)(#(y) A T, %) x #y A %

@))-
a. Show that (3,x).7 (x) asserts that there are exactly n objects for
which .~holds, in the sense that in any normal model for (3,.x).#(x)

there are exactly n objects for which the property corresponding
to #(x) holds.

b. i.  For each positive integer n, write a closed wf ., such that .,
is true in a normal model when and only when that model
contains at least 1 elements.

ii. Prove that the theory K, whose axioms are those of the pure
theory of equality K, (see Exercise 2.66), plus the axioms .4,
7, ..., 1s not finitely axiomatizable, that is, there is no theory
K’ with a finite number of axioms such that K and K’ have the
same theorems.

iii. For a normal model, state in ordinary English the meaning of
T
c. Letnbea positive integer and consider the wf () (3,x)x =x. LetL,
be the theory K, + {/,}, where K| is the pure theory of equality.
i.  Show that a normal model M is a model of L, if and only if
there are exactly n elements in the domain of M.
ii. Define a procedure for determining whether any given sen-
tence is a theorem of L, and show that L, is a complete theory.
2.72 a. Prove that, if a theory with equality K has arbitrarily large finite
normal models, then it has a denumerable normal model.
b. Prove that there is no theory with equality whose normal models
are precisely all finite normal interpretations.

2.73 Prove that any predicate calculus with equality is consistent. (A predi-
cate calculus with equality is assumed to have (A1)-(A7) as its only
axioms.)

2.74P Prove the independence of axioms (A1)—(A7) in any predicate calculus
with equality.
2.75 If »is a wf that does not contain the = symbol and .vis provable in a

predicate calculus with equality K, show that «is provable in K with-
out using (A6) or (A7).

2.76P Show that = can be defined in any theory whose language has only a
finite number of predicate letters and no function letters.

2.77 a* Find a nonnormal model of the elementary theory of groups G.
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2.78

2.79

2.80

2.81

2.82

b. Show that any model M of a theory with equality K can be
extended to a nonnormal model of K. [Hint: Use the argument in
the proof of the lemma within the proof of Corollary 2.22.]

Let .7be a wf of a theory with equality. Show that 7 is true in every
normal model of K if and only if b .«

Write the following as wfs of a theory with equality.
a. There are at least three moons of Jupiter.
b. At most two people know everyone in the class.

c. Everyone in the logic class knows at least two members of the
geometry class.

d. Every person loves at most one other person.

If P(x) means x is a person, A(x, y) means x is a parent of y, G(x, y) means
x is a grandparent of y, and x = y means x and y are identical, translate the
following wfs into ordinary English.

L. (Vx)(P(x) = [(Vy)(G(y, x) & Qw)(A(y, w) A A(w, x)))])
ii. (Vx)(P(x) = (3x1)(3x2)(Fx3)(Fxg ) (31 # X2 AXL # X3 AX] # Xy A
Xy # X3 AXy # Xg AX3 # Xy AG(x1, X) AG(x2,X) AG(x3,X) A

Gxy, )A(VY)G(y, x) = y=x1VY =X VY =X3VY=2xy)))

Consider the wf
(™) (Y0)(Yy)3z)(z = x Az # Yy AA(Z)).

Show that (*) is true in a normal model M of a theory with equality if
and only if there exist in the domain of M at least three things having
property A(z).

Let the language - have the four predicate letters =, P, S, and L. Read
u =v as u and v are identical, P(u) as u is a point, S(u) as u is a line, and
L(u, v) as u lies on v. Let the theory of equality G of planar incidence
geometry have, in addition to axioms (A1)-(A7), the following nonlogi-
cal axioms.

1. P(x) = =5(x)

L(x, y) = P() A S(y)

5() = E@EA(Y # 2 A Ly, ¥) A Lz, X))

Px) A P(y) A x #y = (3,2)(S@) A L(x, 2) A Ly, 2))

FNEYE)PC) A P(y) A P2) A~ (x, Y, 2))

S
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where ~(x, y, z) is the wf (Ju)(S@) A L(x, u) A L(y, u) A L(z, u)), which is

read as x, y, z are collinear.

a. Translate (1)-(5) into ordinary geometric language.

b. Prove ¢ (Vu)(Vo)(S(u) A S@@) A u # v = (VX)(Vy)(L(x, u) A L(x, 0) A
L(y, u) A L(y, v) = x =y)), and translate this theorem into ordinary
geometric language.

¢.  Let R(u, v) stand for S(u) A S(v) A =(Fw)(L(w, u) A L(w, v)). Read R(u, v)
as u and v are distinct parallel lines.

i. Prove:tg R(u,v)=>u#v

ii. Show that there exists a normal model of G with a finite
domain in which the following sentence is true:

(V) (VY)(S(x) A P(y) A=L(y, x) = (F12)(L(y, 2) A R(2, X))

d. Show that there exists a model of G in which the following sen-
tence is true:

(V)(VY)(Sx) AS(y) Ax # y = =R(x, y))

2.9 Definitions of New Function Letters
and Individual Constants

In mathematics, once we have proved, for any y,, ..., y,, the existence of
a unique object u that has a property .(u, y,, ..., y,), we often introduce a
new function letter f(y,, ..., y,) such that 2(f(y,, ..., v,), Y1, ..., y,,) holds for all
Vi, --- Y, In cases where we have proved the existence of a unique object u
that satisfies a wf (1) and .(u) contains u as its only free variable, then we
introduce a new individual constant b such that ..#(b) holds. It is generally
acknowledged that such definitions, though convenient, add nothing really
new to the theory. This can be made precise in the following manner.

Proposition 2.28

Let K be a theory with equality. Assume that - (3,u).» W, y,, ..., y,). Let K*
be the theory with equality obtained by adding to K a new function letter f
of n arguments and the proper axiom .(f(yy, ..., ¥,), Y1, -.., ¥,),* as well as all

* Tt is better to take this axiom in the form (Vu)(u = f(y,, ..., y,) = 2, vy, ..., y,)), since f(y,, ..., y,)
might not be free for uin 4 (u, y,, ..., y,)-
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instances of axioms (A1)-(A7) that involve f. Then there is an effective trans-
formation mapping each wf ~ of K* into a wf «# of K such that:

a. If f does not occur in v, then «*is .
b. (= 7)*is = ().

c (r=> o)tis # = M

d. (Vx)2)* is (Vx)(*).

e. byu(r= ).

f. If by#e, then b *,

Hence, if ~ does not contain f and F* , then k- .

Proof

By a simple f-term we mean an expressionf{t,, ..., t,) inwhich t,, ..., t, are terms
that do not contain f. Given an atomic wf « of K¥, let « * be the result of replac-
ing the leftmost occurrence of a simple termf{t,, ..., t,) in ~ by the first variable
vnotin sor ». Call the wf (3v)(»(v, t,, ..., t,) A «*) the f-transform of . If ~does
not contain f, then let ~ be its own f-transform. Clearly, F#(30)(#(@, t,, ..., t,) A
<. (Here, we use by (3,u).#(u, yy, ..., y,) and the axiom 2 (f(yy, ..., y,), Yo, -,
y,) of K¥) Since the f-transform ' of ~ contains one less f than » and k"<,
if we take successive f-transforms, eventually we obtain a wf C* that does not
contain f and such that -y, #<. Call #* the f-less transform of +. Extend the
definition to all wfs of K* by letting ( ~ 2)* be - (4#)(7=/)* be o*=* and
(Y x)2)* be (V x)7* Properties (a)-(e) of Proposition 2.28 are then obvious.
To prove property (f), it suffices, by property (e), to show that, if ~ does not
contain f and k-, then ¢ ~. We may assume that «is a closed wf, since a wf
and its closure are deducible from each other.

Assume that M is a model of K. Let M, be the normal model obtained by
contracting M. We know that a wf is true for M if and only if it is true for
M,. Since by (3u).# (U, ¥4, ..., y,), then, for any b, ..., b, in the domain of M,
there is a unique c in the domain of M, such that &y, .»[c,bi,..., b,]. If we
define f,(b,, ..., b,) to be ¢, then, taking f, to be the interpretation of the func-
tion letter f, we obtain from M, a model M* of K*. For the logical axioms of K*
(including the equality axioms of K¥) are true in any normal interpretation,
and the axiom . (f(yy, ..., ¥,), Y1, --- ¥,) also holds in M* by virtue of the defi-
nition of f;. Since the other proper axioms of K* do not contain f and since
they are true for M,, they are also true for M*. But k. Therefore, ~ is true
for M*, but since ~ does not contain f, ~ is true for M; and hence also for M.
Thus, ~is true for every model of K. Therefore, by Corollary 2.20(a), F .
(In the case where ¢ (3,u). (1) and .7 (u) contains only u as a free variable,
we form K* by adding a new individual constant b and the axiom .»7(b). Then
the analogue of Proposition 2.28 follows from practically the same proof as
the one just given.)
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Exercise

2.83 Find the f-less transforms of the following wfs.
a. (VO)EAY, FOG Y. Yn) = fY,x,...,x) =X)
b* All(f(ylr . -ryn—lif(yll- /}/n))) /\(Elx)Alz(x/f(yll---/yn))

Note that Proposition 2.28 also applies when we have introduced several
new symbols f,, ..., f,, because we can assume that we have added each f; to
the theory already obtained by the addition of f,, ..., fi_;; then m successive
applications of Proposition 2.28 are necessary. The resulting wf « # of K can be
considered an (fy, ..., f,,)-free transform of ~into the language of K.

Examples

1. In the elementary theory G of groups, one can prove (3,;y)x + y = 0.
Then introduce a new function f of one argument, abbreviate f(t) by
(-t), and add the new axiom x + (—x) = 0. By Proposition 2.28, we now
are not able to prove any wf of G that we could not prove before.
Thus, the definition of (—f) adds no really new power to the original
theory.

2. In the elementary theory F of fields, one can prove that (3,;y)((x # 0 A
x-y=1)Vv (x=0Ay =0)). We then introduce a new function letter g
of one argument, abbreviate g(t) by ¢, and add the axiom (x #0 A x -
x1=1) v (x=0Ax"1=0), from which one can provex #0=>x-x1=1.

From the statement and proof of Proposition 2.28 we can see that, in theories
with equality, only predicate letters are needed; function letters and indi-
vidual constants are dispensable. If f;" is a function letter, we can replace it
by a new predicate letter Aj*" if we add the axiom (F,u)A;™ (1, v, ..., y.). An
individual constant is to be replaced by a new predicate letter Ay if we add
the axiom (F,u) Ai ().

Example

In the elementary theory G of groups, we can replace + and 0 by predicate
letters A} and A} if we add the axioms (Vax;)(Vx,)(Fix3)A3 (x4, x5, x3) and
(31x1)A1(x1), and if we replace axioms (a), (b), (c), and (g) by the following:

' A7 (xp, %3, u) A AT (1, 1,0) A AT (X1, X0, W) A AT (W, X3, y) 0=y
b. Al(y)AAl(x,y,2)=>z=x
. Fy)(Vu)(Vo)(Ai(u) A AP (x,y,0) = v =1u)

8" [x1 = xa AAN (X, Y, 2) A AT (X, y, u) A AT (Y, X1, 0) A AN (Y, X0, 0)] =z =1
AND=W
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Notice that the proof of Proposition 2.28 is highly nonconstructive, since it
uses semantical notions (model, truth) and is based upon Corollary 2.20(a),
which was proved in a nonconstructive way. Constructive syntactical proofs
have been given for Proposition 2.28 (see Kleene, 1952, § 74), but, in general,
they are quite complex.

Descriptive phrases of the kind “the u such that ~(, y,, ..., y,)” are
very common in ordinary language and in mathematics. Such phrases
are called definite descriptions. We let wi( 7 (u, y,, ..., y,)) denote the unique
object u such that .~ (u, y,, ..., y,) if there is such a unique object. If there
is no such unique object, either we may let w(~u, y,, ..., y,)) stand for
some fixed object, or we may consider it meaningless. (For example, we
may say that the phrases “the present king of France” and “the smallest
integer” are meaningless or we may arbitrarily make the convention that
they denote 0.) There are various ways of incorporating these 1-terms in
formalized theories, but since in most cases the same results are obtained
by using new function letters or individual constants as above, and since
they all lead to theorems similar to Proposition 2.28, we shall not discuss
them any further here. For details, see Hilbert and Bernays (1934) and
Rosser (1939, 1953).

2.10 Prenex Normal Forms

A wf (Quyy) ... (Q,y,).#, where each (Qyy) is either (Vy;) or (Jy,), y; is different
from y; for i # j, and .~ contains no quantifiers, is said to be in prenex normal
form. (We include the case n = 0, when there are no quantifiers at all.) We
shall prove that, for every wf, we can construct an equivalent prenex nor-
mal form.

Lemma 2.29

In any theory, if y is not free in 7, and ~ (x) and « (y) are similar, then the
following hold.

) @)=> 9) e @iy = )
E@ED) @)= ) e (W (y) = 9)
E (7= (V) () & (V)7 = ()
CEA(r= @) e @ = A (y)
(VX)) re (3x) -

. o@x) e (Vx) -7

-~ 0 Q& n T
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Proof

For part (a):

1. (V) (x) > o

@A) = )
(YY) (A (y) = )
- (Vy) ~((y) = 2)

- (YY) () A —2)

()
- (V) (y)
. (V) ()
10. o
11. =2
12. Ao
13. (V) - (x

2
3
4
5
6. /(y)/\—"/
7.
8
9

= 7,

)
—|(Ely)(/(y) = ’/) = oAN-g

14. (Va)/ () = &

F @A) => 2)

15. F (V)7 () =

7= @Ay (y) = 7)

Introduction to Mathematical Logic

Hyp

Hyp
2, abbreviation

3, negation elimination

4, tautology, Proposition 2.9(c)

5, rule A4

6, conjunction elimination

7, Gen

8, Lemma 2.11, Biconditional elimination
1,9, MP

6, conjunction elimination

10, 11, conjunction introduction

1-12

1-13, proof by contradiction

1-14, Corollary 2.6

The converse is proven in the following manner.

L @)= 2)
2. (Vx) 7 (x)

3. /(b) = 7

4. 7(b)

7

ANl = 2), (V) @k o

5.
67' A y) = 2), (V)7 (x) Fc 7
8

Hyp

Hyp
1, rule C

2, rule A4

3,4, MP

1-5

6, Proposition 2.10

F@Ey( )= 2) = (Vx)x) = ~) 17 Corollary 2.6 twice

Part (a) follows from the two proofs above by biconditional introduction.
Parts (b)—(f) are proved easily and left as an exercise. (Part (f) is trivial, and
(e) follows from Exercise 2.33(a); (c) and (d) follow easily from (b) and (a),

respectively.)

Lemma 2.29 allows us to move interior quantifiers to the front of a wf. This
is the essential process in the proof of the following proposition.

Proposition 2.30

There is an effective procedure for transforming any wf « into a wf ~ in
prenex normal form such that - v & .
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Proof

We describe the procedure by induction on the number k of occurrences of
connectives and quantifiers in .. (By Exercise 2.32(a,b), we may assume that
the quantified variables in the prefix that we shall obtain are distinct.) If k= 0, then
let © be 7itself. Assume that we can find a corresponding « for all wfs with
k <n, and assume that ..»has n occurrences of connectives and quantifiers.

Case 1. If »is =7, then, by inductive hypothesis, we can construct a wf «
in prenex normal form such that - 7 & ~ Hence, + - & - by bicondi-
tional negation. Thus, - 7 -/, and, by applying parts (e) and (f) of Lemma
2.29 and the replacement theorem (Proposition 2.9(b)), we can find a wf ~in
prenex normal form such that - ~~ & ». Hence, - v & «.

Case 2. If »is o = ¢ then, by inductive hypothesis, we can find wfs ; and
# in prenex normal form such that - 7« 2, and + ~< 4. Hence, by a suit-
able tautology and MP, - (7 = ) & (7 = #), thatis, - v < (7 = 4). Now,
applying parts (a)—(d) of Lemma 2.29 and the replacement theorem, we can
move the quantifiers in the prefixes of 7, and ~ to the front, obtaining a wf ~
in prenex normal form such that - v & ~.

Case 3. If 7is (Vx) 7, then, by inductive hypothesis, there is a wf 7 in prenex
normal form such that - 7 & 7; hence, - .7 < (Vx) %, by Gen, Lemma 2.8, and
MP. But (Vx)# is in prenex normal form.

Examples
L Let # be (Vx)(Al(x) = (Vy)(A3(x,y) = ~(V2)(Ai(y,2))). By part (e)
of Lemma 2.29: (Vx)(A1(x) = (Vy)[A3(x, y) = (F2)-4A3(y, 2)]).
By part (d): (Vx)(Ai(x) = (Vy)Fu)[A3 (x, y) = =A3(y, u))).
By part (0): (Vx)(Vo)(Ai(x) = (Fu)[A3(x,0) = —A3(v,u))).
By part (d): (Vx)(V0)(Fw)(Al(x) = (A3 (x,v) = —A3 (v, w))).
Changing bound variables: (Vx)(Vy)(3z)(A1(x) = (A3(x, y) = —A3(y, 2))).
2. Let zbe Af(x,y) = Fy)[Ai(y) = ((F0)AI ()] = Axy))].
By part (b): Af(x, y) = (y)(Ai(y) = (Vu)[Ai (1) = Ax(y))).
By part (o): A7 (x,y) = @y)(Vo)(Ai(y) = [A1(v) = A2 (y)]).
By part (d): Gw)(Af(x, y) = (V0)[Ai(w) = (A1 (v) = Az(w))]).
By part (0): (Gw)(Vz)(Af(x,y) = [Ai(w) = (Al(2) = Ax(w)))).

Exercise
2.84 Find prenex normal forms equivalent to the following wfs.

a. [(VO)(AL(x) = Al(x, )] = (B AIW)] = (F2)Al(Y,2)
b. (30)AT(x,y) = (Al (x) = —(CFu)Af (x, 1))
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A predicate calculus in which there are no function letters or individual
constants and in which, for any positive integer #, there are infinitely many
predicate letters with n arguments, will be called a pure predicate calculus.
For pure predicate calculi we can find a very simple prenex normal form
theorem. A wf in prenex normal form such that all existential quantifiers
(if any) precede all universal quantifiers (if any) is said to be in Skolem
normal form.

Proposition 2.31

In a pure predicate calculus, there is an effective procedure assigning to each
wf 7 another wf & in Skolem normal form such that F .7 if and only if - .~
(or, equivalently, by Godel’s completeness theorem, such that .7 is logically
valid if and only if v is logically valid).

Proof

First we may assume that 7is a closed wf, since a wf is provable if and only
if its closure is provable. By Proposition 2.30 we may also assume that .is in
prenex normal form. Let the rank r of .» be the number of universal quanti-
fiers in .7 that precede existential quantifiers. By induction on the rank, we
shall describe the process for finding Skolem normal forms. Clearly, when
the rank is 0, we already have the Skolem normal form. Let us assume that
we can construct Skolem normal forms when the rank is less than r, and let r
be the rank of .. .. can be written as follows: (3y;) ... (3y,) Vi)~ (yy, ..., Y, 1),
where ~ (y,, ..., y,, u) has only y,, ..., y,, u as its free variables. Let A}‘” be the
first predicate letter of n + 1 arguments that does not occur in .. Construct
the wf

( //l) (Elyl)(zlyn)([(vu)(/ (yl/ ceey ynru) = A}Hl(yl/ cees yn/u))]
= (YA (Y1, ) Y )

Let us show that - 7 if and only if - 2. Assume F . In the proof of 4,
replace all occurrences of A}”l(zl,..., Zq, W) by 7*(zy, ..., 2,, W), where #* is
obtained from ~ by replacing all bound variables having free occurrences
in the proof by new variables not occurring in the proof. The result is a
proof of

BY2)--EY VI Wy ves Yy )= 7 W,y Yy 1))
= (Vu)/ *(yl, ceer Yny u))
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(#* was used instead of  so that applications of axiom (A4) would remain
applications of the same axiom.) Now, by changing the bound variables back
again, we see that

F@y) ... Gyl(YW) (e Yy ooy Y, )= 7 (Y1) Yy 1))
= (‘v’u)/ (y], ceey ynl M)]

Since - (Yu)(v (Y1, -+ Y U) = ¢ (Y1, ---, Y, 1)), we obtain, by the replace-
ment theorem, + (Jyy) ... Ay, )Y« (yy, ..., y,, u), that is, - 2. Conversely,
assume that - . By rule C, we obtain (Vu)~ (b, ..., b,, u). But, - (Vu)7 =
(Yu)(7 = ») = (Yu)) (see Exercise 2.27 (a)) for any wfs & and ~. Hence,
Fe (Vu)(# (b, ..., by, u) = AT by, ., by, ) = (VAT (by, ..., b, u). So,
by rule E4, tc@y)...@y)((Yu)(e (by, ..., by )= A (Yo, ooy Yo, u))] =
(Vu)A (ys, ..., Ya, 1)), that is, ¢ 4. By Proposition 2.10, - . A prenex nor-
mal form of . has the form .%: Jy,) ... (3y,) EAuw)(Q,z) ... (Qz)(Vv)7, where
% has no quantifiers and (Q,z,) ... (Q,z,) is the prefix of ». [In deriving the
prenex normal form, first, by Lemma 2.29(a), we pull out the first (Vu), which
changes to (Ju); then we pull out of the first conditional the quantifiers in
the prefix of . By Lemma 2.29(a,b), this exchanges existential and universal
quantifiers, but then we again pull these out of the second conditional of .,
which brings the prefix back to its original form. Finally, by Lemma 2.29(c),
we bring the second (Vu) out to the prefix, changing it to a new quantifier
(Vv)] Clearly, . has rank one less than the rank of .» and, by Proposition
2.30,F .4 & . But, - »if and only if - .. Hence, - 7if and only if - . By
inductive hypothesis, we can find a Skolem normal form for ., which is also
a Skolem normal form for .

Example
7 (¥x)(Yy)(3z) 7 (x, y, z), where ~ contains no quantifiers

A1 (V) (Vy)(3Fz2)7 (x,y,2) = Aj(x)) = (VX)A}(x), where 4] is notin .

We obtain the prenex normal form of %:

(EIx)([(Vy)(EIz)/ (x,y,2)= Al(x)|= (Vx)A}(x)) 2.29(a)
@)@ (x,y,2)= Al(0) ] = (W04} (1) | 2.29()

@) (B2 (v, y,2)= Al(®) |= (v0)A)@)) 2.29(b)
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(ax)(Vy)[(vZ)(/ (x,y,2) = Al(x)) = (Vx)A}(x)J 2.29(b)
(EIx)(Vy)(EIz)([/ (x,y,2)= Al(x)|= (Vx)A}(x)] 2.29(a)
@EN(FE2)(0)| (- (x,y,2) = A(x)) = A}(©) 2.29(0)

We repeat this process again: Let 7(x, y, z, v) be (+ (x,y,2) = A}(x)) = A} (0v).
Let A? not occur in 7. Form:

@[ ENF) (1,2, )= A, )] |= (A, )

EF)ENIE2)(vO)(~ (x,y,2,0) = A(x, Y] = (VY AL, )] 2.29()
(@) 3EY)E2) 30N~ (x,y,2,0) = Al(x, )] = (VY)AL(x,y)) 2.29(,b)

(3x)Fy)E2)(Vo)(Vw)([ 7 (x,y,2,0) = Ai(x,y)]|= At (x,w)]  2.29()
Thus, a Skolem normal form of ~is:

(30)EY)E) (V) (Yw)([((~ (x,y,2) = Aj(x)) = A} (0)) = Ai(x, y)]| = Ai(x, w))

Exercises

2.85 Find Skolem normal forms for the following wfs.

a. —(3x)Al(x) = (Yu)(Jy)(Vx) AT (1, x, y)
b. (Vx)(3y)(Vu)(F0)Ai (x, y,1,0)

2.86 Show that there is an effective procedure that gives, for each wf »
of a pure predicate calculus, another wf 7 of this calculus of the form
My ... (Vy,)(3z)) ... (3z,)7, such that  is quantifier-free, n, m > 0, and
#1s satisfiable if and only if 7 is satisfiable. [Hint: Apply Proposition
2.31 to ~.z]

2.87 Find a Skolem normal form . for (Vx)(3y)Af(x,y) and show that it
is not the case that - < (Vx)(3y)A7(x,y). Hence, a Skolem normal
form for a wf 7is not necessarily logically equivalent to 7, in contra-
distinction to the prenex normal form given by Proposition 2.30.
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2.11 Isomorphism of Interpretations: Categoricity of Theories

We shall say that an interpretation M of some language - is isomorphic with
an interpretation M* of  if and only if there is a one—one correspondence g
(called an isomorphism) of the domain D of M with the domain D* of M*
such that:

1. Forany predicateletter Aj' of ~ andforanyb,, ..., b,inD,FyA[b, ..., b,]
if and only if Ky« A/[g(b1), ..., g(bn)].

2. For any function letter i of ¥ and for any b, ..., b, in D,
9y, -, 0 = (N (9(Br), -, 9(B1))-

3. For any individual constant 4; of , g((@)™) = (@)™

The notation M ~ M* will be used to indicate that M is isomorphic with M*.
Notice that, if M ~ M* then the domains of M and M* must be of the same
cardinality.

Proposition 2.32

If ¢ is an isomorphism of M with M*, then:

a. for any wf v of ¢, any sequence s = (b, b,, ...) of elements of the
domain D of M, and the corresponding sequence g(s) = (g(b,),
g(b,), ...), s satisfies .»in M if and only if g(s) satisfies ..»in M¥

b. hence, k\; ~#if and only if Fyp. 2.

Proof

Part (b) follows directly from part (a). The proof of part (a) is by induction
on the number of connectives and quantifiers in ..»and is left as an exercise.

From the definition of isomorphic interpretations and Proposition 2.32 we
see that isomorphic interpretations have the same “structure” and, thus, dif-
fer in no essential way.

Exercises

2.88 Prove that, if M is an interpretation with domain D and D* is a set that
has the same cardinality as D, then one can define an interpretation M*
with domain D* such that M is isomorphic with M*.

2.89 Prove the following: (a) M is isomorphic with M. (b) If M, is isomorphic
with M,, then M, is isomorphic with M,. (c) If M, is isomorphic with M,
and M, is isomorphic with M;, then M, is isomorphic with Mj.
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A theory with equality K is said to be m—categorical, where m is a car-
dinal number, if and only if: any two normal models of K of cardinality m
are isomorphic, and K has at least one normal model of cardinality m (see
Los, 1954¢).

Examples

1.

Let K2 be the pure theory of equality K, (see page 96) to which has

been added axiom (E2): (Ix)(Tx,)(x; # x5 A (Vx3)(X5 = X1 V X3 = Xp)).

Then K2 is 2-categorical. Every normal model of K? has exactly two
elements. More generally, define (E,) to be:

(Elxl)...(EIxn)(MQMx,- X A(VY)y=x1v..vy= xn)j

where Ao, X; # X; is the conjunction of all wfs x; # x; with 1 <i <j
< n. Then, if K" is obtained from K, by adding (E,) as an axiom, K" is
n-categorical, and every normal model of K" has exactly n elements.

. The theory K, (see page 96) of densely ordered sets with neither first

nor last element is R —categorical (see Kamke, 1950, p. 71: every denu-
merable normal model of K, is isomorphic with the model consisting
of the set of rational numbers under their natural ordering). But one
can prove that K, is not m—categorical for any m different from X,

Exercises

2.90%

2.914

2.92

Find a theory with equality that is not ¥ —categorical but is m—categori-
cal for all m > N,. [Hint: Consider the theory G¢ of abelian groups
(see page 96). For each integer 7, let ny stand for the term (y + ) + - +y
consisting of the sum of 1 ys. Add to G the axioms ():(¥x)(3y)(r1y = x)
for all n > 2. The new theory is the theory of uniquely divisible abelian
groups. Its normal models are essentially vector spaces over the field
of rational numbers. However, any two vector spaces over the rational
numbers of the same nondenumerable cardinality are isomorphic, and
there are denumerable vector spaces over the rational numbers that are
not isomorphic (see Bourbaki, 1947).]

Find a theory with equality that is m—categorical for all infinite cardi-
nals m. [Hint: Add to the theory G of abelian groups the axiom (Vx,)
(2x; = 0). The normal models of this theory are just the vector spaces
over the field of integers modulo 2. Any two such vector spaces of the
same cardinality are isomorphic (see Bourbaki, 1947)]

Show that the theorems of the theory K” in Example 1 above are pre-
cisely the set of all wfs of K" that are true in all normal models of
cardinality 7.
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2.93* Find two nonisomorphic densely ordered sets of cardinality 2™
with neither first nor last element. (This shows that the theory K, of
Example 2 is not 2™'—categorical.)

Is there a theory with equality that is m—categorical for some noncountable
cardinal m but not m-categorical for some other noncountable cardinal
n? In Example 2 we found a theory that is only N-categorical; in Exercise
2.90 we found a theory that is m—categorical for all infinite m > N, but not
N,—categorical, and in Exercise 2.91, a theory that is m—categorical for any
infinite m. The elementary theory G of groups is not m-—categorical for
any infinite m. The problem is whether these four cases exhaust all the
possibilities. That this is so was proved by Morley (1965).

2.12 Generalized First-Order Theories:
Completeness and Decidability*

If, in the definition of the notion of first-order language, we allow a non-
countable number of predicate letters, function letters, and individual con-
stants, we arrive at the notion of a generalized first-order language. The notions
of interpretation and model extend in an obvious way to a generalized first-
order language. A generalized first-order theory in such a language is obtained
by taking as proper axioms any set of wfs of the language. Ordinary first-
order theories are special cases of generalized first-order theories. The reader
may easily check that all the results for first-order theories, through Lemma
2.12, hold also for generalized first-order theories without any changes in
the proofs. Lemma 2.13 becomes Lemma 2.13" if the set of symbols of a gen-
eralized theory K has cardinality Ro, then the set of expressions of K also
can be well-ordered and has cardinality Ra. (First, fix a well-ordering of the
symbols of K. Second, order the expressions by their length, which is some
positive integer, and then stipulate that if ¢; and e, are two distinct expres-
sions of the same length k, and j is the first place in which they differ, then ¢,
precedes e, if the jth symbol of e, precedes the jth symbol of e, according to the
given well-ordering of the symbols of K.) Now, under the same assumption
as for Lemma 2.13/, Lindenbaum’s Lemma 2.14' can be proved for generalized
theories much as before, except that all the enumerations (of the wfs .+ and of
the theories J)) are transfinite, and the proof that J is consistent and complete
uses transfinite induction. The analogue of Henkin’s Proposition 2.17 runs
as follows.

* Presupposed in parts of this section is a slender acquaintance with ordinal and cardinal
numbers (see Chapter 4; or Kamke, 1950; or Sierpinski, 1958).
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Proposition 2.33

If the set of symbols of a consistent generalized theory K has cardinality N,
then K has a model of cardinality N,.

Proof

The original proof of Lemma 2.15 is modified in the following way. Add
N, new individual constants b,, b,, ..., b,, .... As before, the new theory
K, is consistent. Let F(x;),..., E(x;),...(A<®,) be a sequence consist-
ing of all wfs of K, with exactly one free variable. Let (S,) be the sentence
(3x;, )—F.(x;, ) = —F.(b;, ), where the sequence b, b),, ...b;,, ... of distinct indi-
vidual constants is chosen so that b;, does not occur in Fy(x;,) for f <A. The
new theory K, obtained by adding all the wfs (5,) as axioms, is proved to
be consistent by a transfinite induction analogous to the inductive proof
in Lemma 2.15. K, is a scapegoat theory that is an extension of K and con-
tains R, closed terms. By the extended Lindenbaum Lemma 2.14, K can
be extended to a consistent, complete scapegoat theory ] with X, closed
terms. The same proof as in Lemma 2.16 provides a model M of ] of cardi-
nality N,.

Corollary 2.34

a. If the set of symbols of a consistent generalized theory with equality
K has cardinality 8, then K has a normal model of cardinality less
than or equal to N,

b. If, in addition, K has an infinite normal model (or if K has arbitrarily
large finite normal models), then K has a normal model of any cardi-
nality ¥, > X,

c. In particular, if K is an ordinary theory with equality (i.e., R, = ;)
and K has an infinite normal model (or if K has arbitrarily large
finite normal models), then K has a normal model of any cardinality
R(B > 0).

Proof

a. The model guaranteed by Proposition 2.33 can be contracted to a
normal model consisting of equivalence classes in a set of cardinal-
ity N,. Such a set of equivalence classes has cardinality less than or
equal to N,.

b. Assume N, > R,. Let by, b,, ... be a set of new individual constants of
cardinality ®;, and add the axioms b, # b, for A # p. As in the proof
of Corollary 2.27, this new theory is consistent and so, by (a), has a
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normal model of cardinality less than or equal to ®; (since the new
theory has ®; new symbols). But, because of the axioms b, # b,, the
normal model has exactly ¥, elements.

c. This is a special case of (b).

Exercise

2.94 If the set of symbols of a predicate calculus with equality K has
cardinality N, prove that there is an extension K’ of K (with the same
symbols as K) such that K’ has a normal model of cardinality ¥, but K’
has no normal model of cardinality less than R,.

From Lemma 2.12 and Corollary 2.34(a,b), it follows easily that, if a gen-
eralized theory with equality K has R, symbols, is ®;-categorical for some
f > o, and has no finite models, then K is complete, in the sense that, for any
closed wf ., either k¢ .7 or k¢ ~.7 (Vaught, 1954). If not-+, -7 and not-k .,
then the theories K' = K + {~%} and K’ = K + {#} are consistent by Lemma
2.12, and so, by Corollary 2.34(a), there are normal models M’ and M” of K’
and K, respectively, of cardinality less than or equal to X,. Since K has no
finite models, M’ and M” are infinite. Hence, by Corollary 2.34(b), there are
normal models N’ and N” of K’ and K, respectively, of cardinality ¥;. By the
N;-categoricity of K, N" and N” must be isomorphic. But, since - 7is true in
N’ and 7 1is true in N, this is impossible by Proposition 2.32(b). Therefore,
either k¢ . 7or by~

In particular, if K is an ordinary theory with equality that has no
finite models and is Ry -categorical for some p > 0, then K is complete.
As an example, consider the theory K, of densely ordered sets with nei-
ther first nor last element (see page 96). K, has no finite models and is
N,-categorical.

If an ordinary theory K is axiomatic (i.e., one can effectively decide whether
any wf is an axiom) and complete, then K is decidable, that is, there is an
effective procedure to determine whether any given wf is a theorem. To see
this, remember (see page 84) that if a theory is axiomatic, one can effectively
enumerate the theorems. Any wf - is provable if and only if its closure is
provable. Hence, we may confine our attention to closed wfs .. Since K is
complete, either ..7is a theorem or ~~is a theorem, and, therefore, one or the
other will eventually turn up in our enumeration of theorems. This provides
an effective test for theoremhood. Notice that, if K is inconsistent, then every
wf is a theorem and there is an obvious decision procedure; if K is consistent,
then not both 7and -7 can show up as theorems and we need only wait until
one or the other appears.

If an ordinary axiomatic theory with equality K has no finite models and is
N;-categorical for some p > 0, then, by what we have proved, K is decidable.
In particular, the theory K, discussed above is decidable.
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In certain cases, there is a more direct method of proving completeness
or decidability. Let us take as an example the theory K, of densely ordered
sets with neither first nor last element. Langford (1927) has given the fol-
lowing procedure for K,. Consider any closed wf .. By Proposition 2.30,
we can assume that .7 is in prenex normal form (Q,y,) ... (Q,y,)7, where
¢ contains no quantifiers. If (Q,y,) is (Vy,), replace (Vy,)~ by =(3y,)—~~. In
all cases, then, we have, at the right side of the wf, (3y,) 7, where - has no
quantifiers. Any negation x # y can be replaced by x <y v y < x, and =(x < y)
can be replaced by x =y v y < x. Hence, all negation signs can be eliminated
from 2. We can now put 7 into disjunctive normal form, that is, a disjunc-
tion of conjunctions of atomic wfs (see Exercise 1.42). Now (3y,)(% V % V

..V %) is equivalent to (3y,) » vV (Jy,) % V ... V (3y,) %. Consider each (Jy,)
7; separately. 7, is a conjunction of atomic wfs of the form t <s and ¢ = 5. If
7; does not contain y,, just erase (3y,). Note that, if a wf ~ does not contain
Y,, then (3y,)(~ A .©) may be replaced by ~ A (3y,).~ Hence, we are reduced
to the consideration of (3y,)./; where ./is a conjunction of atomic wfs of the
form t <sor t = s, each of which contains y,. Now, if one of the conjuncts is
Y, = z for some z different from y,, then replace in . all occurrences of y, by
z and erase (3y,). If we have y, = y, alone, then just erase (3y,). If we have
Y, = Y, as one conjunct among others, then erase y, = y,. If ./ has a conjunct
Y, <Y, then replace all of (3y,).~ by y, <y,. If /consistsof y, <z; A ... A Y,
<z AUy <Y, A ... Au, <y, then replace (3y,) 7 by the conjunction of all the
wisu;<z,forl1 <i<mand1<p <j. If all the u;s or all the z,s are missing,
replace (3y,). by y, = y,. This exhausts all possibilities and, in every case,
we have replaced (Jy,).~ by a wf containing no quantifiers, that is, we have
eliminated the quantifier (3y,). We are left with (Q,y,) ... (Q,_1¥,_1)%, where ¢
contains no quantifiers. Now we apply the same procedure successively to
(Qu-1Yn-1)s -+, (Qqyy). Finally we are left with a wf without quantifiers, built
up of wfs of the form x = x and x < x. If we replacex =xby x =x = x = x
and x < x by =(x = x = x = x), the result is either an instance of a tautology
or the negation of such an instance. Hence, by Proposition 2.1, either the
result or its negation is provable. Now, one can easily check that all the
replacements we have made in this whole reduction procedure applied to v
have been replacements of wfs » by other wfs ~such that ¢ » < % Hence,
by the replacement theorem, if our final result -is provable, then so is the
original wf .7, and, if = »is provable, then so is =.. Thus, K, is complete and
decidable.

The method used in this proof, the successive elimination of existential
quantifiers, has been applied to other theories. It yields a decision procedure
(see Hilbert and Bernays, 1934, §5) for the pure theory of equality K; (see
page 96). It has been applied by Tarski (1951) to prove the completeness and
decidability of elementary algebra (i.e., of the theory of real-closed fields; see
van der Waerden, 1949) and by Szmielew (1955) to prove the decidability of
the theory G of abelian groups.
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Exercises

2.95 (Henkin, 1955) If an ordinary theory with equality K is finitely axi-
omatizable and N,-categorical for some o, prove that K is decidable.

2.96 a. Prove the decidability of the pure theory K; of equality.

b. Give an example of a theory with equality that is NX,-categorical for
some «, but is incomplete.

2.12.1 Mathematical Applications

1. Let F be the elementary theory of fields (see page 96). We let n
stand for the term 1 + 1 + --- + 1, consisting of the sum of n 1s. Then
the assertion that a field has characteristic p can be expressed by
the wf +,: p = 0. A field has characteristic 0 if and only if it does
not have characteristic p for any prime p. Then for any closed wf
 of F that is true for all fields of characteristic 0, there is a prime
number g such that 7is true for all fields of characteristic greater
than or equal to g. To see this, notice that, if F; is obtained from
F by adding as axioms =, =73, ..., 77, ... (for all primes p), the
normal models of F; are the fields of characteristic 0. Hence, by
Exercise 2.77, by, 7. But then, for some finite set of new axioms

i g gy, We have v o, m b 2. Let g be a prime

greater than all g,, ..., q,, In every field of characteristic greater

than or equal to g, the wfs =, , =+, ..., =7, are true; hence, ~is also
true. (Other applications in algebra may be found in A. Robinson

(1951) and Cherlin (1976).)

2. A graph may be considered as a set with a symmetric binary rela-
tion R (i.e., the relation that holds between two vertices if and
only if they are connected by an edge). Call a graph k-colorable
if and only if the graph can be divided into k disjoint (possibly
empty) sets such that no two elements in the same set are in the
relation R. (Intuitively, these sets correspond to k colors, each color
being painted on the points in the corresponding set, with the pro-
viso that two points connected by an edge are painted different
colors.) Notice that any subgraph of a k-colorable graph is k-color-
able. Now we can show that, if every finite subgraph of a graph
is k-colorable, and if © can be well-ordered, then the whole graph
7 is k-colorable. To prove this, construct the following generalized
theory with equality K (Beth, 1953). There are two binary predi-
cate letters, A7(=) and A3 (corresponding to the relation R on ©);
there are k monadic predicate letters Aj, ..., A; (corresponding to
the k subsets into which we hope to divide the graph); and there
are individual constants a, one for each element c of the graph «.
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As proper axioms, in addition to the usual assumptions (A6) and
(A7), we have the following wfs:

I —=A3(x,x) (irreflexivity of R)
I A3(x,y) = A3(y,x) (symmetry of R)
ML (Vx)(Af(x)v Ay(x)v...v Aj(x)) (division into k classes)
IV. (Vx) (Al (x) A Aj(x)) (disjointness of the k classes)
forl<i<j<k
V. (Vx)(Vy) (Al (x) A Al (y) = (two elements of the same
—Aj(x,y)) for 1<i<k class are not in the relation R)
VL a, #a, for any two distinct elements b
and ¢ of ©
VIL. A}(ay,a.),, if R(b, c) holds in ~

Now, any finite set of these axioms involves only a finite number of the indi-
vidual constants 4, ..., 4., and since the corresponding subgraph {c,, ..., c,}
is, by assumption, k-colorable, the given finite set of axioms has a model
and is, therefore, consistent. Since any finite set of axioms is consistent, K
is consistent. By Corollary 2.34(a), K has a normal model of cardinality less
than or equal to the cardinality of «. This model is a k-colorable graph and,
by (VI)-(VII), has © as a subgraph. Hence « is also k-colorable. (Compare this
proof with a standard mathematical proof of the same result by de Bruijn and
Erdos (1951). Generally, use of the method above replaces complicated appli-
cations of Tychonoff’s theorem or Konig’s Unendlichkeits lemma.)

Exercises

2.974 (Los, 1954b) A group B is said to be orderable if there exists a binary
relation R on B that totally orders B such that, if xRy, then (x + 2)
R(y + 2) and (z + x)R(z + y). Show, by a method similar to that used
in Example 2 above, that a group B is orderable if and only if every
finitely generated subgroup is orderable (if we assume that the set B
can be well-ordered).

2.984 Set up a theory for algebraically closed fields of characteristic p(> 0) by
adding to the theory F of fields the new axioms P,, where P, states that
every nonconstant polynomial of degree n has a root, as well as axioms
that determine the characteristic. Show that every wf of F that holds for
one algebraically closed field of characteristic 0 holds for all of them.
[Hint: This theory is Rp-categorical for p > 0, is axiomatizable, and has
no finite models. See A. Robinson (1952).]

2.99 By ordinary mathematical reasoning, solve the finite marriage problem.
Given a finite set M of m men and a set N of women such that each man
knows only a finite number of women and, for 1 < k < m, any subset
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of M having k elements knows at least k women of N (i.e., there are at
least k women in N who know at least one of the k given men), then it is
possible to marry (monogamously) all the men of M to women in N so
that every man is married to a women whom he knows. [Hint (Halmos
and Vaughn, 1950): m = 1 is trivial. For m > 1, use induction, consider-
ing the cases: (I) for all k with 1 < k < m, every set of k men knows at
least k + 1 women; and (II) for some k with 1 < k < m, there is a set of k
men knowing exactly k women.] Extend this result to the infinite case,
that is, when M is infinite and well-orderable and the assumptions
above hold for all finite k. [Hint: Construct an appropriate generalized
theory with equality, analogous to that in Example 2 above, and use
Corollary 2.34(a).]

2.100 Prove that there is no generalized theory with equality K, having one
predicate letter < in addition to =, such that the normal models of K are
exactly those normal interpretations in which the interpretation of < is
a well-ordering of the domain of the interpretation.

Let ..7be a wf in prenex normal form. If .77 is not closed, form its closure

instead. Suppose, for example, ~is (y1)(Vy)(Vy3)Fy)Fys)(Vye) « (V1 Yo, Vs
Yu Vs Ye), Where ~ contains no quantifiers. Erase (3y;) and replace y, in ~ by
a new individual constant b;: (Vy,)(Vy3)(3ya)(3Fys)(VYe) « (01, Yo Yar Yar Y5 Yo)-
Erase (Vy,) and (Yy,), obtaining (Jy,)(3ys)(Yye)7 01, Vo Vs Yar Vs Ye)- Now
erase (3y,) and replace y, in ~ by g(v,, ¥3), where g is a new function letter:
Qys)(VYe) 7 (b, Yo Y3 §(Y2, Y3), Vs Ye)- Erase (Jys) and replace ys by h(y,, ys),
where / is another new function letter: (Vy,)« (b, Yo, Y3, S Ya), 1Y, Y3), Ye)-
Finally, erase (Vy,). The resulting wf « (by, ¥», Y3 §Wor Ya), (Vs Ya), Ye) con-
tains no quantifiers and will be denoted by .»* Thus, by introducing new
function letters and individual constants, we can eliminate the quantifiers
from a wf.

Examples

1. If »is (Yy)Qy) (YY) (YY) AYs) 7 (Yv, Yo, Vs Ya Vs), Where ~is quantifier-
free, then /* is of the form «(y, (1), ¥a Yar (Y1, Y3, ¥4)-

2. If zis Qy)Ay) (YY) (Vy)3Ys) 7 (Y1, Yo Vs Ya Ys), where #is quantifier-
free, then ./* is of the form «(b, ¢, y3, Y4, §(V3 V).

Notice that s * I 7, since we can put the quantifiers back by applications
of Gen and rule E4. (To be more precise, in the process of obtaining ..7* we
drop all quantifiers and, for each existentially quantified variable y; we
substitute a term g(z,, ..., z;), where g is a new function letter and z,, ..., z;
are the variables that were universally quantified in the prefix preceding
(y,). If there are no such variables z,, ..., z;,, we replace y; by a new indi-
vidual constant.)
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Proposition 2.35 (Second e-Theorem)

(Rasiowa, 1956; Hilbert and Bernays, 1939) Let K be a generalized theory.
Replace each axiom .~ of K by ./*. (The new function letters and individual
constants introduced for one axiom are to be different from those introduced
for another axiom.) Let K* be the generalized theory with the proper axi-
oms .*. Then:

a. If 7isawfof Kand . 7, then - 7.

b. Kis consistent if and only if K* is consistent.

Proof

a. Let 7 be a wf of K such that k.. 7. Consider the ordinary theory K°
whose axioms %, ..., 4, are such that #* ..., 2* are the axioms used
in the proof of 7. Let KO" be the theory whose axioms are ..4% ..., ...
Hence . 7. Assume that M is a denumerable model of K°. We may
assume that the domain of M is the set P of positive integers (see
Exercise 2.88). Let ..»be any axiom of K°. For example, suppose that .~
has the form (y)(Yy,)(Vy5) Yy 7 (Y1, Yo, Y Ys), Where #is quantifier-
free. »* has the form # (b, y,, Y5, §(», ¥5)). Extend the model M step by
step in the following way (noting that the domain always remains P);
since .z is true for M, (Jy)(Yy,)(Yys) Qyy) 7~ (Y1, Yo Ys Yy) is true for M.
Let the interpretation b* of b be the least positive integer y, such that
(Vy)(Yy3)3Y,) ~ (Y1, Yo, Y5, Yy) is true for M. Hence, (Jy,) < (b, v, ¥3, V,) is
true in this extended model. For any positive integers v, and y;, let
the interpretation of g(,, ;) be the least positive integer y, such that
(b, Y2, Y3, y,) is true in the extended model. Hence, « (b, v,, ¥, §(2, ¥3))
is true in the extended model. If we do this for all the axioms .z of K,
we obtain a model M* of K. Since . 7, 7 is true for M*. Since M*
differs from M only in having interpretations of the new individual
constants and function letters, and since ~ does not contain any of
those symbols, 7 is true for M. Thus, ~is true in every denumerable
model of K°. Hence, . 7, by Corollary 2.20(a). Since the axioms of
K° are axioms of K, we have ¢ ~. (For a constructive proof of an
equivalent result, see Hilbert and Bernays (1939).)

b. Clearly, K* is an extension of K, since ..»* I 2. Hence, if K* is consis-
tent, so is K. Conversely, assume K is consistent. Let ~ be any wf of
K. If K* is inconsistent, .. 7 A = 2. By (a), ¢ # A =7, contradicting the
consistency of K.

Let us use the term generalized completeness theorem for the proposition that
every consistent generalized theory has a model. If we assume that every set
can be well-ordered (or, equivalently, the axiom of choice), then the general-
ized completeness theorem is a consequence of Proposition 2.33.
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By the maximal ideal theorem (MI) we mean the proposition that every proper
ideal of a Boolean algebra can be extended to a maximal ideal.* This is equiva-
lent to the Boolean representation theorem, which states that every Boolean
algebra is isomorphic to a Boolean algebra of sets (Compare Stone 1936). For
the theory of Boolean algebras, see Sikorski (1960) or Mendelson (1970). The
usual proofs of the MI theorem use the axiom of choice, but it is a remarkable
fact that the MI theorem is equivalent to the generalized completeness theo-
rem, and this equivalence can be proved without using the axiom of choice.

Proposition 2.36

(Los, 1954a; Rasiowa and Sikorski, 1951, 1952) The generalized completeness
theorem is equivalent to the maximal ideal theorem.

Proof

a. Assume the generalized completeness theorem. Let B be a Boolean
algebra. Construct a generalized theory with equality K having the
binary function letters U and n, the singulary function letter f' [we
denote ff(t) by t], predicate letters=and Al and, for each element b
in B, an individual constant a,. By the complete description of B, we
mean the following sentences: (i) a, # 4, if b and ¢ are distinct ele-
ments of B; (ii) 4, U a, = a,if b, ¢, d are elements of B such thatbuc=d
in B; (iii) 4, N a, = a,if b, ¢, e are elements of b such that b N c = ¢ in B;
and (iv) a, = a. if b and c are elements of B such that b = cin B, where b
denotes the complement of b. As axioms of K we take a set of axioms
for a Boolean algebra, axioms (A6) and (A7) for equality, the complete
description of B, and axioms asserting that Aj determines a maxi-
malideal (i.e., A{(x N X), Al(x) A Al(y) = Al(x U y), Al(x) = Al(xNy),
Af(x)v A{(x), and —A{(x U X)). Now K is consistent, for, if there were
a proof in K of a contradiction, this proof would contain only a
finite number of the symbols a,, a,, ...—say, a,, ..., a,,. The elements
by, ..., b, generate a finite subalgebra B' of B. Every finite Boolean
algebra clearly has a maximal ideal. Hence, B’ is a model for the wfs
that occur in the proof of the contradiction, and therefore the contra-
diction is true in B, which is impossible. Thus, K is consistent and, by
the generalized completeness theorem, K has a model. That model
can be contracted to a normal model of K, which is a Boolean alge-
bra A with a maximal ideal I. Since the complete description of B is
included in the axioms of K, B is a subalgebra of A, and thenIn B is
a maximal ideal in B.

* Since {0} is a proper ideal of a Boolean algebra, this implies (and is implied by) the proposition
that every Boolean algebra has a maximal ideal.
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b. Assume the maximal ideal theorem. Let K be a consistent gener-
alized theory. For each axiom . of K, form the wf .7* obtained by
constructing a prenex normal form for .~ and then eliminating the
quantifiers through the addition of new individual constants and
function letters (see the example preceding the proof of Proposition
2.35). Let K* be a new theory having the wfs ..#* plus all instances of
tautologies, as its axioms, such that its wfs contain no quantifiers and
its rules of inference are modus ponens and a rule of substitution
for variables (namely, substitution of terms for variables). Now, K* is
consistent, since the theorems of K* are also theorems of the consis-
tent K* of Proposition 2.35. Let B be the Lindenbaum algebra deter-
mined by K* (i.e, for any wfs ~and 7, let #Eq ' mean that by, < 7;
Eq is an equivalence relation; let [] be the equivalence class of ;
define [/]u [7] =[sV 2], [7]1n[2]=]7 A 7], [7]=[-7]; under these
operations, the set of equivalence classes is a Boolean algebra, called
the Lindenbaum algebra of K¥). By the maximal ideal theorem, let I
be a maximal ideal in B. Define a model M of K* having the set of
terms of K* as its domain; the individual constants and function let-
ters are their own interpretations, and, for any predicate letter A}, we
say that Aj(t,, ..., t,) is true in M if and only if [Aj(t, ..., t,)] is not
in I. One can show easily that a wf » of K* is true in M if and only if
[7] is not in I. But, for any theorem & of K*, [#] = 1, which is not in L.
Hence, M is a model for K* For any axiom .7 of K, every substitution
instance of %*(y,, ..., y,) is a theorem in K* therefore, *(y,, ..., y,) is
true for all y,, ..., y, in the model. It follows easily, by reversing the
process through which ./* arose from ., that ./is true in the model.
Hence, M is a model for K.

The maximal ideal theorem (and, therefore, also the generalized complete-
ness theorem) turns out to be strictly weaker than the axiom of choice (see
Halpern, 1964).

Exercise

2.101 Show that the generalized completeness theorem implies that every
set can be totally ordered (and, therefore, that the axiom of choice
holds for any set of nonempty disjoint finite sets).

The natural algebraic structures corresponding to the propositional calcu-
lus are Boolean algebras (see Exercise 1.60, and Rosenbloom, 1950, Chapters
1 and 2). For first-order theories, the presence of quantifiers introduces more
algebraic structure. For example, if K is a first-order theory, then, in the cor-
responding Lindenbaum algebra B, [(3x).#(x)] = Z,[#(f)], where Z, indicates
the least upper bound in B, and t ranges over all terms of K that are free
for x in .(x). Two types of algebraic structure have been proposed to serve
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as algebraic counterparts of quantification theory. The first, cylindrical alge-
bras, have been studied extensively by Tarski, Thompson, Henkin, Monk,
and others (see Henkin et al., 1971). The other approach is the theory of poly-
adic algebras, invented and developed by Halmos (1962).

2.13 Elementary Equivalence: Elementary Extensions

Two interpretations M; and M, of a generalized first-order language - are said
to be elementarily equivalent (written M, = M,) if the sentences of  true for M, are
the same as the sentences true for M,. Intuitively, M; = M, if and only if M, and
M, cannot be distinguished by means of the language ~. Of course, since  is a
generalized first-order language, -~ may have nondenumerably many symbols.

Clearly, (1) M =M; (2) if M; =M,, then M, =M;; 3) if M; =M, and M, = M,,
then M, = M,.

Two models of a complete theory K must be elementarily equivalent, since
the sentences true in these models are precisely the sentences provable in K.
This applies, for example, to any two densely ordered sets without first or
last elements (see page 115).

We already know, by Proposition 2.32(b), that isomorphic models are ele-
mentarily equivalent. The converse, however, is not true. Consider, for exam-
ple, any complete theory K that has an infinite normal model. By Corollary
2.34(b), K has normal models of any infinite cardinality R,. If we take two
normal models of K of different cardinality, they are elementarily equivalent
but not isomorphic. A concrete example is the complete theory K, of densely
ordered sets that have neither first nor last element. The rational numbers
and the real numbers, under their natural orderings, are elementarily equiv-
alent nonisomorphic models of K.

Exercises

2.102 Let K, the theory of infinite sets, consist of the pure theory K, of
equality plus the axioms ., where ., asserts that there are at least n
elements. Show that any two models of Koo are elementarily equiva-
lent (see Exercises 2.66 and 2.96(a)).

2.103° If M, and M, are elementarily equivalent normal models and M, is
finite, prove that M; and M, are isomorphic.

2.104 Let K be a theory with equality having X, symbols.

a. Prove that there are at most 2** models of K, no two of which are
elementarily equivalent.

b. Prove that there are at most 2™ mutually nonisomorphic models
of K of cardinality ¥, where y is the maximum of o and p.
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2.105 Let M be any infinite normal model of a theory with equality K hav-
ing ¥, symbols. Prove that, for any cardinal &, > X, there is a normal

y =

model M* of K of cardinality ¥, such that M = M.

A model M, of a language v is said to be an extension of a model M, of «
(written M; € M,)* if the following conditions hold:

1.
2.

The domain D, of M, is a subset of the domain D, of M,.

For any individual constant ¢ of ¢, ™M = M where ¢™ and ™ are
the interpretations of ¢ in M, and M,.

n

For any function letter f/' of ~ and any by,..., b
(fj")Mz(bl,..., b,,)=(fj")Ml(b1, ..., by).

Forany predicateletter A} of vandanyb,,...,b,inD,,Fy, Aj[b, ..., b,]
if and only if Ry, A/[by, ..., b,].

in D,,

n

When M, € M,, one also says that M, is a substructure (or submodel) of M,.

Examples

1. If & contains only the predicate letters = and <, then the set of ratio-

nal numbers under its natural ordering is an extension of the set of
integers under its natural ordering.

. If & is the language of field theory (with the predicate letter =, func-
tion letters + and x, and individual constants 0 and 1), then the field
of real numbers is an extension of the field of rational numbers, the
field of rational numbers is an extension of the ring of integers, and
the ring of integers is an extension of the “semiring” of nonnegative
integers. For any fields F, and F,, F; C F, if and only if F, is a subfield
of F, in the usual algebraic sense.

Exercises

2.106 Prove:

a. MCM;
b. if M; € M, and M, C M;, then M; C M;;
c. If M; €M, and M, C M,, then M, = M,,.

2.107 Assume M; C M,.

a.

Let #(x,, ..., x,) be a wf of the form (Vy,) ... (Yy,) 7 (X1, -, X, Vi - s Y
where is quantifier-free. Show that, for any b,, ..., b, in the domain
of M,, if Fy, #[by, ..., b,], then By 4[b,, ..., b,]. In particular, any
sentence (V) ... (Vy,) < (yy, ..., ¥,), where ~is quantifier-free, is true
in M, if it is true in M,.

* The reader will have no occasion to confuse this use of C with that for the inclusion relation.
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b. Let.#(x, ... x,) be awf of the form (Jy,) ... Ay,) X1, ... X Yir o Y
where ~is quantifier-free. Show that, for any b,, ..., b, in the domain
of M,, if Fy, »[by, ..., b,], then Fy, #[by,..., b,]. In particular, any
sentence (Jy,) ... (y,) <y, ..., y,), where ~is quantifier-free, is true
in M, if it is true in M,.

2.108 a. Let K be the predicate calculus of the language of field theory. Find
a model M of K and a nonempty subset X of the domain D of M
such that there is no substructure of M having domain X.

b. If K is a predicate calculus with no individual constants or func-
tion letters, show that, if M is a model of K and X is a subset of the
domain D of M, then there is one and only one substructure of M
having domain X.

c. Let K be any predicate calculus. Let M be any model of K and let
X be any subset of the domain D of M. Let Y be the intersection of
the domains of all submodels M* of M such that X is a subset of the
domain Dy;. of M*. Show that there is one and only one submodel of
M having domain Y. (This submodel is called the submodel generated
by X.)

A somewhat stronger relation between interpretations than “extension” is
useful in model theory. Let M; and M, be models of some language ~. We say
that M, is an elementary extension of M, (written M; <. M,) if 1) M; € M, and
(2) for any wf Ay, ..., y,) of vand for any b,, ..., b, in the domain D, of M,,
Ev, #[by, ..., b,] if and only if Fy, . #[by, ..., b,]. (In particular, for any sentence
wof v, zis true for M, if and only if »is true for M,.) When M; < M,, we shall
also say that M, is an elementary substructure (or elementary submodel) of M,.

It is obvious that, if M; <. M,, then M; C M, and M, = M,. The converse is not
true, as the following example shows. Let G be the elementary theory of groups
(see page 96). G has the predicate letter =, function letter +, and individual con-
stant 0. Let I be the group of integers and E the group of even integers. Then E C |
and I = E. (The function g such that g(x) = 2x for all x in I is an isomorphism
of Iwith E.) Consider the wf (y): (3x)(x + x =v). Then F,.#[2], but not-F; . 4[2]. Thus,
I'is not an elementary extension of E. (This example shows the stronger result
that even assuming M, € M, and M; 2 M, does not imply M, <,M,.)

The following theorem provides an easy method for showing that M; <.M,.

Proposition 2.37 (Tarski and Vaught, 1957)

Let M; € M,. Assume the following condition:

($) For every wf #(x,, ..., x;) of the form (Jy)~(xy, ..., x,, y) and for all b,, ..., by in
the domain D, of M,, if . Fy;, . #[by, ..., br], then there is some d in D, such
that Fy, < [by, ..., by, d].

Then M; <. M,.
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Proof

Let us prove:
(*) Bmy, 2Lby, ..., be] if and only if Fy, 7[by, ..., b] for any wf 2(x,, ..., x;) and
any by, ..., byin D,.

The proof is by induction on the number m of connectives and quantifiersin 7.
If m = 0, then (*) follows from clause 4 of the definition of M; C M,. Now assume
that (*) holds true for all wfs having fewer than m connectives and quantifiers.

Case 1. 7 is = By inductive hypothesis, Fy, <[by, ..., b] if and only if
Fm, “[b1, ..., b¢]. Using the fact that notty, <[by,..., 0] if and only if
Fvy = [by, ..., be], and similarly for M,, we obtain (¥).

Case 2. 7 is » = .« By inductive hypothesis, Fy, “[b, ..., bx] if and only if
Fu, «[by, ..., br] and similarly for .7 (*) then follows easily.

Case 3. 7is (Jy)(xy, ..., x,, y). By inductive hypothesis,

(**) By <[y, ..., by, d] if and only if Fu, < [by, ..., by, d], for any b,, ..., b, d in D;.
Case 3a. Assume Fy, 3Jy) (xy, ..., xx, Y)[by, ..., bc] for some b,, ..., b, in D;.
Then Fy, #[by, ..., by, d] for some d in D,. So, by (**), En, <[y, ..., by, d]. Hence,
':Mz (Ely)’/ (xl/ vy Xk y)[bl/ cees bk]

Case 3b. Assume Fy, (Jy)~ (x1, ..., Xk, Y)[by, ..., be] for some b,, ..., by in D;. By

assumption (), there exists d in D, such that Fy, [by, ..., by, d]. Hence, by (**),
Ewy #[by, ..., by, d] and therefore Fy, (3y)~ (x4, ..., X, )by, ..., bi].

This completes the induction proof, since any wf is logically equivalent to
a wf that can be built up from atomic wfs by forming negations, conditionals
and existential quantifications.

Exercises

2.109 Prove:
a. M<.M;
b. if M; <. M, and M, <. M, then M; <. M,;
c. ifM; < MandM, <, MandM, CM,, then M, <. M,.

2.110 Let K be the theory of totally ordered sets with equality (axioms (a)-
(0) and (e)—(g) of Exercise 2.67). Let M; and M, be the models for K
with domains the set of positive integers and the set of nonnegative

integers, respectively (under their natural orderings in both cases).
Prove that M; C M, and M, ~ M,, but M, £.M,.

Let M be an interpretation of a language ~. Extend ~ to a language ~* by
adding a new individual constant a, for every member d of the domain of M.
We can extend M to an interpretation of +* by taking d as the interpretation
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of a,. By the diagram of M we mean the set of all true sentences of M of the
forms Aj(a4, ..., a4,), =Aj (a4, ..., a4,), and f'(aq, ..., as,) = ag,. In particular,
a4 # a4 belongs to the diagram if d; # d,. By the complete diagram of M we
mean the set of all sentences of ~* that are true for M.

Clearly, any model M* of the complete diagram of M determines an ele-
mentary extension M* of M,* and vice versa.

Exercise

2.111 a. Let M, be a denumerable normal model of an ordinary theory K
with equality such that every element of the domain of M, is the
interpretation of some closed term of K.

i. Show that, if M; C M, and M, = M, then M, <. M,

ii. Prove that there is a denumerable normal elementary extension
M; of M, such that M, and M; are not isomorphic.

b. Let K be a predicate calculus with equality having two function
letters + and x and two individual constants 0 and 1. Let M be the
standard model of arithmetic with domain the set of natural num-
bers, and + x, 0 and 1 having their ordinary meaning. Prove that
M has a denumerable normal elementary extension that is not iso-
morphic to M, that is, there is a denumerable nonstandard model
of arithmetic.

Proposition 2.38 (Upward Skolem-Lowenheim-Tarski Theorem)

Let K be a theory with equality having 8, symbols, and let M be a normal
model of K with domain of cardinality ®;. Let y be the maximum of a and .
Then, for any & > v, there is a model M* of cardinality N, such that M # M*
and M <, M*.

Proof

Add to the complete diagram of M a set of cardinality N; of new individual
constants b,, together with axioms b, # b, for distinct T and p and axioms
b, # a, for all individual constants 4, corresponding to members d of the
domain of M. This new theory K* is consistent, since M can be used as a
model for any finite number of axioms of K*. (If b,.,, ..., by, 44, ..., a4, are the
new individual constants in these axioms, interpret b,,...,b, as distinct
elements of the domain of M different from d,, ..., d,,.) Hence, by Corollary
2.34(a), K* has a normal model M* of cardinality X such that M € M,
M#M* and M <, M*.

* The elementary extension M* of M is obtained from M* by forgetting about the interpreta-
tions of the a,s.
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Proposition 2.39 (Downward Skolem-Lowenheim-Tarski Theorem)

Let K be a theory having X, symbols, and let M be a model of K with domain
of cardinality ¥, > R,. Assume A is a subset of the domain D of M having
cardinality 7, and assume N; is such that X > ®; > max(X,, n). Then there
is an elementary submodel M* of M of cardinality ®; and with domain D*
including A.

Proof

Since n < R; <R, we can add ¥; elements of D to A to obtain a larger set
B of cardinality ®;. Consider any subset C of D having cardinality ;. For
every wf 4(y,, ..., y,, 2) of K, and any c,, ..., ¢, in C such that ky; (32) (v, ...,
Y, 2lcy, ..., c,] , add to C the first element d of D (with respect to some fixed
well-ordering of D) such that F, (3z).%[c,, ..., c,, d] . Denote the so-enlarged
set by C* Since K has X, symbols, there are ¥, wfs. Since X, < ¥, there
are at most N, new elements in C* and, therefore, the cardinality of C* is
N;. Form by induction a sequence of sets Cy, C,, ... by setting C, = B and
Cu1=Cj. Let D* = U,,C,. Then the cardinality of D* is N;. In addition, D*
is closed under all the functions ( f/)". (Assume d,, ..., d, in D*. We may
assume d,, ..., d, in C; for some k. Now k, @) (f (x1, .., x0) = 2)[ds, ..., dy ]
Hence, (f/")™(d,, ..., d,), being the first and only member d of D such that
Fu (ff (%1, .00, X0) = 2)[d), ..., dy, d], must belong to Cl =Ci1 = D*) Similarly,
all interpretations (@) of individual constants are in D*. Hence, D* deter-
mines a substructure M* of M. To show that M* <, M, consider any wf
+(Y1s -+ Y 2) and any d, ..., d, in D* such that k\,(32) #(y,, ..., ¥, 2) [dy, ..., d,].
There exists C, such that d,, ..., d, are in C,. Let d be the first element of D
such that ky; #[d,, ..., d,, d]. Thend € C} = Ci.; < D*. So, by the Tarski-Vaught
theorem (Proposition 2.37), M* <, M.

2.14 Ultrapowers: Nonstandard Analysis

By a filter* on a nonempty set A we mean a set ./of subsets of A such that:
1L.Ae s

2.Be sACe /=BnCe s
3.Be /ABCCACCA=>Ce 7

* The notion of a filter is related to that of an ideal. A subset .~ of /(A) is a filter on A if and only
if the set © = {A — B|B € ./} of complements of sets in ./ is an ideal in the Boolean algebra .//(A).
Remember that ./(A) denotes the set of all subsets of A.
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Examples

Let BC A. The set .5 = {C|B C C C A} is a filter on A. .5 consists of all subsets
of A that include B. Any filter of the form .4 is called a principal filter. In par-
ticular, ./, = {A} and ./, = /(A) are principal filters. The filter ./(A) is said to be
improper and every other filter is said to be proper.

Exercises

2.112 Show that a filter »~ on A is proper if and only if @ ¢ .«

2.113 Show that a filter . on A is a principal filter if and only if the intersec-
tion of all sets in ./ is a member of ./~

2.114 Prove that every finite filter is a principal filter. In particular, any filter
on a finite set A is a principal filter.

2.115 Let A beinfinite and let./ be the set of all subsets of A that are comple-
ments of finite sets: .7= {C|(FW)(C = A — W A Fin(W)}, where Fin(W)
means that W is finite. Show that . is a nonprincipal filter on A.

2.116 Assume A has cardinality N;. Let X, < N,,. Let ./ be the set of all sub-
sets of A whose complements have cardinality < R,. Show that ./ is a
nonprincipal filter on A.

2.117 A collection « of sets is said to have the finite intersection property if B, n
B,n...n B, # @ for any sets By, B,, ..., B, in «. If ~is a collection of sub-
sets of A having the finite intersection property and #is the set of all
finite intersections B; N B, N ... N B, of sets in ¢, show that .. = {D|(3C)
(Be #»ACC D c A)}isaproper filter on A.

Definition

A filter son a set A is called an ultrafilter on A if .~ is a maximal proper filter
on A, that is, is a proper filter on A and there is no proper filter © on A such
that . c =

Example

Let d € A. The principal filter ; = {B|d € B A B C A} is an ultrafilter on A.
Assume that s a filter on A such that.;C <. Let Ce v — 4. Then C C A and
d ¢ C.Hence,d € A - C. Thus, A - C € . C 7. Since 7 is a filter and C and
A - Carebothin ¢, then @ = Cn (A - C) € z. Hence, v is not a proper filter.

Exercises
2.118 Let .~ be a proper filter on A and assume that BC Aand A - B ¢ .«
Prove that there is a proper filter . 2./ such that B € ..

2.119 Let .~ be a proper filter on A. Prove that ./is an ultrafilter on A if and
only if, for every B C A, either Be ~orA-Be .«
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2.120 Let ./ be a proper filter on A. Show that .7 is an ultrafilter on A if and
only if, for all Band Cin »(A),if B¢ s and C¢ ,thenBuC-€ .«

2.121 a. Show that every principal ultrafilter on A is of the form .;; = {B|d €
B A B C A} for some d in A.

b. Show that a nonprincipal ultrafilter on A contains no finite sets.

2.122 Let.sbe afilter on A and let. be the corresponding ideal: B € .7 if and
only if A — B € 7 Prove that .7 is an ultrafilter on A if and only if .7 is
a maximal ideal.

2.123 Let X be a chain of proper filters on A, that is, for any B and C in X,
either B C C or C C B. Prove that the union UX = {a|(3B)(B € X A a € B)}
is a proper filter on A, and B € UX for all Bin X.

Proposition 2.40 (Ultrafilter Theorem)

Every proper filter . -on a set A can be extended to an ultrafilter on A*

Proof

Let .7 be a proper filter on A. Let.» be the corresponding proper ideal: B € .7
if and only if A — B € .27 By Proposition 2.36, every ideal can be extended to
a maximal ideal. In particular, .» can be extended to a maximal ideal . If
we let = {B|A — B € 7}, then 7is easily seen to be an ultrafilter and .= C 7

Alternatively, the existence of an ultrafilter including .- can be proved easily
on the basis of Zorn’s lemma. (In fact, consider the set X of all proper filters .
such that ~ C /. Xis partially ordered by C, and any C -chain in X has an upper
bound in X, namely, by Exercise 2.123, the union of all filters in the chain. Hence,
by Zorn’s lemma, there is a maximal element .»* in X, which is the required
ultrafilter) However, Zorn’s lemma is equivalent to the axiom of choice, which is
a stronger assumption than the generalized completeness theorem.

Corollary 2.41

If A is an infinite set, there exists a nonprincipal ultrafilter on A.

Proof

Let ./ be the filter on A consisting of all complements A — B of finite subsets
B of A (see Exercise 2.115). By Proposition 2.40, there is an ultrafilter 2.
Assume 7is a principal ultrafilter. By Exercise 2.121(a), = .4 for some d € A.
Then A - {d} € .- C » Also, {d} € » Hence, @ = {d} n (A — {d}) € % contradicting
the fact that an ultrafilter is proper.

* We assume the generalized completeness theorem.
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2.14.1 Reduced Direct Products

We shall now study an important way of constructing models. Let K be any
predicate calculus with equality. Let | be a nonempty set and, for each j in
J, let M be some normal model of K. In other words, consider a function F
assigning to each j in ] some normal model. We denote F(j) by M.,.

Let ./ be a filter on J. For each j in ], let D; denote the domain of the model
M;. By the Cartesian product I1;D; we mean the set of all functions f with
domain | such that f(j) € D, for all j in J. If f € I1,;;D;, we shall refer to f{j) as
the jth component of f. Let us define a binary relation =, in I1;D; as follows:

f=,g ifandonlyif {j|f(j)=g( ) e~

If we think of the sets in ./ as being “large” sets, then, borrowing a phrase
from measure theory, we read f =, g as “f(j) = g(j) almost everywhere.”

It is easy to see that = is an equivalence relation: (1) f = f; (2) if f=, g then
g=,f @ if f=,gand g = h, then f =, h. For the proof of (3), observe that
(LA = 2G)) 0 12G) = KD € (1AG) = hG))- T 4L FG) = (7)) and {j]g() = k() are
in 7 then so is their intersection and, therefore, also {j|f(j) = h(j)}.

On the basis of the equivalence relation =, we can divide I1,4D; into
equivalence classes: for any fin I1,,;D, we define its equivalence class f, as
{glf=,8)Clearly, ) fef; (2 f =h,ifand only if f= h;and 3)if f, #h ,
then f, N h, = @. We denote the set of equivalence classes f, by IlD,/.~

Intuitively, IT,D;/ 7 is obtained from Il;D; by identifying (or merging) ele-

ments of I1;D; that are equal almost everywhere.

Now we shall define a model M of K with domain I,

D]»/ 7

1. Let ¢ be any individual constant of K and let ¢; be the interpretation
of ¢ in M;. Then the interpretation of ¢ in M will be f , where f is the
function such that f(j) = ¢; for all j in ]. We denote fby {c};.

2. Let f' be any function letter of K and let A; be any predicate letter of
K. Their interpretations (f{')™ and (A})™ are defined in the following

manner. Let (g) , ..., (¢,) , be any members of [T, D,/ 7

a. (M8 (gn).)=h., where h(j)=(f)"(g1()) .- &u(}))
foralljin J.

b. (A)Y(81) -, (€))  holds if and only if {j]ry,
A1), s 8u(Dl e 7

Intuitively, (f{') is calculated componentwise, and (A;)™ holds if and
only if Af holds in almost all components. Definitions (a) and (b) have
to be shown to be independent of the choice of the representatives

1 .- & in the e%uivalence classes (g7) , --., (g,) : if §1=> Slror & =" &ns
and h*()=(f")" (1 *(), ..., §.*(j)), then () h, =, h* and (i)

{i1Fw; ALI&1(), -0 (DI} e 7 ifand onlyif {j[Fx; AF[g1% (), ..., gu* (D]} € 7
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Part (i) follows from the inclusion:

(151 =8I - Al 84 = g3 <
G0 0 o8 D= ()" 12, 5]

Part (ii) follows from the inclusions:

Hle()=gfGNN ...l gD =g} <
{] [Fr; ALLS1(), -, &4()] if and only if Py AL L1 ()), ...,g,’f(j)]}

and
{ilEsy A1) e 8D N Iy ARG, -0 €0(D] if and
only if Fy, AL, - 1 <{j v, AT, -, 85
In the case of the equality relation =, which is an abbreviation for A7,

(ADM(g.,h,) if and only if {jlFu, AT[S(j),h()]}e
if and only if {j|g(j)=h(j)}e
ifand only if g=, h
that is, if and only if ¢, = & .. Hence, the interpretation (A7)" is the identity
relation and the model M is normal.
The model M just defined will be denoted H]-E]Mj/ sand will be called a
reduced direct product. When .7 is an ultrafilter, H]E]Mj/ 7is called an ultra-
product. When ./ is an ultrafilter and all the M;s are the same model N, then

Hje]Mj/ s is denoted NJ/.7and is called an ultrapower.

Examples

1. Choose a fixed element r of the index set ], and let ./~ be the prin-
cipal ultrafilter .; = {B|r € B A B C J}. Then, for any f, ¢ in 1D,
f=,gif and only if {j|f(j) = g(j)} € .7 that is, if and only if f(r) =
g . Hence, a member of I1i;D,/ consists of all f in Il;D; that

have the same rth component. For any predicate letter Ay of

K and any g,,..., g, in IiD;, Fv ACL(1), .., (80) ] if and

only if { ilEw; AGG) - g”(]')]} e -, that is, if and only if

Fum, AL[§1()), ---, 84())]. Hence, it is easy to verify that the function ¢:

[,D;/ 7= D, defined by ¢(g ) = g(r) is an isomorphism of I1,c;M;/

with M,. Thus, when .7 is a principal ultrafilter, the ultraproduct

[T, M,/ 7 is essentially the same as one of its components and yields

nothing new.
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2. Let /be the filter {J}. Then, for any f, ¢ in I,;D, f = g if and only
if {j|f(j) = g(j)} € 4 that is, if and only if f(j) = g(j) for all j in ], or
if and only if f = ¢. Thus, every member of I, D]/ #is a singleton
{g} for some g in IIyD; Moreover, (™ ((g1 - (gn) ) =18},
where g is such that g(j) = ()" (s1(),--., £(j)) for allj in J. Also,
Em A1), .., (g0).] if and only if Fu; Ailg1(j), ..., gu()] for all j
in J. Hence, H]-E]Mj/ # is, in this case, essentially the same as the ordi-
nary “direct product” 1M, in which the operations and relations
are defined componentwise.

3. Let ./~ be the improper filter ./(]). Then, for any f, ¢ in I1,4D, f g
if and only if {j|f(j) = g(j)} € .# that is, if and only if {j|Aj) = g()} €
/(])- Thus, f =, g for all f and g, and I1,;D,/~ consists of only one
element. For any predicate letter Ay, Fy A,? [f,, ..., f-] if and only if
{7Fm; ALLF()), .., f(D]} e P(]); that is, every atomic wf is true.

The basic theorem on ultraproducts is due to Los (1955b).

Proposition 2.42 (Lo$’s Theorem)

Let .7 be an ultrafilter on a set J and let M = H/E,Mj/ 7 be an ultraproduct.

a. Let s = ((g1) , () » ---) be a denumerable sequence of elements of
gD,/ 7 For each j in ], let s; be the denumerable sequence (g:(j),
£:(j), ) in D;. Then, for any wf of K, s satisfies »in M if and only
if {j|s;satisfies vin M}} € .«

b. For any sentence »of K, ~is truein H]E,M]././‘if andonlyif j|Fy; ve./.

(Thus, (b) asserts that a sentence .7 is true in an ultraproduct if and

only if it is true in almost all components.)

Proof

a. We shall use induction on the number m of connectives and quanti-
fiers in . We can reduce the case m = 0 to the following subcases™:
@) A (xipy oo x3,); (1) x, = fi' (x4, ..., x;,); and (iii) x, = ;. For subcase
(@), s satisfies Af(xy, ..., x;,) if and only if Fy ACL(g4) ) -+ (80))
which is equivalent to ({j| Fu; ALLS0 (), - (D]} €7 that is
{ j|sj satisfies Ag(xi, ..., x;,)in M]-} € F. Subcases (ii) and (iii) are han-
dled in similar fashion.

* Awf A{(t, ..., t,) can be replaced by (Vu)...(Vi, ) (i =ty A.coAly =1, = Af (W, ..., 1,)), and a
wf x = fi'(t;,..., t,) can be replaced by (Vz,)...(Vz,)(z1 =t A...AZ, =t, = x = f{' (21, ..., 2,))- In
this way, every wf is equivalent to a wf built up from wfs of the forms (i)—(iii) by applying
connectives and quantifiers.
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Now, let us assume the result holds for all wfs that have fewer than
m connectives and quantifiers.

Case 1. »is =~. By inductive hypothesis, s satisfies ~in M if and only
if {j|s; satisfies ~ in M} € ./ s satisfies =~ in M if and only if {j|s; sat-
isfies ~in M}} € .2 But, since ./is an ultrafilter,the last condition is
equivalent, by exercise 2.119, to {j|s;satisfies =~ in M} €

Case 2. #is # A 7. By inductive hypothesis, s satisfies ~ in M if and
only if {j|s; satisfies » in M} € . and s satisfies ~ in M if and only if
{j|sj satisfies ~ in Mj} € .= Therefore, s satisfies ~ A 7 if and only
if both of the indicated sets belong to ./ But, this is equivalent to their
intersection belonging to .5 which, in turn, is equivalent to {j]| 8; satisfies
A 7in M/-} €

Case 3. .7 is (Ix;)~. Assume s satisfies (3x;)~. Then there exists h in
[igD; such that s satisfies ~in M, where s’ is the same as s except that
h is the ith component of s. By inductive hypothesis, s’ satisfies  in
M if and only if {j|s;" satisfies ~in M} € = Hence, {j|s;satisfies(Ix;) -
in M} €  since, if s;’ satisfies < in M, then s; satisfies (3x))~ in M.
Conversely, assume W = {j|s; satisfies (3x;)~in M} € ./ For each j in

W, choose some s/ such that s is the same as s; except in at most the
ith component and s;’ satisfies . Now define h in Il,D; as follows:
for jin W, let h(j) be the ith component of s/, and, for j ¢ W, choose h(j)
to be an arbitrary element of D;. Let s” be the same as s except that its
ith component is & . Then W < {j|s; satisfies ~ in M;} €./ . Hence,
by the inductive hypothesis, s satisfies ~in M. Therefore, s satisfies
(Fx) 7 in M.

b. This follows from part (a) by noting that a sentence 7 is true in a
model if and only if some sequence satisfies ..

Corollary 2.43

If M is a model and .~is an ultrafilter on ], and if M* is the ultrapower M//.5;
then M* = M.

Proof

Let .7 be any sentence. Then, by Proposition 2.42(b), .7 is true in M* if and
only if {j| ~is true in M}} € ~ If vis truein M, {j| vis truein M} =] € ~ If »
is false in M, {j| #is true in M} = @ ¢ .~

Corollary 2.43 can be strengthened considerably. For each c in the domain
D of M, let ¢* stand for the constant function such that c#(j) = ¢ for all j in J.
Define the function y such that, for each ¢ in D, y(c) = (c#) ,€ D//.7, and denote
the range of y by M. M* obviously contains the interpretations in M* of the
individual constants. Moreover, M* is closed under the operations (fi' ™ for



First-Order Logic and Model Theory 135

M), ..., (c]),) is b, where h(j)=(f")(cy, ..., c,) for all j in ], and
(™ ((cy, ..., c,) is a fixed element b of D. So, h , = (b*) , € M*. Thus, M* is a
substructure of M*.

Corollary 2.44

y is an isomorphism of M with M#, and M# <, M*.

Proof

a. By definition of M¥, the range of y is M*.

b. y is one—one. (For any c, d in D, (¢*) ,= (d) ,if and only if c* = ,d¥
which is equivalent to {j|c*(j) = d*(j)} € ./; that is, {j|c =d} € < If
c#d, {j|c:d}:®;§/ and, therefore Wy (0) # vy ().

c. For any ¢, ..., ¢, in D, M (wler) - wlen)) =AM (), .
e).)=h.,, where h(j)=(fiM(C(), ..., cn() =K, .., Cn)'
Thus, b, = ((fi')"(cy, ..., e)*/ 7 =w((f )M(Cll cees Cn)) -

d. FxeAgly(ar) ..., wicn)]ifand only if{j|Fy Al (w(c)()), -, w(e)())}e s
which is equivalent to { jlEm Ai(ca, ..., c,,)} e, that is,
Em Ailci, ..., ¢,]. Thus, y is an isomorphism of M with M*

Toseethat M* < M* let #beany wfand(c}) ., ..., (ci) - € M*. Then, by proposi-
tion 2.42@), Py #[(cl) -, ..., (c}) 1if and only if {j| Fy 2[cf()), ..., ch(D]} € 7,
which is equivalent to {j| Fy7lcy, ..., c,]} € % which, in turn, is equivalent to
Ewley ... ¢, thatis, toF s 2[(c)e, ..., (ch) 1, since y is an isomorphism of
M with M*,

Exercises

2.124 (The compactness theorem again; see Exercise 2.54) If all finite subsets
of a set of sentences I have a model, then I" has a model.

2125 a. A class 7 of interpretations of a language - is called elementary if
there is a set I" of sentences of ~ such that / is the class of all mod-
els of I. Prove that 7 is elementary if and only if / is closed under
elementary equivalence and the formation of ultraproducts.

b. A class 7 of interpretations of a language ~ will be called sentential
if there is a sentence ..vof v such that 7 is the class of all models of
». Prove that a class 7 is sentential if and only if both 7 and its
complement 7~ (all interpretations of » not in /') are closed with
respect to elementary equivalence and ultraproducts.

c. Prove that theory K of fields of characteristic 0 (see page 116) is
axiomatizable but not finitely axiomatizable.
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2.14.2 Nonstandard Analysis

From the invention of the calculus until relatively recent times the idea of
infinitesimals has been an intuitively meaningful tool for finding new results
in analysis. The fact that there was no rigorous foundation for infinitesimals
was a source of embarrassment and led mathematicians to discard them in
favor of the rigorous limit ideas of Cauchy and Weierstrass. However, almost
fifty years ago, Abraham Robinson discovered that it was possible to res-
urrect infinitesimals in an entirely legitimate and precise way. This can be
done by constructing models that are elementarily equivalent to, but not iso-
morphic to, the ordered field of real numbers. Such models can be produced
either by using Proposition 2.33 or as ultrapowers. We shall sketch here the
method based on ultrapowers.

Let R be the set of real numbers. Let K be a generalized predicate calculus
with equality having the following symbols:

1. For each real number 7, there is an individual constant a,.
2. For every n-ary operation ¢ on R, there is a function letter f,.
3. For every n-ary relation ®@ on R, there is a predicate letter A,

We can think of R as forming the domain of a model .~ for K; we simply let
@) =1(f) =g and (4y) =@,

Let ./be a nonprincipal ultrafilter on the set w of natural numbers. We can
then form the ultrapower .»* = ¢/ We denote the domain R*/.7of »/* by R*.
By Corollary 2.43, »»* = »and, therefore, ./* has all the properties formaliz-
able in K that.»possesses. Moreover, by Corollary 2.44, »* has an elementary
submodel .7* that is an isomorphic image of .»~. The domain R* of .»/# consists
of all elements (c*) , corresponding to the constant functions c#(i) = c for all i in
®. We shall sometimes refer to the members of R* also as real numbers; the
elements of R* — R¥ will be called nonstandard reals.

That there exist nonstandard reals can be shown by explicitly exhibiting
one. Let 1(j) =j for all j in w. Then 1, € R*. However, (c¥) , <1, for all cin R, by
virtue of Lo§’s theorem and the fact that {j|c*(j) < 1(j)} = {j|c < j}, being the set
of all natural numbers greater than a fixed real number, is the complement
of a finite set and is, therefore, in the nonprincipal ultrafilter ./ 1, is an “infi-
nitely large” nonstandard real. (The relation < used in the assertion (c*) , <1,
is the relation on the ultrapower .-* corresponding to the predicate letter < of
K. We use the symbol < instead of (<) ”* in order to avoid excessive notation,
and we shall often do the same with other relations and functions, such as
u+vuxvand |u|)

Since .»* possesses all the properties of .» formalizable in K, .»* is an
ordered field having the real number field ..»# as a proper subfield. (~* is non-
Archimedean: the element 1, defined above is greater than all the natural
numbers (n*) , of .7*) Let R;, the set of “finite” elements of R* contain those
elements z such that |z| < u for some real number u in R*. (R, is easily seen
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to form a subring of R*) Let R, consist of 0 and the “infinitesimals” of R* that
is, those elements z # 0 such that |z| < u for all positive real numbers u in R*.
The reciprocal 1/1 ,is an infinitesimal.) It is not difficult to verify that R, is an
ideal in the ring R;. In fact, since x € R, — R, implies that 1/x € R, — R,, it can
be easily proved that R, is a maximal ideal in R;.

Exercises

2.126 Prove that the cardinality of R* is 2.

2.127 Prove that the set R is closed under the operations of +, —, and x.
2.128 Prove that, if x € R, and y € R, then xy € R,

2.129 Prove that, if x € R, — R,, then 1/x € R, — R,,

Letx € Ry. Let A = {u|lu € R* Au <x}and B = {u|u € R* Au> x}. Then (A, B)
is a “cut” and, therefore, determines a unique real number r such that (1) (Vx)
(xeA=>x<r)and (2) (VX)(x € B = x > r)* The difference x — r is 0 or an
infinitesimal. (Proof: Assume x — r is not 0 or an infinitesimal. Then |x — 7|
> r, for some positive real number r,. If x > 7, thenx —r>r.Sox >r +r; > 1.
But then r + r; € A, contradicting condition (1). If x < 7, then r — x > r;, and so
r>r —r; > x. Thus, r — r; € B, contradicting condition (2).) The real number
r such that x — r is 0 or an infinitesimal is called the standard part of x and is
denoted st(x). Note that, if x is itself a real number, then st(x) = x. We shall use
the notation x = y to mean st(x) = st(y). Clearly, x = y if and only if x — y is 0 or
an infinitesimal. If x ~ y, we say that x and y are infinitely close.

Exercises

2.130 If x € R,, show that there is a unique real number r such that x — 7 is 0
or an infinitesimal. (It is necessary to check this to ensure that st(x) is
well-defined.)

2.131 If x and y are in R,, prove the following.
a. st(x +y) = st(x) + st(y)
b. st(xy) = st(x)st(y)
. st(—x) = —st(x) A st(y — x) = st(y) — st(x)
d. x>0=>st(x)>0
e. x <y = st(x) <st(y)

The set of natural numbers is a subset of the real numbers. Therefore, in the
theory K there is a predicate letter N corresponding to the property x € o.
Hence, in R* there is a set o* of elements satisfying the wf N(x). An element

* See Mendelson (1973, Chapter 5).
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fof R* satisfies N(x) if and only if {j|f(j) € o} € 4 In particular, the elements
n*, for n € o, are the “standard” members of @* whereas 1 ,, for example, is a
“nonstandard” natural number in R*.

Many of the properties of the real number system can be studied from the
viewpoint of nonstandard analysis. For example, if s is an ordinary denu-
merable sequence of real numbers and c is a real number, one ordinarily says
that lim s, = ¢ if

(&) (Ve)(e>0= (An)(neon(Vk)(kewrk>n= s —c/<g)))

Since s € Ro, s is a relation and, therefore, the theory K contains a predicate
letter S(n, x) corresponding to the relation s, = x. Hence, R* will have a rela-
tion of all pairs (#, x) satisfying S(n, x). Since -»* =, this relation will be a
function that is an extension of the given sequence to the larger domain w*.
Then we have the following result.

Proposition 2.45

Let s be a denumerable sequence of real numbers and c a real number. Let s*
denote the function from o* into R* corresponding to s in *. Then lim s, = c
if and only if s*(n) = c for all # in 0* — w. (The latter condition can be para-
phrased by saying that s*() is infinitely close to ¢ when 7 is infinitely large.)

Proof

Assume lim s, = c. Consider any positive real e. By (&), there is a natural
number 1, such that (Vk)(k € ® Ak > ny= |s,— c| <e) holds in .. Hence, the
corresponding sentence (Vk)(k € o* A k > ny=> |s*(k) — ¢| < ¢) holds in #* For
any 7 in o* — o, n > n, and, therefore, |s*(n) — c| < e. Since this holds for all
positive real g, s*(n) — ¢ is 0 or an infinitesimal.

Conversely, assume s*(n) ~ ¢ for all n € ®* — ©. Take any positive real e. Fix
some 71, in ®* — . Then (Vk)(k > n, = |s*(k) — ¢| <¢). So the sentence (In)(n € ®
AVRkewAk>n= s, —c| <g) is true for »* and, therefore, also for .. So
there must be a natural number n, such that (Vk)(k € @ Ak >ny= |s,—c| <eg).
Since € was an arbitrary positive real number, we have proved lim s, = c.

Exercise

2.132 Using Proposition 2.45, prove the following limit theorems for the real
number system. If s and u are denumerable sequences of real numbers
and ¢, and ¢, are real numbers such thatlim s, = ¢; and lim u,, = ¢,, then:

a. lim(s,+u,)=c, +cy
b. lim (s,u,) = c;cy;
c. Ifc,#0andallu,#0,lim (s,/u,) = c,/c,.
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Let us now consider another important notion of analysis, continuity. Let B
be a set of real numbers, let ¢ € B, and let f be a function defined on B and
taking real values. One says that f is continuous at c if

@) (Ve)(e>0= (38)(6>0A(Vx)(x € BA|x—c|< = f(x)— f(0) < )

Proposition 2.46

Let f be a real-valued function on a set B of real numbers. Let c € B. Let B* be
the subset of R* corresponding to B, and let f* be the function corresponding
to ff Then fis continuous at c if and only if (Vx)(x € B* A x & ¢ = f*(x) = f(c)).

Exercises

2.133 Prove Proposition 2.46.

2.134 Assume f and g are real-valued functions defined on a set B of real
numbers and assume that f and g are continuous at a point ¢ in B.
Using Proposition 2.46, prove the following.

a. f + g is continuous at c.
b. f- g is continuous at c.

2.135 Let fbe a real-valued function defined on a set B of real numbers and
continuous at a point ¢ in B, and let ¢ be a real-valued function defined
on a set A of real numbers containing the image of B under f. Assume
that ¢ is continuous at the point f(c). Prove, by Proposition 2.46, that
the composition g o fis continuous at c.

2136 LetCCR.

a. C is said to be closed if (Vx)(Ve)le > 0 = (Ay)(y € C Alx —y| <¢)] =
x € C). Show that Cis closed if and only if every real number that is
infinitely close to a member of C*is in C.

b. C is said to be open if (Vx)(x € C = ()G > 0 A (Vy)(ly — x| <8 =>
y € 0))). Show that C is open if and only if every nonstandard real
number that is infinitely close to a member of C is a member of C*.

Many standard theorems of analysis turn out to have much simpler proofs
within nonstandard analysis. Even stronger results can be obtained by start-
ing with a theory K that has symbols, not only for the elements, operations and
relations on R, but also for sets of subsets of R, sets of sets of subsets of R, and

* To be more precise, f is represented in the theory K by a predicate letter A, where A(x, y)
corresponds to the relation f(x) = y. Then the corresponding relation A} in R* determines a
function f* with domain B*.
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so on. In this way, the methods of nonstandard analysis can be applied to all
areas of modern analysis, sometimes with original and striking results. For fur-
ther development and applications, see A. Robinson (1966), Luxemburg (1969),
Bernstein (1973), Stroyan and Luxemburg (1976), and Davis (1977a). A calculus
textbook based on nonstandard analysis has been written by Keisler (1976) and
has been used in some experimental undergraduate courses.

Exercises

2.137 A real-valued function f defined on a closed interval [a, b] = {x]|a < x <
b} is said to be uniformly continuous if

(Ve)(e>0=(F)B>0A(Vx)(Vy)asx<braly<ba|x—-yl<d
=] f(0)-f(y)|<e))

Prove that f is uniformly continuous if and only if, for all x and y in
[a, b, x 2 y = f10) = f().

2.138 Prove by nonstandard methods that any function continuous on [, b]
is uniformly continuous on [g, b].

2.15 Semantic Trees

Remember that a wf is logically valid if and only if it is true for all interpre-
tations. Since there are uncountably many interpretations, there is no sim-
ple direct way to determine logical validity. Gédel’s completeness theorem
(Corollary 2.19) showed that logical validity is equivalent to derivability in
a predicate calculus. But, to find out whether a wf is provable in a predicate
calculus, we have only a very clumsy method that is not always applicable:
start generating the theorems and watch to see whether the given wf ever
appears. Our aim here is to outline a more intuitive and usable approach in
the case of wfs without function letters. Throughout this section, we assume
that no function letters occur in our wfs.

A wf is logically valid if and only if its negation is not satisfiable. We shall
now explain a simple procedure for trying to determine satisfiability of a
closed wf .* Our purpose is either to show that »7is not satisfiable or to find
a model for .

We shall construct a figure in the shape of an inverted tree. Start with the
wf 7 at the top (the “root” of the tree). We apply certain rules for writing

* Remember that a wf is logically valid if and only if its closure is logically valid. So it suffices
to consider only closed wrfs.
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wfs below those already obtained. These rules replace complicated wfs by
simpler ones in a way that corresponds to the meaning of the connectives
and quantifiers.

amr A(eve) (= 2) a(Vx)e  —(3x)e
{ { { { \:
/ - 2 Fx)e (Vx)v
Negation:
(r A7) (¢ & 2)
7N 7N\

-7 g 7o

N Y
N

Conjunction: Disjunction: /
-

v 7
7

R =2
N

4

= U /
Conditional: ,~ , Biconditional:
-

4 7
2

(Vx)< (x)
Universal quantifier: {

< (b)

(Rule U) [Here, b is any individual constant

already present.]

(3x)7 (x) [c is a new individual
Existential quantifier: | constant not already in

#(c) the figure.]

Note that some of the rules require a fork or branching. This occurs when the
given wf implies that one of two possible situations holds.

A branch is a sequence of wfs starting at the top and proceeding down the fig-
ure by applications of the rules. When a wf and its negation appear in a branch,
that branch becomes closed and no further rules need be applied to the wf at the
end of the branch. Closure of a branch will be indicated by a large cross x.

Inspection of the rules shows that, when a rule is applied to a wf, the useful-
ness of that wf has been exhausted (the formula will be said to be discharged)
and that formula need never be subject to a rule again, except in the case of a
universally quantified wf. In the latter case, whenever a new individual constant
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appears in a branch below the wf, rule U can be applied with that new constant.
In addition, if no further rule applications are possible along a branch and no individual
constant occurs in that branch, then we must introduce a new individual constant for
use in possible applications of rule U along that branch. (The idea behind this require-
ment is that, if we are trying to build a model, we must introduce a symbol for at
least one object that can belong to the domain of the model.)

2.15.1 Basic Principle of Semantic Trees

If all branches become closed, the original wf is unsatisfiable. If, however, a
branch remains unclosed, that branch can be used to construct a model in
which the original wf is true; the domain of the model consists of the indi-
vidual constants that appear in that branch.

We shall discuss the justification of this principle later on. First, we shall
give examples of its use.

Examples

1. To prove that (Vx)~ (x) = « (D) is logically valid, we build a semantic tree
starting from its negation.

i =V () = - (b))

i (V) (x) ()
iii. = (b) @)
iv. ~(b) (ii)

The number to the right of a given wf indicates the number of the line
of the wf from which the given wf is derived. Since the only branch in
this tree is closed, =((Vx)~ (x) = ~ (b)) is unsatisfiable and, therefore, (Vx)
7 (x) = ~(b) is logically valid.

2. 1 (V) (x) 2 2(x) = (VX)) (x) = (VX) 7(x)]

ii. (Vx)(7(x) = 2(x)) (@)
iii. (V) (¥) = (V) 2(x)) @
iv. (Vx)~(x) (iii)
v. (V) o (%) (iii)
vi. (3x) ~o(x) v)
vii. —~7(b) (vi)
viii. #(b) (iv)
ix. ~(b)= 7(b) (ii)
7N\
x. = (b) o (b) (ix)

X X
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Since both branches are closed, the original wf (i) is unsatisfiable and,
therefore, (Vx)(« (x) = 7(x)) = (Vx)~ (x) = (Vx)~(x)) is logically valid.

3. i @Al (x) = (V)AL (x)]

ii. (Ax)A](x) (i)
iii. —(Vx)A(x) @)
iv. Al(b) (ii)
v. (3x)—Af(x) (iii)
vi. —A{(c) v)

No further applications of rules are possible and there is still an open
branch. Define a model M with domain {b, ¢} such that the interpretation
of Aj holds for b but not for c. Thus, (3x)—A; (x) is true in M but (vVx)A1 (x)
is false in M. Hence, (3x) A1 (x) = (Vx)Ai(x) is false in M and is, therefore,

not logically valid.
4. 1 @) sy, y) = (Y0)EY) Ax, Yl
. @Fy)(vx) #(x, y) @
iii. ~(Vx)Qy) #(x, y) @)
iv. (Vx) #(x, b) (ii)
v. (IN)-Ey) #x, ) (iii)
vi. (b, b) (iv)
vil. ~(3y) #(c, y) (v)
viii. .#(c, b) (iv)
ix. (Yy)~u(c, ) (vii)
x. ~(c, b) (ix)

Hence, (Jy)(Vx).4(x, y) = (Vx)(Ty). #(x, y) is logically valid.

Notice that, in the last tree, step (vi) served no purpose but was required
by our method of constructing trees. We should be a little more precise
in describing that method. At each step, we apply the appropriate rule
to each undischarged wf (except universally quantified wfs), starting
from the top of the tree. Then, to every universally quantified wf on a
given branch we apply rule U with every individual constant that has
appeared on that branch since the last step. In every application of a
rule to a given wf, we write the resulting wf(s) below the branch that
contains that wf.

5. i A[(vx)2(x) = (3x).2(x)]
i (Vx) 2(x) (@)
iii. —(3x) #(x) 6)
iv.  (Vx)~.2(x) (iii)
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v. Ab) (iiy*

vi. —%(b) (@iv)

Hence, (Vx).(x) = (3x).#(x) is logically valid.
6. i —{(Vx)=A7(x,x) = (3x)(Vy)-AL(x,y)]

i, (Vr)—A2(x, x) @
iii. ~(3x)(Vy)=A2(x, y) (i)
iv. (V)—~(Vy)-AX(x, y) (i)
V. —|A12(ﬂ],(/ll) (11)+
vi. —(Vy)-Af(ar,y) (iv)
vil. (3y)——Ai(a;,y) (vi)
viii. ——Af(a1,a,) (vii)
ix. Af(m,a) (viii)
x. —Af(ay,a,) (ii)
xXi. ~(Vy)=A¥(a,,y) (iv)
xii. (Jy)——Af(az,y) (xi)
xiil. ——AX(az,a5) (xii)
xiv. Af(ay,as) (xiii)

We can see that the branch will never end and that we will obtain a sequence
of constants a,, a,, ... with wfs Af(a,,a,,,) and —=Af(a,,a,). Thus, we construct
a model M with domain {a,, a,, ...} and we define (AHM to contain only the
pairs {(a,, 4,,,). Then, (Vx)—=Af(x, x) is true in M, whereas (3x)(Vy)-Af(x,y) is
false in M. Hence, (Vx)—A7(x, x) = (3x)(Vy)—A7 (x, y) is not logically valid.

Exercises

2.139 Use semantic trees to determine whether the following wfs are logi-
cally valid.

a. (Vx)(Ai(x) v Ax(x)) = (Y2)AL(x)) v (Vx) Az ()
b. (Vx) #(x)) A (VX)7 (x) = (VX)(#(x) A 7 (X))
c. (Vx)(#(x) A 7 (X)) = (Vx) 2(x) A (Vx)7 (x)

* Here, we must introduce a new individual constant for use with rule U since, otherwise, the
branch would end and would not contain any individual constants.

t Here, we must introduce a new individual constant for use with rule U since, otherwise, the
branch would end and would not contain any individual constants.
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(Fx)(A(x) = A3 (%)) = (B AI(x) = (Bx)Az(x))
(@)@ AL (x,y) = (32)Ai(z,2)

(VX)Ai (x)) v (V) Ay (x) = (Vx)(Al(x) v Az(x))

(@) @EY)(AL(x, y) = (V2)Al(z,Y))

The wfs of Exercises 2.24, 2.31(a, €, j), 2.39, and 2.40.
The wfs of Exercise 2.21(a, b, g).

jo (VX)(Al(x) = Az(x)) = ~(Vx)(Al(x) = =A3(x))

SECC N Y

-

Proposition 2.47

Assume that I' is a set of closed wfs that satisfy the following closure condi-
tions: (a) if ~~7isin T, then zisinT; (b) if 7(#V 7) isin I, then ~vand ~~are
inT; (¢) if 7(#= ») isinT, then 7and ~~are inT; (d) if ~(Vx).7is in T, then (3x)
~1isinT; (e) if 7(3x).7is in T, then (Vx) ~7is in [ (f) if 7(~ A #) isin T, then at
least one of ~~and —~~isinT; (g) if ~(~# & ») is in T, then either .7and —~~ are
in[, or ~zand ~are in T} (h) if # A ~isinT, then so are .7and 7; (i) if 2V
is in T, then at least one of 7and ~isinTj; (j) if 7= ~is in T, then at least one
of nzand ~isinT; (k) if #< 7isin T, then either 7and ~arein I or ~7and
- are in I3 (1) if Vx) #(x) is in I, then .#(b) is in " (where b is any individual
constant that occurs in some wf of I'); (m) if (3x).(x) is in I, then .#(b) is in T’
for some individual constant b. If no wf and its negation both belong to I" and
some wfsin I contain individual constants, then there is a model for I whose
domain is the set D of individual constants that occur in wfs of I.

Proof

Define a model M with domain D by specifying that the interpretation
of any predicate letter Ay in I' contains an n-tuple (b,, ..., b,) if and only if
Ai(by, ..., b,) is in I. By induction on the number of connectives and quanti-
fiers in any closed wf it is easy to prove: (i) if <is in I} then ~is true in M;
and (ii) if =~is in I" then is false in M. Hence, M is a model for I'.

If a branch of a semantic tree remains open, the set I" of wfs of that branch
satisfies the hypotheses of Proposition 2.47. If follows that, if a branch of a
semantic tree remains open, then the set I" of wfs of that branch has a model
M whose domain is the set of individual constants that appear in that branch.
This yields half of the basic principle of semantic trees.

Proposition 2.48

If all the branches of a semantic tree are closed, then the wf ~ at the root of
the tree is unsatisfiable.
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Proof

From the derivation rules it is clear that, if a sequence of wfs starts at .»and
continues down the tree through the applications of the rules, and if the
wfs in that sequence are simultaneously satisfiable in some model M, then
that sequence can be extended by another application of a rule so that the
added wf(s) would also be true in M. Otherwise, the sequence would form
an unclosed branch, contrary to our hypothesis. Assume now that .7 is sat-
isfiable in a model M. Then, starting with .5, we could construct an infi-
nite branch in which all the wfs are true in M. (In the case of a branching
rule, if there are two ways to extend the sequence, we choose the left-hand
wf.) Therefore, the branch would not be closed, contrary to our hypothesis.
Hence, ~is unsatisfiable.

This completes the proof of the basic principle of semantic trees. Notice
that this principle does not yield a decision procedure for logical validity. If
a closed wf . is not logically valid, the semantic tree of —» may (and often
does) contain an infinite unclosed branch. At any stage of the construction of
this tree, we have no general procedure for deciding whether or not, at some
later stage, all branches of the tree will have become closed. Thus, we have
no general way of knowing whether ..»is unsatisfiable.

For the sake of brevity, our exposition has been loose and imprecise.
A clear and masterful study of semantic trees and related matters can be
found in Smullyan (1968).

2.16 Quantification Theory Allowing Empty Domains

Our definition in Section 2.2 of interpretations of a language assumed that
the domain of an interpretation is nonempty. This was done for the sake of
simplicity. If we allow the empty domain, questions arise as to the right way
of defining the truth of a formula in such a domain* Once that is decided,
the corresponding class of valid formulas (that is, formulas true in all inter-
pretations, including the one with an empty domain) becomes smaller, and
it is difficult to find an axiom system that will have all such formulas as its
theorems. Finally, an interpretation with an empty domain has little or no
importance in applications of logic.

Nevertheless, the problem of finding a suitable treatment of such a more
inclusive logic has aroused some curiosity and we shall present one possible
approach. In order to do so, we shall have to restrict the scope of the investi-
gation in the following ways.

* For example, should a formula of the form (Vx)(Al(x) A—=Al(x)) be considered true in the
empty domain?
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First, our languages will contain no individual constants or function let-
ters. The reason for this restriction is that it is not clear how to interpret indi-
vidual constants or function letters when the domain of the interpretation is
empty. Moreover, in first-order theories with equality, individual constants
and function letters always can be replaced by new predicate letters, together
with suitable axioms.*

Second, we shall take every formula of the form (Vx)..#(x) to be true in the
empty domain. This is based on parallelism with the case of a nonempty
domain. To say that (Vx).#(x) holds in a nonempty domain D amounts to
asserting

(*) for any object ¢, if ce D, then B(c)

When D is empty, “c € D” is false and, therefore, “if c € D, then .»(c)” is true.
Since this holds for arbitrary ¢, (*) is true in the empty domain D, that is, (Vx)
#(x) is true in an empty domain. Not unexpectedly, (3x).4(x) will be false in
an empty domain, since (3x).#(x) is equivalent to =(Vx)—= ().

These two conventions enable us to calculate the truth value of any closed
formula in an empty domain. Every such formula is a truth-functional com-
bination of formulas of the form (Vx).(x). Replace every subformula (Vx).(x)
by the truth value T and then compute the truth value of the whole formula.

It is not clear how we should define the truth value in the empty domain of
a formula containing free variables. We might imitate what we do in the case
of nonempty domains and take such a formula to have the same truth values
as its universal closure. Since the universal closure is automatically true in the
empty domain, this would have the uncomfortable consequence of declaring
the formula Aj(x) A —Aj(x) to be true in the empty domain. For this reason, we
shall confine our attention to sentences, that is, formulas without free variables.

A sentence will be said to be inclusively valid if it is true in all interpreta-
tions, including the interpretation with an empty domain. Every inclusively
valid sentence is logically valid, but the converse does not hold. To see this,
let f stand for a sentence ~ A =, where  is some fixed sentence. Now, f is false
in the empty domain but (Vx)f is true in the empty domain (since it begins
with a universal quantifier). Thus the sentence (Vx)f = f is false in the empty
domain and, therefore, not inclusively valid. However, it is logically valid,
since every formula of the form (Vx) = ~is logically valid.

The problem of determining the inclusive validity of a sentence is reduc-
ible to that of determining its logical validity, since we know how to deter-
mine whether a sentence is true in the empty domain. Since the problem of
determining logical validity will turn out to be unsolvable (by Proposition
3.54), the same applies to inclusive validity.

* For example, an individual constant b can be replaced by a new monadic predicate letter P,
together with the axiom (Jy)(Vx)(P(x) © x = y). Any axiom (D) should be replaced by (Vx)(P(x)
= #(x)).
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Now let us turn to the problem of finding an axiom system whose theo-
rems are the inclusively valid sentences. We shall adapt for this purpose an
axiom system PP# based on Exercise 2.28. As axioms we take all the follow-
ing formulas:

(Al) 7= (7> 9)

(A (7= (r=> 2) = (v=>7)=> (2= 9)

A3) (=)= (= 1) =)

(A4) (V¥x).2(x) = #(y) if 4(x) is a wf of ~and y is a variable that is free for x in
#(x). (Recall that, if y is x itself, then the axiom has the form (Vx).z = 2.
In addition, x need not be free in .(x).)

(AD) (Wx) (7= 7) = (7= (Vx)7) if .7 contains no free occurrences of x.

(A6) (Vy)) ... (Vy,)(v= ) = [(Vy) ... (Vy,) 7= (V) ... (Vy,)7]

together with all formulas obtained by prefixing any sequence of universal
quantifiers to instances of (A1)—(A6).

Modus ponens (MP) will be the only rule of inference.

PP denotes the pure first-order predicate calculus, whose axioms are (Al)-
(A5), whose rules of inference are MP and Gen, and whose language contains
no individual constants or function letters. By Gédel’s completeness theorem
(Corollary 2.19), the theorems of PP are the same as the logically valid for-
mulas in PP. Exercise 2.28 shows first that Gen is a derived rule of inference
of PP*, that is, if Fpps 7, then Fppy (VX) 7, and second that PP and PP# have the
same theorems. Hence, the theorems of PP* are the logically valid formulas.

Let PPS* be the same system as PP* except that, as axioms, we take only the
axioms of PP# that are sentences. Since MP takes sentences into sentences,
all theorems of PPS* are sentences. Since all axioms of PPS* are axioms of
PP* all theorems of PPS* are logically valid sentences. Let us show that the
converse holds.

Proposition 2.49

Every logically valid sentence is a theorem of PPS*.

Proof

Let .7 be any logically valid sentence. We know that .7 is a theorem of PP*
Let us show that .#is a theorem of PPS*. In a proof of ..7in PP# let u,, ..., u, be
the free variables (if any) in the proof, and prefix (Vi) ... (Vu,) to all steps of
the proof. Then each step goes into a theorem of PPS*. To see this, first note
that axioms of PP# go into axioms of PPS*. Second, assume that ~ comes from
~and = by MP in the original proof and that (Vu,) ... (Vu,)~and (Vu,) ...
(Vu,)(- = 2) are provable in PPS*. Since (Vu,) ... (Yu,)(v = %) = [(Vu,) ... (Vu,)~
= (Vu,) ... (Vu,) 7] is an instance of axiom (A6) of PPS¥, it follows that (Vi) ...
(Vu,)~ is provable in PPS*. Thus, (Vu,) ... (Yu,).7is a theorem of PPS*. Then n
applications of axiom (A4) and MP show that .7is a theorem of PPS*.
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Not all axioms of PPS* are inclusively valid. For example, the sentence (Vx) f =
f discussed earlier is an instance of axiom (A4) that is not inclusively valid. So,
in order to find an axiom system for inclusive validity, we must modify PPS*.

If P is a sequence of variables u,, ..., u,, then by VP we shall mean the
expression (Vi) ... (Vu,).

Let the axiom system ETH be obtained from PPS* by changing axiom
(A4) into:

(A4') All sentences of the form VP[(Vx)..#(x) = .(y)], where y is free for x in
#(x) and x is free in .#(x), and P is a sequence of variables that includes all
variables free in .~ (and possibly others).

MP is the only rule of inference.
It is obvious that all axioms of ETH are inclusively valid.

Lemma 2.50

If is an instance of a tautology and P is a sequence of variables that
contains all free variables in /, then bgpy VP 2

Proof

By the completeness of axioms (A1)—-(A3) for the propositional calculus, there
is a proof of .~ using MP and instances of (A1)—(A3). If we prefix VP to all
steps of that proof, the resulting sentences are all theorems of ETH. In the
case when an original step .» was an instance of (A1)-(A3), VP.7is an axiom
of ETH. For steps that result from MP, we use axiom (A6).

Lemma 2.51

If P is a sequence of variables that includes all free variables of .~ = », and
Fery VP 7and by VPl = 7], then gy VP2

Proof
Use axiom (A6) and MP.

Lemma 2.52

If P is a sequence of variables that includes all free variables of .7, ~, 7, and
e VPL2 = 7] and by VP2 = 7], then gy VP2 = 2],
Proof

Use the tautology (v= v = (= ) = (#= 7)), Lemma 2.50, and Lemma
2.51 twice.
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Lemma 2.53

If x is not free in #and P is a sequence of variables that contains all free vari-
ables of ., gy VP27 = (¥x).~].

Proof

By axiom (A5), gy VP[(VX)(B = B) = (B = (Vx) B)]. By Lemma 2.50, Fyry
VP[(Vx)(2= %)]. Now use Lemma 2.51.

Corollary 2.54

If 7has no free variables, then gy 7= (VX) 2

Lemma 2.55

If x is not free in ..7and P is a sequence of variables that includes all variables
free in .7, then by VP[(VX) £ = (Vx).7= 2)].

Proof

Fery VP~ = (2= f)] by Lemma 2.50. By Lemma 2.53, by VP[(7 = f) = (V)
(7= f)]. Hence, by Lemma 2.52, gy VP[- 7= (Vx)( 7= £)]. By axiom (A6), Fpry
VP[(Vx)( = f) = (Vx).2 = (¥x)f)]. Hence, by Lemma 2.52, by VP[22 = ((Vx).
= (V)f)]. Since [n7 = (V)2 = (¥)f)] = [~(VO)f = ((Vx) 2= »)] is an instance
of a tautology, Lemmas 2.50 and 2.51 yield Fgryy VP[=(VX)f = (Vx).2=> 2)].

Proposition 2.56

ETH + {=(Vx)f} is a complete axiom system for logical validity, that is, a sen-
tence is logically valid if and only if it is a theorem of the system.

Proof

All axioms of the system are logically valid. (Note that (Vx)f is false in all
interpretations with a nonempty domain and, therefore, =(Vx)f is true in all
such domains.) By Proposition 2.49, all logically valid sentences are prov-
able in PPS*. The only axioms of PPS* missing from ETH are those of the
form VP[(Vx).» = ], where x is not free in .~ and P is any sequence of vari-
ables that include all free variables of 7. By Lemma 2.55, by VP[~(VX)f =
((¥x).2= )]. By Corollary 2.54, VP[=(Vx)f] will be derivable in ETH + {=(Vx)f}.
Hence, VP[(Vx) » = ] is obtained by using axiom (A6).
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Lemma 2.57

If P is a sequence of variables that include all free variables of ., by VP[(Vx)
f = ((Vx) 7 t)], where tis - f.

Proof

Since f = .~is an instance of a tautology, Lemma 2.50 yields gy VP(VX)[f =
7). By axiom (A6), Fgry VP [(VX)[f = . 7] = [(V)f = (Vx).~]]. Hence, Fgpy VYP[(VX)
f = (Vx).#] by Lemma 2.51. Since (Vx).»= [(Vx).# < t] is an instance of a tautol-
ogy, Lemma 2.50 yields Fgpy VP[(VX).2 = [(Vx).7 < t]]. Now, by Lemma 2.52,
Fema VP [(VX)f = [(Vx). 7 < t]].

Given a formula ., construct a formula »* in the following way. Moving
from left to right, replace each universal quantifier and its scope by t.

Lemma 2.58

If P is a sequence of variables that include all free variables of 7, then
Ferg VP [(Vx) £ = [ 7]

Proof

Apply Lemma 2.57 successively to the formulas obtained in the stepwise
construction of »* We leave the details to the reader.

Proposition 2.59

ETH is a complete axiom system for inclusive validity, that is, a sentence .7is
inclusively valid if and only if it is a theorem of ETH.

Proof

Assume ~is a sentence valid for all interpretations. We must show that kg
». Since .#is valid in all nonempty domains, Proposition 2.56 implies that
is provable in ETH + {—(Vx)f}. Hence, by the deduction theorem,

(+) Fem ~(Vx)f = B.

Now, by Lemma 2.58,

(%) Fem (VX)f = [B & B*]
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(Since - has no free variables, we can take P in Lemma 2.58 to be empty.)
Hence, [(VX)f = [~ < "] is valid for all interpretations. Since (Vx)f is valid
in the empty domain and ~is valid for all interpretations, #* is valid in the
empty domain. But »* is a truth-functional combination of ts. So, ./* must
be truth-functionally equivalent to either t or f. Since it is valid in the empty
domain, it is truth-functionally equivalent to t. Hence, gy .2 Therefore by
(%), Fery (V0)f = 2. This, together with (+), yields Fgpy .2

The ideas and methods used in this section stem largely, but not entirely,
from a paper by Hailperin (1953).* That paper also made use of an idea in
Mostowski (1951b), the idea that underlies the proof of Proposition 2.59.
Mostowski’s approach to the logic of the empty domain is quite different
from Hailperin’s and results in a substantially different axiom system for
inclusive validity. For example, when .7 does not contain x free, Mostowski
interprets (Vx).~ and (3x).» to be .7 itself. This makes (Vx)f equivalent to f,
rather than to t, as in our development.

* The name ETH comes from “empty domain” and “Theodore Hailperin.” My simplification of
Hailperin’s axiom system was suggested by a similar simplification in Quine (1954).
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Formal Number Theory

3.1 An Axiom System

Together with geometry, the theory of numbers is the most immediately intui-
tive of all branches of mathematics. It is not surprising, then, that attempts to
formalize mathematics and to establish a rigorous foundation for mathemat-
ics should begin with number theory. The first semiaxiomatic presentation of
this subject was given by Dedekind in 1879 and, in a slightly modified form,
has come to be known as Peano’s postulates.* It can be formulated as follows:

(P1) 0 is a natural number.

(P2) If x is a natural number, there is another natural number denoted
by x’ (and called the successor of x).*

(P3) 0 # x’ for every natural number x.

(P4) If x'=y', then x=y.

(P5) If Q is a property that may or may not hold for any given natural
number, and if (I) 0 has the property Q and (II) whenever a natural
number x has the property Q, then x’ has the property Q, then
all natural numbers have the property Q (mathematical induction
principle).

These axioms, together with a certain amount of set theory, can be used to
develop not only number theory but also the theory of rational, real, and
complex numbers (see Mendelson, 1973). However, the axioms involve cer-
tain intuitive notions, such as “property,” that prevent this system from
being a rigorous formalization. We therefore shall build a first-order theory
S that is based upon Peano’s postulates and seems to be adequate for the
proofs of all the basic results of elementary number theory.

The language v, of our theory S will be called the language of arithmetic.
4 has a single predicate letter Af. As usual, we shall write t = s for A(t,s).

* For historical information, see Wang (1957).
* The natural numbers are supposed to be the nonnegative integers 0, 1,2, ....
+ The intuitive meaning of x" is x + 1.
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74 has one individual constant a,. We shall use 0 as an alternative notation
for a,. Finally, v, has three function letters, f!, f? and f7. We shall write (¢')
instead of f/'(t), (t +s) instead of f7(t,s), and (t-s) instead of f; (¢, s). However,
we shall write t, t + s, and t-s instead of (t'), (t + s), and (t-s) whenever this
will cause no confusion.

The proper axioms of S are

(1) x;=2x,= (x;=23= x, = X3)

82 x=x,2>x =x,

(S3) 0#xy

S4) x/=x'=>x,=x,

(S5) x; +0=x,

(S6) x1 +x;," = (x1 + x))'

(S7) x,-0=0

(88) x1-(x2)" = (x1-x2) +x3

(89) 2(0) = (VX)(#(x) = 2(x) = (¥x).2(x)) for any wf . (x) of S.

We shall call (S9) the principle of mathematical induction. Notice that axioms
(S1)—(S8) are particular wfs, whereas (S9) is an axiom schema providing an
infinite number of axioms*

Axioms (S3) and (54) correspond to Peano postulates (P3) and (P4), respec-
tively. Peano’s axioms (P1) and (P2) are taken care of by the presence of 0 as
an individual constant and f;' as a function letter. Our axioms (S1) and (S2)
furnish some needed properties of equality; they would have been assumed
as intuitively obvious by Dedekind and Peano. Axioms (S5)—(S8) are the
recursion equations for addition and multiplication. They were not assumed
by Dedekind and Peano because the existence of operations + and - satisfy-
ing (S5)-(S8) is derivable by means of intuitive set theory, which was presup-
posed as a background theory (see Mendelson, 1973, Chapter 2, Theorems
3.1 and 5.1).

Any theory that has the same theorems as S is often referred to in the lit-
erature as Peano arithmetic, or simply PA.

From (S9) by MP, we can obtain the induction rule:

A(O),(Vx)( 7(x)= //(x'))  (Vx). 7 (x).

It will be our immediate aim to establish the usual rules of equality; that is,
we shall show that the properties (A6) and (A7) of equality (see page 93) are
derivable in S and, hence, that S is a first-order theory with equality.

* However, (S9) cannot fully correspond to Peano’s postulate (P5), since the latter refers intui-
tively to the 2™ properties of natural numbers, whereas (S9) can take care of only the denu-
merable number of properties defined by wfs of ~,.
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First, for convenience and brevity in carrying out proofs, we cite some
immediate, trivial consequences of the axioms.

Lemma 3.1

For any terms ¢, s, r of ,, the following wfs are theorems of S.

Sl) t=r=>@t=s=>r=s)
S2) t=r=>t' =v

(S3) 0#£¢

S4) t=r=>t=r
(S5) t+0=t

S6) t+r=@t+r)
(S7) t-0=0

(S8) t-r'=(t-r)+t

Proof

(51)—(S8") follow from (S1)—(S8), respectively. First form the closure by means
of Gen, use Exercise 2.48 to change all the bound variables to variables not
occurring in terms ¢, 7, s, and then apply rule A4 with the appropriate terms
t,r,8*

Proposition 3.2

For any terms {, s, 7, the following wfs are theorems of S.

t=r=>s+t=s+r
t+r)+s=t+@+9

a. t=t

b. t=r=>r=t

c. t=r=>@F=s=>t=5s)
d r=t=>(=t=>r=s)
e. t=r=>t+s=r+s
f. t=0+t

g t+r=@F+7r)

h. t+r=r+t

i.

j-

* The change of bound variables is necessary in some cases. For example, if we want to obtain
X, =x; = x, =% from x; = x, = x;' = x,, we first obtain (Vx;)(Vx,)(x; = x, = x;" = x,"). We can-
not apply rule A4 to drop (Vx;) and replace x, by x,, since x, is not free for x, in (Vx,)(x; = x, =
x;’ =x,"). From now on, we shall assume without explicit mention that the reader is aware that
we sometimes have to change bound variables when we use Gen and rule A4.
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t=r=>t-s=r-s
0-t=0
tr=t-r+r
t-r=r-t
t=r=>s-t=s-r

1 t+0=t (S5)
2. t+0=t)=>(t+0=t=>t=1t) (S1)
3. t+0=t=>t=t 1,2, MP
4. t=t 1,3, MP
1L t=r=>@t=t=>r=1t (S1)
2. t=t=>(t=r=>r=t) 1, tautology, MP
3. t=r=>r=t 2, part (a), MP
1. r=t=>F=s=>t=5s) (S1)
2. t=r=>r=t Part (b)
3. t=r=>=s5s=>t=s) 1, 2, tautology, MP
1L r=t=>(t=s=>r=s) Part (¢)
2. t=s=>(r=t=>r=5) 1, tautology, MP
3. s=t=>t=s Part (b)
4 s=t=>@r=t=>r=5) 2, 3, tautology, MP
Apply the inductionruleto #(2: x=y=>x+z=y +z.
i 1. x+0=x (S5)
2. y+0=y (S5)
3. x=y Hyp
4 x+0=y 1, 3, part (c), MP
5 x+0=y+0 4,2, part (d), MP
6. Fsx=y=>x+0=y+0 1-5, deduction theorem
Thus, 5. #(0).
ii. L x=y=>x+z=y+z Hyp
2. x=y Hyp
3. x+z' =(x+2) (S6")
4. y+z' =(y+2 (S6")
5. x+z=y+z 1,2, MP
6. x+2)=Wy+2 5, (S2"), MP
7. x+z =(+2 3, 6, part (c), MP
8 x+z'=y+7 4,7, part (d), MP
9. Fsx=y=>x+z=y+2 = 1-§ deduction theorem twice

x=y=>x+z'=y+2)
Thus, b5 .%(z) = #(z'), and, by Gen, F4(Vz)(4(z) = #(z')). Hence,
Fs(Vz).#(z) by the induction rule. Therefore, by Gen and rule A4,
Fst=r=>t+s=r+s.
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f. Let #(x) bex=0+ x.
i. F50=0+0Dby (55), part (b) and MP; thus, 5.(0).

ii. 1. x=0+x Hyp
2. 0+x'=0+x) (S6")
3. x=0+x) 1, (52), MP
4. x'=0+x 3,2, part (d), MP
5. Fex=0+x=>x"=0+x' 1-4, deduction theorem

Thus, 5.2 (x) = 7 (x") and, by Gen, Fg(Vx)(#(x) = 2(x")). So, by (i),
(i) and the induction rule, ¢ (Vx)(x = 0 + x), and then, by rule A4,

Fst=0+t
g Let z(y)bex +y=(x+y).
i L. x¥+0=x (55"
2. x+0=x (55"
3. (x+0)=x 2,(52'), MP
4. x'+0=(x+0)y 1, 3, part (d), MP
Thus, 5. #(0).
ii. L X’ +y=@+y) Hyp
2. X +y =@ +y) (S6')
3 W+y=@x+y" 1, (82), MP
4. X' +y =@x+y 2, 3, part (c), MP
5 x+y =@x+y (S6')
6. x+y)Y=@x+y 5, (52"), MP
7. X +y =(x+yY) 4, 6, part (d), MP
8 kX' +y=x+y) => 1-7, deduction theorem
X+y =@x+y)

Thus, k5. 4(y) = #(y’'), and, by Gen, k- (Vy)(#(y) = .»(y’)). Hence, by
(i), (i), and the induction rule, k5 (Yy)(x" + y =(x + y)'). By Gen and
rule Ad, Hg t' +r=(t+71).

h. Let »(y)bex+y=y +x.

i 1. x+0=x (55"
2. x=0+x Part (f)
3. x+0=0+x 1, 2, part (c), MP
Thus, k5.7 (0).
ii. L x+y=y+x Hyp
2. x+y =(x+y) (S6")
3y +x=(y+x Part (g)
4. x+y' =W+ 1, (S2"), MP
5 x+y =Wy+x) 2,4, part (c), MP
6. x+y =y +x 5, 3, part (d), MP
7. bsx+y=y+x=> 1-6, deduction theorem

xX+y =y +x
Thus, k5 .4(y) = #(y’) and, by Gen, 5 (Yy)(#(y) = #(y)). So, by (i),
(ii) and the induction rule, 5 (Yy)(x + y = y + x). Then, by rule A4,
Genand rule A4, gt +r=r+t
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1. t=r=>t+s=r+s Part (e)
2. t+s=s+t Part (h)
3. r+s=s+vr Part (h)
4. t=vr Hyp
5. t+s=r+s 1, 4, MP
6. s+t=r+s 2,5, (S1') MP
7. s+t=s+r 6, 3, part (c), MP
8. Fgt=r=>s+t=s+r 1-7, deduction theorem
Let w(z)be (x +y) +z=x+ (y + 2).
i 1. @+y+0=x+y (S5)
2. y+0=y (S5)
3. x+W+0)=x+y 2, part (j), MP
4. x+y)+0=x+(w+0) 1, 3, part (d), MP
Thus, k5. #(0).
ii. 1. @+y)+z=x+W+2 Hyp
2. x+y)+z =((x+y +2 (S6")
3. (x+y) +2) =(x +(y +2)) 1, (82), MP
4. (x+y)+z =(x +(y +2))’ 2, 3, part (c), MP
5. y+z' =y +2’ (S6")
6. x+(y+z)=x+y+2 5, part (i), MP
7. x+W+2) =+ Yy +2) (S6")
8 x+y+z)=(x+{y+2) 6, 7, part (c), MP
9 (x+y+z' =x+({y+2) 4, 8, part (d), MP
10. Fsx+y)+z=x+{Yy+2) => 1-9, deduction theorem

x+y+z =x+y+2)

Thus, k¢ 4(z) = #(z') and, by Gen, 4 (Vz)(#(2)) = (#(2)). So, by (i), (ii) and
the induction rule, b4 (¥z).#(z), and then, by Gen and rule A4, Fq(t +7) +s =
t+(r+5s).

Parts (k)—(0) are left as exercises.

Corollary 3.3

S is a theory with equality.

Proof

By Proposition 2.25, this reduces to parts (a)—(e), (i), (k) and (o) of proposition
3.2, and (52').
Notice that the interpretation in which

a. The set of nonnegative integers is the domain
b. The integer 0 is the interpretation of the symbol 0
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c. The successor operation (addition of 1) is the interpretation of the ’
function (that is, of f;)

d. Ordinary addition and multiplication are the interpretations of +
and -

e. The interpretation of the predicate letter = is the identity relation

is a normal model for S. This model is called the standard interpretation or
standard model. Any normal model for S that is not isomorphic to the stan-
dard model will be called a nonstandard model for S.

If we recognize the standard interpretation to be a model for S, then, of
course, S is consistent. However, this kind of semantic argument, involving
as it does a certain amount of set-theoretic reasoning, is regarded by some
as too precarious to serve as a basis for consistency proofs. Moreover, we
have not proved in a rigorous way that the axioms of S are true under the
standard interpretation, but we have taken it as intuitively obvious. For these
and other reasons, when the consistency of S enters into the argument of a
proof, it is common practice to take the statement of the consistency of S as
an explicit unproved assumption.

Some important additional properties of addition and multiplication are
covered by the following result.

Proposition 3.4
For any terms t, 1, s, the following wfs are theorems of S.

a. t-(r+s)=(t-r)+(t-s) (distributivity)
b. (r+s)-t=(r-t)+(s-t) (distributivity)

c. (t-r)-s=t-(r-s) (associativity of -)

d. t+s=r+s=t=r/(cancellation law for +)

Proof

Prove bgx - (¥ + z) = (x - y) + (x - z) by induction on z.

Use part (a) and Proposition 3.2(n).

Prove b5 (x - y) - z=x - (v - 2) by induction on z.

Prove Fsx + z =y + z = x = y by induction on z. This requires, for the
first time, use of (54').

&en oo

The terms 0, 0/, 0", 0”, ... we shall call numerals and denote by 0,1,2,3, ...
More precisely, 0 is 0 and, for any natural number 1,7+1 is (). In general,
if n is a natural number, 77 stands for the numeral consisting of 0 followed
by n strokes. The numerals can be defined recursively by stating that 0 is a
numeral and, if u# is a numeral, then u’ is also a numeral.
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Proposition 3.5

The following are theorems of S.

— 2@ 0 0 T

Proof

@ o

t+s=0=>t=0As=0
t#0=>(5-t=0=>s5=0)
t+s=1=(t=0As=1)v(t=1As=0)
t-s=1=(t=1As=1)
t#0=@yt=y)
s#E0=>(t-s=r-s=>t=v)
t#£0=>(t#1=> @Qyt=y")

1. t+0 =(¢+0)y (S6)

2. t+0=t (S5)

3. (t+0)y=¢t 2,(S2), MP

4. t+0 =t 1, 3, Proposition 3.2(c), MP
5 t+1=¢ 4, abbreviation

1. t-0=t-0+t¢ (S8")

2. t-0=0 (87

3. t-0+t=0+t 2, Proposition 3.2(e), MP
4. t-0=0+t 1, 3, Proposition 3.2(c), MP
5. 0+t=t Proposition 3.2(f, b), MP

6. t-0'=t 4, 5, Proposition 3.2(c), MP
7 t-1= 6, abbreviation
Lot-(T)y=(t-1)+t (S8

2. t-1=t Part (b)

3. (t 1),+t =t+t 2, Proposition 3.2(e), MP
g t(T)=t+t 1,3, Proposition 3.2(c), MP
5. t-2=t+t 4, abbreviation

Let #(y) bex +y=0=x=0Ay=0.Itis easy to prove that I-5.7(0).
Also, since g (x + y) # 0 by (S3') and Proposition 3.2(b), it follows
by (S6') that Fgx + v’ # 0. Hence, -5 #(y’) by the tautology —A =
(A= B).So, Fs.2(y) = #(y’) by the tautology A = (B = A). Then, by
the induction rule, 5 (Vy).#(y) and then, by rule A4, Gen and rule
A4, we obtain the theorem.

The proof is similar to that for part (d) and is left as an exercise.
Useinductiononyinthe wf x+y=1=((x=0Ay=1)v(x=1Ay=0)).
Use inductiononyinx-y=1= (x=1Ay=1).

Perform induction on x in x # 0 = Jw)(x = w’).
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i. Lets(y)be(¥)z#0=>(x-z=y-z=>x=Y)).

i. 1.
2.

ii.

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

No O W

NG W

z#0

*Z

I
o O O

-z
-z
-z
x=0
Fez#0=>x-z=0-z=>x=0)
Fo(V2)z2#0=>(x-z=0-z

= x=0))
Thus, Fg.(0).

MWEz#0=>@x-z=y-z=>x=Y)

z#0
x-z=Yy' -z
y'#0
y-z#0
x-z#0
x#0

Fw)x = w)

x="b'

b'-z=y"-z
b-z+z=y-z+z
b-z=y-z
z#0=>0b-z=y-z=b=y)
b-z=y-z=>b=y

b=y
b=y
x=vy

’

Y, z#0,x-z=y -zbgx =y

7(Y) Fsz#0=>
x-z=y - -z=>x=v)
2(y) Fs(VX)(z # 0 =
x-z=y -z=>x=Y))
Fs 2(y) = 2(y)

161
Hyp
Hyp
Proposition 3.2(1)
2, 3 Proposition 3.2(c), MP
1, 4, part(e), MP

1-5, deduction theorem
6, Gen

Hyp (4(y))
Hyp

Hyp
(53'), Proposition 3.2(b), MP

2,4, part (e), a tautology, MP

3, 5, (S), tautologies, MP

6, (57"), Proposition 3.2(o, n),
(S1'), tautologies, MP

7, part (h), MP

8, rule C

3,9, (A7), MP

10, Proposition 3.2(m, d), MP
11, Proposition 3.4(d), MP

1, rule A4

2,13, MP

12, 14, MP

15, (S2'), MP

9, 16, Proposition 3.2(c), MP
1-17, Proposition 2.10

18, deduction theorem twice

19, Gen

20, deduction theorem

Hence, by (i), (ii), Gen, and the induction rule, we obtain Fg(Vy).#(y)
and then, by Gen and rule A4, we have the desired result.
j- This is left as an exercise.

Proposition 3.6

a. Letm and n be any natural numbers.

i If m#mn,thents m#n.

ii.

Fsm+n=m+nandm-n=m-n.
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b. Any model for S is infinite.
c.  For any cardinal number N, S has a normal model of cardinality ;.

Proof

a. i

ii.

Assume m # n. Either m < n or n <m. Say, m <n.

1. m=n Hyp
m times n times
- o o
2. 0./ =0".. 1 is an abbreviation of 2
n—m times
-

3. Apply (54') and MP m times in a row. We get 0=0".. Let be
n—-m-1.Since n > m, n —m =1 > 0. Thus, we obtain 0 = t".

4. 0#1 (S3")

5. 0=t'AQ0#t 3, 4, conjunction introduction
6. m=nks0=t'A0=t 1-5

7. kkm#n 1-6, proof by contradiction

A similar proof holds in the case when n < m. (A more rigor-
ous proof can be given by induction in the metalanguage with
respect to n.)

We use induction in the metalanguage. First, m+0 is m.
Hence, ks m+0 = 11+0 by (S5). Now assume s 71+ = i +1i.

Then ks (m+n) i+(7i) by (52) and (S6). But m+(n+1)

is (m+n)’ and n+1 is (ﬁ)'. Hence, m+(n+1):771+(m).

Thus, ks m+n =m+n. The proof that s m-n =m-n is left as an
exercise.

b. By part (a), (i), in a model for S the objects corresponding to the
numerals must be distinct. But there are denumerably many
numerals.

c. This follows from Corollary 2.34(c) and the fact that the standard
model is an infinite normal model.

An order relation can be introduced by definition in S.

Definitions

In the first definition, as usual, we choose w to be the first variable notin t or s.

t<s forQw)(w#0Aw+t=s)
t<s fort<svt=s

t>s fors<t

t>s fors<t

t«s for—(t<s),and so on
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Proposition 3.7

For any terms ¢, 1, s, the following are theorems.

NNYXSEAE +0n0DBOPE mnFe 50 0 0 TP

t £t
t<s=>(s<r=>t<r)
t<s=>stt
I<sot+r<s+r
t<t
t<s=>(@E<r=t<v)
t<sot+r<s+r
t<s=>(s<r=>t<r)
o<t

0<t

t<ret' <r
t<ret<r

t<t
0<1,1<2,2<3,...
t#£r=>t<rvr<i
t=rvit<rvr<t
t<rvr<t

t+r>t
r£0=>t+r>t
r£0=>t-r>t
r£0sr>0
r>0=>@t>0=>r-t>0)
r£0=>@t>1=>t-r>r)
r#0=>(t<sot-r<s-n
r#0=>(t<sot-r<s-r
t£0
t<rAr<t=>t=r

Proof

a. 1. t<t
2. Qw(w#0Aw+t=1t)
3. b#0Ab+t=t
4. b+t=t
5. t=0+t
6. b+t=0+t
7 b=0
8. b#0
9. b=0Ab#0

10. 0=0A0#0
1. t<tks0=0A0#0
12. ottt

Hyp
1 is an abbreviation of 2

2, rule C

3, conjunction rule
Proposition 3.2(f)

3, 4, Proposition 3.2(c), MP

6, Proposition 3.4(d), MP

3, conjunction elimination

7, 8, conjunction elimination
9, tautology: B A =B = C, MP
1-10, Proposition 2.10

1-11, proof by contradiction
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1 t<s Hyp
2. s<r Hyp
3. Aww#0Aw+t=5) 1 is an abbreviation of 3
4. A #0Av+s=71) 2 is an abbreviation of 4
5. b#0Ab+t=s 3, rule C
6. cO0AC+s=r 4, rule C
7 b+t=s 5, conjunction elimination
8. c+s=r 6, conjunction elimination
9. c+b+t)=c+s 7, Proposition 3.2(i), MP
10. c+(b+t)=r 9, 8, Proposition 3.2(c), MP
1. c+b)+t=r 10, Proposition 3.2(j, ¢), MP
12. b#0 5, conjunction elimination
13. ¢c+b#0 12, Proposition 3.5(d), tautology, MP
4. c+b#0A(c+D)+t=7 13, 11, conjunction introduction
15, Qu)u#0Au+t=r) 14, rule E4
16. t<r Abbreviation of 15

17 bgt<s=>(s<r=>1t<7) 1-15, Proposition 2.10,
deduction theorem

Parts (c)—(z') are left as exercises.

Proposition 3.8

a. For any natural number k,Fs x=0v ... vx ko xﬁlz.

a’. For any natural number k and any wf 7,5 7 (0)A (1) A ... A (k) <
(Vx)(x <k = 7(x)). - B

b. For any natural number k>0, x=0v ... vx=(k-1) = x <k

b. For any natural number k > 0 and any wf 7,k 2(0)A
72(A ... Azk-1) < (V) (x <k = 7(x)).

¢ Fs(M)x<y=>20)ANM)x>y=> 7)) => (¥x)(2®)V < (x)

Proof
a. We prove ks x=0v...vx= ke x<k by induction in the metalan-

guage on k. The case for k=0, x=0< x <0, is obvious from the
definitions and Proposition 3.7, Assume as inductive hypothesis
Fsx=0v..vx=k < x<k. Now assume x=0v ...vx=kvx=k+1
But tsx=k+1=x<k+1 and, by the inductive hypothesis,
Fsx=0v...vx=k = x<k.Alsors x<k = x<k+1 Thus, x <k +1. So,
Fsx=0v ... vx=kvx=k+1l=x<k+1. Conversely, assume x <k +1.
Then x=k+1vx<k+1 If x=k+1, then x=0v ..vx=kvx=k+1
If x<k+1, then since k+1 is (k), we have x<k by Proposition
3.7(1). By the inductive hypothesis, x=0v ... vx =k, and, therefore,
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x=0v..vx=kvx=k+1 In either case, x=0v ...vx=kvx=k+1.

This proves ks x<k+1=x=0v ... vx =k vx=k+1 From the induc-
tive hypothesis, we have derived s x=0v ...vx=k+1o x<k+1
and this completes the proof. (This proof has been given in an infor-
mal manner that we shall generally use from now on. In particular,
the deduction theorem, the eliminability of rule C, the replacement
theorem, and various derived rules and tautologies will be applied
without being explicitly mentioned.)

Parts (@), (b), and (b’) follow easily from part (a). Part (c) follows almost imme-
diately from Proposition 3.7(0), using obvious tautologies.

There are several other forms of the induction principle that we can prove
at this point.

Proposition 3.9

a. Complete induction. Fg(¥x)(V2)(z < x = #(2)) = .2 (x)) = (Vx).~ (x). In ordi-
nary language, consider a property P such that, for any x, if P holds for
all natural numbers less than x, then P holds for x also. Then P holds
for all natural numbers.

b. Least-number principle. F¢ (3x).7(x) = Q)2 (y) A (V2)z <y = ~4(z). If a
property P holds for some natural number, then there is a least number
satisfying P.

Proof

a. Let 7 (x) be (V2)(z < x = %(2).

i 1. (M)(V2)z <x=> #(2) = #(%)) Hyp
2. (V2)(z< 0= %(2) = #(0) 1, rule A4
3. z £0 Proposition 3.7(y)
4. (V2)(z<0=> 4(2) 3, tautology, Gen
5. #(0) 2,4, MP
6. (V2)z<0=> %(z)ie., ~(0) 5, Proposition 3.8(a’)
7. (V)(Y2)(z < x = 4(2)) 1-6
= /() ks 7 (0)
ii. 1. (V0)(V2)(z <x = 2(2)) = #(x) Hyp
2. 7 (x),ie, (V2)z<x=> 4(2) Hyp
3. (V2)(z<x' = 2(2) 2, Proposition 3.7(f)
4. (V2)z<x' = 4(2) > 4(x') 1, rule A4
5 2" 3,4, MP
6. z<x'>z<x'Vz=x Definition, tautology
7. z<x' = 4(2) 3, rule A4
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8. z=x"= 2(2) 5, axiom (A7), Proposition
2.23(b), tautologies
9. (V2)z <x' = 7(2)ie, 7 (x) 6,7, 8, Tautology, Gen

10. (V0)(V2)(z < x = #(2)) = #(%)) 1-9, deduction theorem, Gen
Fs (V(7 (¥) = ~ ()

By (i), (i), and the induction rule, we obtain o k¢ (Vx)~ (x), that is, & k5 (Vx)
(V2)z £ x = 2(2)), where 7 is (Vx)(V2)(z < x = 2(2)) = 7(x)). Hence, by rule
A4 twice, 7 Fgx < x = .7(x). But Fgx < x. So, 7 5 .7(x), and, by Gen and the
deduction theorem, ¢ 7 = (Vx).%(x).

b. 1. =@E(4(y) A (V2)

@ <y=-42) Hyp

2. (Vy) ~(2(y) A (V2) 1, derived rule for negation
(z<y==4)

3. (V(Va)z<y=> 2, tautology, replacement
@) = )

4. (Vy) ~2(y) 3, part (a) with = ~instead of .»

5. =3Fy)2(y) 4, derived rule for negation

6. —(Fx) z(x) 5, change of bound variable

7. B @) A V2)z<y => 1-6, deduction theorem
—/(2)) = ~(3x) #(x)

8. Fs(An).4(x) = Ay)(2(y) A (V2) 7, derived rule
<y =)

Exercise

3.1 (Method of infinite descent)
Prove k¢ (Vx)(2(x) = Ay)(y <x A 2(y))) = (Vx) ~2(x)

Another important notion in number theory is divisibility, which we now
define.

Definition

t|s for (3z)(s = t - z). (Here, z is the first variable not in t or s.)
Proposition 3.10

The following wfs are theorems for any terms ¢, s, r.

|t

a.
b. 1]t
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c t|0
d. t|sAs|r=t|r
e. s£EO0At|s=>t<s
f. tlsAs|t=>s=t
g. tls=>t|(r-9)
h. tsAt|r=>t|s+7)
Proof
a. t=t-1. Hence, t|t.
b. t=1-t. Hence, 1|t.
c. 0=t-0.Hence, t|0.
d. Ifs=t-zandr=s-w,thenr=t-(z-w).
e. Ifs#0andt|s, thens=t-zfor somez. If z=0, thens = 0. Hence, z # 0.

So,z=u'forsome u. Thens=t-W)=t-u+t>t.
f-h. These proofs are left as exercises.

Exercises

3.2 Prove kst|1=t=1.
3.3 Provelg(t|sAt|s)=>t=1.

It will be useful for later purposes to prove the existence of a unique quo-

tient and remainder upon division of one number x by another nonzero
number y.

Proposition 3.11

by #0=(3u)()[x=y-u+varv<y

AV ) (Vo )(x =y + v AT <Y) D U= AV =1)]

Proof

Let #(x) bey #0=> Fu)@Av)x=y-u+vAv<Y).

i L y#0 Hyp
2. 0=y-0+0 (S5), (57')
3. O<y 1, Proposition 3.7(t)
4. 0=y-0+0A0<y 2, 3, conjunction rule
5 @Au@)0=y-u+vAv<y) 4, rule E4 twice
6. y#0=>Au@)0=y - u+vAv<Y) 1-5, deduction theorem



168 Introduction to Mathematical Logic

ii. 1. #(x),ie,y#0= Ju)(F0o) Hyp
x=y-u+vAv<Y)
2. y#0 Hyp
3. @w@vx=y-u+vAv<y) 1,2, MP
4 x=y-a+bAb<y 3, rule C twice
5 b<y 4, conjunction elimination
6. b'<y 5, Proposition 3.7(k)
7. b<yvb =y 6, definition
8. V<y=>=y-a+b Ab <y) 4, (S6'), derived rules
9 V<y=>@Auw@)x' =y-u+vAv<y) 8§, ruleE4, deduction theorem
10. b=y=>x'=y-a+y-1 4, (S6), Proposition 3.5(b)
1L V=y=@=y(a+1) 10, Proposition 34, 2,
+0A0<y) Proposition 3.7(t), (S5')
12. b'=y=> Au@E@)x' =y-u 11, rule E4 twice, deduction
+UADLY) theorem
13. Q@)X =y -u+vAv<Yy) 7,9, 12, disjunction elimination
14. »(x) = (y # 0= (Fu)(Iv) 1-13, deduction theorem

x'=y-u+vAv<y),
ie., 7(x) = #(x)

By (i), (ii), Gen and the induction rule, k- (Vx).27(x). This establishes the exis-
tence of a quotient u and a remainder v. To prove uniqueness, proceed as
follows. Assume y #0. Assumex=y-u+vAv<yandx=vy-u; +v; Av; <Y.
Now, u = u; or u < u, or uy < u. If u = u,, then v = v; by Proposition 3.4(d). If
u<uy, thenuy,=u+wforsomew#0.Theny - u+v=y-(u+w)+v,=y-u+
y-w+7v. Hence,v=y -w+v,.Sincew#0,y-w>y.S0,v=y-w+7v,>Y,
contradicting v < y. Hence, u « u,. Similarly, u, ¢ u. Thus, u = u,. Sincey - u +
v=x=Y-u; +v, it follows thatv =1v,.

From this point on, one can generally translate into S and prove the results
from any text on elementary number theory. There are certain number-the-
oretic functions, such as x¥ and x!, that we have to be able to define in S,
and this we shall do later in this chapter. Some standard results of number
theory, such as Dirichlet’s theorem, are proved with the aid of the theory of
complex variables, and it is often not known whether elementary proofs (or
proofs in S) can be given for such theorems. The statement of some results
in number theory involves nonelementary concepts, such as the logarithmic
function, and, except in special cases, cannot even be formulated in S. More
information about the strength and expressive powers of S will be revealed
later. For example, it will be shown that there are closed wfs that are neither
provable nor disprovable in S, if S is consistent; hence there is a wf that is
true under the standard interpretation but is not provable in S. We also will
see that this incompleteness of S cannot be attributed to omission of some
essential axiom but has deeper underlying causes that apply to other theo-
ries as well.
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Exercises

3.4 Show that the induction principle (59) is independent of the other axi-
oms of S.

3.5 a. Show that there exist nonstandard models for S of any cardinality Na.

b. Ehrenfeucht (1958) has shown the existence of at least 2™ mutually
nonisomorphic models of cardinality Ro. Prove the special case that
there are 2™ mutually nonisomorphic denumerable models of S.
3.6P Give a standard mathematical proof of the categoricity of Peano’s pos-
tulates, in the sense that any two “models” are isomorphic. Explain
why this proof does not apply to the first-order theory S.
3.7° (Presburger, 1929) If we eliminate from S the function letter f; for mul-
tiplication and the axioms (57) and (S8), show that the new system S, is
complete and decidable (in the sense of Chapter 1, page 27).

3.8 a. Show that, for every closed term ¢ of S, we can find a natural num-
ber n such that k5 t = 7.

b. Show that every closed atomic wf t = s of S is decidable—that is,
either kgt = s or gt #s.

c. Show that every closed wf of S without quantifiers is decidable.

3.2 Number-Theoretic Functions and Relations

A number-theoretic function is a function whose arguments and values are nat-
ural numbers. Addition and multiplication are familiar examples of number-
theoretic functions of two arguments. By a number-theoretic relation we mean
a relation whose arguments are natural numbers. For example, = and < are
binary number-theoretic relations, and the expression x + y < z determines a
number-theoretic relation of three arguments* Number-theoretic functions
and relations are intuitive and are not bound up with any formal system.

Let K be any theory in the language , of arithmetic. We say that a num-
ber-theoretic relation R of 7 arguments is expressible in K if and only if there
is a wf .7 (x,, ..., x,) of K with the free variables x,, ..., x, such that, for any
natural numbers k,, ..., k,, the following hold:

1. IfR(k,, ... k,) is true, then k¢ (l;l, e En).
2. IfR(k,, ..., k,) is false, then lx — # (El, ..k,

)-

* We follow the custom of regarding a number-theoretic property, such as the property of
being even, as a “relation” of one argument.



170 Introduction to Mathematical Logic

For example, the number-theoretic relation of identity is expressed in S by
the wf x; = x,. In fact, if k; = k,, then k; is the same term as k, and so, by
Proposition 3.2(a), ks k1 = k,. Moreover, if k; # k,, then, by Proposition 3.6(a),
l_s El ES Ez.

Likewise, the relation “less than” is expressed in S by the wf x; < x,. Recall
that x; < x, is (3x;)(x; # 0 A x3 + x; = x,). If k; < k,, then there is some nonzero
number # such that k, = n + k;. Now, by Proposition 3.6(a)(ii), Fs k» =1 +k;.
Also, by (53'), since nn # 0, s 71 # 0. Hence, by rule E4, one can prove in S the wf
(Eiw)(w #0Aw+k = kz); that is, ks k; < k,. On the other hand, if k, « k,, then
k, <k, or k, = k. If k, < k;, then, as we have just seen, s k, < k;. If k, = k;, then
ks k; = ky. In either case, ks k» < k; and then, by Proposition 3.7(a,c), s ki ¢ k.

Observe that, if a relation is expressible in a theory K, then it is expressible
in any extension of K.

Exercises

3.9 Show that the negation, disjunction, and conjunction of relations
that are expressible in K are also expressible in K.

3.10 Show that the relation x + y = z is expressible in S.

Let K be any theory with equality in the language «, of arithmetic. A num-
ber-theoretic function f of n arguments is said to be representable in K if and
only if there is a wf #(x,, ..., x,, y) of K with the free variables x,, ..., x,, y such
that, for any natural numbers k,, ..., k,, m, the following hold:

L Iff(k, ..., k) =m, then k¢ s (ki, ..., ky,im).
2. ()~ (1;1, ., En,y).

If, in this definition, we replace condition 2 by
2.t (Fw) 7 (x1, o 20 y).
then the function f is said to be strongly representable in K. Notice

that 2’ implies 2, by Gen and rule A4. Hence, strong representability
implies representability. The converse is also true, as we now prove.

Proposition 3.12 (V.H. Dyson)

If f(x,, ..., x,) is representable in K, then it is strongly representable in K.

Proof

Assume f representable in K by a wf %(x,, ..., x,, y). Let us show that f is
strongly representable in K by the following wf « (x,, ..., x,, y):

([(Elly) (21,0, xn,y)J/\ (21,0, xn,y))v(—‘[(ﬂly) //(xl,...,xn,y)]/\yzo)
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1. Assllme ji(kl,..., k) = m. Then rx //(E1/~~~/En/m) and t¢ (Giy)
,//(kl, sy kn,y). So, by conjunction introduction and disjunction

introduction, we get k¢ (kl, ey kn,m).
2". We must show k¢ (3,y) 7 (x4, ..., x,, V).

Case 1. Take (31y).7 (x4, ..., x,, ¥) as hypothesis. (i) It is easy, using rule C,
to obtain #(xy, ..., x,, b) from our hypothesis, where b is a new individual
constant. Together with our hypothesis and conjunction and disjunction
introduction, this yields « (x, ..., x,, b) and then, by rule E4, (Jy)~ (x, ...,
X,, y). (ii) Assume « (x,, ..., X, ) A 7 (X4, ..., X,,, ). From # (x,, ..., x,, u) and
our hypothesis, we obtain #(xy, ..., x,, u), and, from « (x,, ..., x,, v) and our
hypothesis, we obtain .%(x,, ..., x,, v). Now, from »(xy, ..., x,, u) and .»(xy, ...,
x,, v) and our hypothesis, we get u = v. The deduction theorem yields « (x;,

o Xy WA (X, ..., X, v) = u =0. From (i) and (ii), (3y) ~ (xy, ..., x,, y). Thus,
we have proved Fy(3,y). 7(xy, ..., X, ¥) = (F1y) < (X1, ..., X Y).

Case 2. Take =(3y).#(xy, ..., x,, ) as hypothesis. (i) Our hypothesis, together
with the theorem 0 = 0, yields, by conjunction introduction, =(3,y). #(x,, ..., x,,
y) A, 0 = 0. By disjunction introduction, ~ (x,, ..., x,, 0), and, by rule E4, (3y)
(X, .0y X, Y). (i) Assume < (xy, ..., X, U) A 7 (X, ..., X, 0). From « (x,, ..., x,, u)
and our hypothesis, it follows easily that u = 0. Likewise, from « (x;, ..., x,, 0)
and our hypothesis, v = 0. Hence, u = v. By the deduction theorem, « (x, ..., x,,
u) A7 (xy, ..., x,, v) = u =0 From (i) and (ii), (3,y) ~ (x,, ..., x,, y). Thus we have
proved by =(3yy) #(xy, ..., X, ¥) = QW) Xy oo X Y).

By case 1 and case 2 and an instance of the tautology [(D = E) A (- D = E)] =
E, we can obtain F(3,y)~ (xy, ..., X, ).

Since we have proved them to be equivalent, from now on we shall use
representability and strong representability interchangeably.

Observe that a function representable in K is representable in any exten-
sion of K.

Examples

In these examples, let K be any theory with equality in the language .

1. The zero function, Z(x) = 0, is representable in K by the wf x; = x; A
y = 0. For any k and m, if Z(k) = m, thenm =0 and Fx k =k A0=0;
that is, condition 1 holds. Also, it is easy to show that F(3,y)(x; = x;
Ay = 0). Thus, condition 2’ holds.

2. The successor function, N(x) = x + 1, is representable in K by the
wf y = x,". For any k and m, if N(k) = m, then m = k + 1; hence, m is k'.
Then k¢ m =k . It is easy to verify that F(3,)(y = x").

3. The projection function, U} (xi, ..., x,) = x;, is representable in K
by X, =X, AX, =X, A o AX, =X, Ay =x. U] (ky, ..., k) =m,
then m = k. Hence, k¢ ki =kink, =k~ ... Ak, =k, nm=k;. Thus,
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condition 1 holds. Also, F¢ (F)(x; =X AX, =X, A ... AX, =X, AY =X),
that is, condition 2’ holds.

4. Assume that the functions g(x,, ..., x,,), by(xy, ..., X,), ..., B, (x4, -.., X))
are strongly representable in the theory with equality K by the
wis 7 (xy, .., X, 2), A&y oo Xy Yo oo Xy, oo Xy Y, TESpectively.
Define a new function f by the equation

fx, .o, xn)zg(hl(xl, ceer X )y e B (21, x,,))

fis said to be obtained from g, h,, ..., h,, by substitution. Then fis also strongly
representable in K by the following wf (x,, ..., x,, 2):

(Hyl) (Elym)( (X1, e X Y1) A e A //;n(xl, s X Y ) A7 (Y1 e ym,z))

To prove condition 1, letf(k,, ..., k,) = p. Let h(k,, ..., k,) =r,for 1 <j <m; then g(r,,
.o 1) =p. Since ¢, 4, ..., 4, represent g, hy, ..., h,, we have ¢ (El, e E,,,E)
for 1<j<m and Hrx~ (71, ety Fm,ﬁ). So by conjunction introduction,
b alk, ..., l?n,ﬁ)/\ A //,,Z(El, .., En,?m)/\ /(A ... 7w, P). Hence, by rule E4,
H 7k, .., k,,,f)). Thus, condition 1 holds. Now we shall prove condition 2".
Assume 7(x, ..., x,, ) A 7(x,, ..., X, V), that is

(A) (Elyl)...(ﬂym)(//l(xl, s X Y1) A e A (X, e X Y ) A (Y- ym,u))

And

(D)(Elyl)...(Elym)(A’l(xl, e X Y1) A A i (X, s X Y ) A (11 ...,ym,v))
By (4), using rule C m times,

A‘l(xl, [ Xn,bl)/\ /\//m(xl, ey x,,,bm)/\/ (bl, ey bm,u)

By (O) using rule C again,
(X1 oo X, O A e A (X1, ooy Xy € ) A7 (€1, oy €, 0)
Since ¢ (3yy) 4(xy, .-, X,, y), we obtain from . (x,, ..., x,, b) and B/(x,, ..., x,, ¢),

that b, = ¢ From » (b, ..., b,, w) and b, = ¢, ..., b,, = ¢, we have ¢ (c,, ..., ¢,,, 1).
This, with k¢ (3,2)7 (xy, ..., x,, 2) and # (cy, ..., ¢,,, V) yields u = v. Thus, we have
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shown by 7 (xy, ..., x,, u) A 7 (x4, ..., X,, V) = u = 0. It is easy to show that k- (32)
7 (xy, ..., X,, 2). Hence, F¢ (3,2) 7 (xy, ..., X, 2).

Exercises

3.11 Let K be a theory with equality in the language . Show that the fol-
lowing functions are representable in K.
a. Z,(xy, ..., x,) = 0| Hint: Z,(x1, ..., X,) = Z(U} (x1, ..., X,)). |
b. C{(x1, ..., x,) =k, where k is a fixed natural number. [Hint: Use
mathematical induction in the metalanguage with respect to k|
3.12 Prove that addition and multiplication are representable in S.

If R is a relation of n arguments, then the characteristic function Cy
is defined as follows:

c ( ) 0 if R(xy, ..., x,)is true
X1, ey Xp )= . .
AN 1  if R(xy, ..., x,)is false

Proposition 3.13

Let K be a theory with equality in the language 7, such that 0 # 1. Then a
number-theoretic relation R is expressible in K if and only if Cy, is represent-
able in K.

Proof

If R is expressible in K by a wf 7 (x,, ..., x,), it is easy to verify that Cy is rep-
resentable in K by the wf ( (X1, 0 X)) A Y =0)v(—| (X1, o) Xn ) AY =T).
Conversely, if Cy is representable in K by a wf « (x;, ..., x,,, ), then, using the
assumption that k 0 # 1, we can easily show that R is expressible in K by the
wt 7 (xq, ..., x,, 0).

Exercises

3.13 The graph of a function f(x,, ..., x,) is the relation f(x,, ..., x,) = x,,,;. Show
that f(x,, ..., x,) is representable in S if and only if its graph is expressible
inS.

3.14 If Q and R are relations of n arguments, prove that C ;=1 - Cg,
Cor=Cq Crand Cg,nar =Co+ Cr—Cq - Ci.

3.15 Show that f(x,, ..., x,) is representable in a theory with equality K in the
language v, if and only if there is a wf »(xy, ..., x,, y) such that, for any
ky ...k, m, if ik, ..., k,) = m, then Fg (Vy)( sk, k) Sy = m)
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3.3 Primitive Recursive and Recursive Functions

The study of representability of functions in S leads to a class of number-
theoretic functions that turn out to be of great importance in mathematical

logic and computer science.

Definition

1. The following functions are called initial functions.
I. The zero function, Z(x) = 0 for all x.
II. The successor function, N(x) = x + 1 for all x.

1L The projection functions, U}’ (x1, ..., x,)=x; forall x,, ..., x

ne

2. The following are rules for obtaining new functions from given
functions.

IV. Substitution:

fx, .. x,,,):g(hl(xl, s X )y ey B (1, x,,))

fis said to be obtained by substitution from the functions

g(yl/ ceey ym)rhl(xlr ceey xn)r Ry hm (xl/ ceey xn)

V. Recursion:

VL

f(xlr Yy xn/o):g(xlr ceey xn)
f(x, .o xn,y+1):h(x1, s X, Y f (31, x,,,y))

Here, we allow n = 0, in which case we have

f(0)=k wherek is a fixed natural number
fy+D)=h(y, f(v))

We shall say that f is obtained from g and / (or, in the case n = 0,
from h alone) by recursion. The parameters of the recursion are
Xy, ..., X,. Notice that fis well defined: f(x,, ..., x,, 0) is given by the
first equation, and if we already know f(x,, ..., x,, y), then we can
obtain f(x,, ..., x,, y + 1) by the second equation.

Restricted p-Operator. Assume that g(x;, ..., x,, y) is a func-
tion such that for any x,, ..., x, there is at least one y such that



Formal Number Theory 175

g(xy, ..., x,, ) = 0. We denote by py(g(xy, ..., x,, y) = 0) the least
number y such that g(x,, ..., x,, y) = 0. In general, for any rela-
tion R(x,, ..., x,, y), we denote by pyR(x,, ..., x,, ) the least y
such that R(xy, ..., x,, y) is true, if there is any y at all such that
R(x, ..., x,, y) holds. Let f(x;, ..., x,) = py(g(xy, ..., x,, y) = 0).
Then f is said to be obtained from g by means of the restricted
p-operator if the given assumption about g holds, namely, for
any x,, ..., x,, there is at least one y such that g(x,, ..., x,, ) = 0.

3. A function f is said to be primitive recursive if and only if it can be
obtained from the initial functions by any finite number of substitu-
tions (IV) and recursions (V)—that is, if there is a finite sequence
of functions f,, ..., f, such thatf, = fand, for 0 <i < n, either f; is an
initial function or f; comes from preceding functions in the sequence
by an application of rule (IV) or rule (V).

4. A function f is said to be recursive if and only if it can be obtained from
the initial functions by any finite number of applications of substitution
(IV), recursion (V) and the restricted p-operator (VI). This differs from
the definition above of primitive recursive functions only in the addi-
tion of possible applications of the restricted p-operator. Hence, every
primitive recursive function is recursive. We shall see later that the con-
verse is false.

We shall show that the class of recursive functions is identical with the class
of functions representable in S. (In the literature, the phrase “general recur-
sive” is sometimes used instead of “recursive.”)

First, let us prove that we can add “dummy variables” to and also per-
mute and identify variables in any primitive recursive or recursive function,
obtaining a function of the same type.

Proposition 3.14

Let g(y,, ..., vy be primitive recursive (or recursive). Let x,, ... x, be distinct
variables and, for 1 <i <k, let z; be one of x,, ..., x,. Then the function f such
that f(x,, ..., x,) = 9(zy, ..., z) is primitive recursive (or recursive).

Proof

Let z; = xj, where 1 <j; <n. Then z; =Uj/(xy, ..., x,). Thus,

fx, ... xn)zg(llj”l (%1, ooy X)), oo, Uy (31, -0y xn))

and therefore f is primitive recursive (or recursive), since it arises from
g,Uj, ..., Uj by substitution.
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Examples

1. Adding dummy variables. If g(x,, x5) is primitive recursive and if f(x;, x,,
x3) = g(xy, x3), then f(x,, x,, x3) is also primitive recursive. In Proposition
3.14, let z; = x; and z, = x;. The new variable x, is called a “dummy
variable” since its value has no influence on the value of f(x,, x,, x5).

2. Permuting variables. If g(x,, x,, x5) is primitive recursive and if f(x;,
X, X3) = g(xs, Xy, X,), then f(xy, x,, x3) is also primitive recursive. In
Proposition 3.14, let z; = x5, z, = xy, and z; = x,.

3. Identifying variables. If g(x,, x,, x5) is primitive recursive and if f(x;, x,) =
g(xy, x5, x7), then f(xy, x,) is primitive recursive. In Proposition 3.14, let
n=2and z; = x;, z, = X, and z; = x;.

Corollary 3.15

a. The zero function Z,(x,, ..., x,) = 0 is primitive recursive.

b. The constant function Cy (xl, e x,,) =k, where k is some fixed nat-
ural number, is primitive recursive.

c. The substitution rule (IV) can be extended to the case where each
h; may be a function of some but not necessarily all of the variables.
Likewise, in the recursion rule (V), the function ¢ may not involve
all of the variables x, ..., x,, y, or f(x,, ..., x,, ¥) and h may not involve all
of the variables x;, ..., x,, y, or f(x,, ..., X, ).

Proof

a. In Proposition 3.14, let g be the zero function Z; then k = 1. Take
z, to be x;.

b. Use mathematical induction. For k = 0, this is part (a). Assume Cy
primitive recursive. Then Ci,1(xy, ..., x,,) is primitive recursive by
the substitution Ciy (x1, ..., x,) = N(C}J (x1, ..., x,,)).

c. By Proposition 3.14, any variables among x;,, ..., x, not
present in a function can be added as dummy vari-
ables. For example, if h(x;, x;) is primitive recursive, then
B*(x1, %2, %3) =h(x1,x3) = h(ll]?’ (x1,x2,23),U3 (xl,xz,x3)) is also
primitive recursive, since it is obtained by a substitution.

Proposition 3.16

The following functions are primitive recursive.

a. x+y
b. x-y
c xv
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Proof

a9

°oB B —~rFe

5(x) = x—1 ifx>0
=0 ifx=0

8 is called the predecessor function.
x-— if x >

xey= Yy 1 Yy
0 ifx<y

X— if x>
x—y={ ! /

y—x ifx<y
0 ifx=0
Sg(x)_{1 if x £ 0
s2(x) = 1 ifx=0
B0 ifx=0
x!

min (x, ¥) = minimum of x and y

min (xy, ..., X,)

max (¥, ¥) = maximum of x and y

max (xy, ..., X,)

rm (x, y) = remainder upon division of y by x
qt (x, y) = quotient upon division of y by x

Recursion rule (V)

x+0=x or  f(x,0)=U{(x)
x+(y+1)=N(x+y) fx,y+1)=N(f(x,y))

x-0=0 or ¢g(x,0)=2Z(x)
x-(y+1)=(x-y)+x 9(x,y+1) = fg(x,y), %)
where fis the addition function
1 =1
XV = (x-'?’) X
8(0)=0

Sy+D=y

x=0=x

x=(y+1)=08(x~y)
|x—y|=(x=y)+(y=x) (substitution)
sg(x) =x =8(x) (substitution)

%(x) =1+sg(x) (substitution)
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i 0!'=1
y+D!I=H-(y+1
j. min(x,y)=x=(x+y)
k. Assume min (xy, ..., x, ) already shown primitive recursive.

min(xy, ..., x,,,xn+1):min(min(x1, .., xn),xm)

L max(x,y)=y+(x~y)

m. max(x, ..., xn,xm):max(max(xl, .., xn),xm)

n. rm(x,0)=0

rm(x,y +1) = N(rm(x, y))-sg(| x — N(rm(x, y))| )
o. qt(x,0)=0

qt(x,y +1) = gt(x, y) +sg(lx ~ Nm(x,y)))

In justification of (1) and (0), note that, if g4 and r denote the quotient qt(x, )
and remainder rm(x, y) upon division of y by x, theny =gx + rand 0 <r < x.
So,y+1=gx+(r+1).Ifr+1<x (thatis, if |x -N(rm(x, y))|> 0), then the quo-
tient qt(x, y + 1) and remainder rm(x, y + 1) upon division of y + 1 by x are g
and r + 1, respectively. If r + 1 = x (that is, if |x -N(@rm(x, y))| =0), theny +1 =
(@ + Dx, and qt(x, y + 1) and rm(x, y + 1) are g + 1 and 0, respectively.*

Definitions

Z ( )_ 0ifz=0
T 5002 s,y 3y, 0t f 3 o 2 250

y<z
Zf(xll ceey xn/y): Z f(xll ceey xn/y)
y<z y<z+1

B 1ifz=0
IIfu“””x“y%_f@h“qum.“f@h“quz—h if2>0

y<z
Hf(xlr (XY xn/y):Hf(xll (XY xn/y)
y<z y<z+1

* Since one cannot divide by 0, the values of rm(0, ) and qt(0, y) have no intuitive significance.
It can be easily shown by induction that the given definitions yield rm(0, y) = y and qt(0, y) = 0.
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These bounded sums and products are functions of x;, ..., x,, z. We can also
define doubly bounded sums and products in terms of the ones already
given; for example,

Z f(xr o X y) = f(x1, oo X u+ 1)+ 4 f (21, .00, x,,0-1)

= Z f(x1, oo X,y +u+1)

y<8(v=u)

Proposition 3.17

If f(x,, ..., x,, y) is primitive recursive (or recursive), then all the bounded
sums and products defined above are also primitive recursive (or recursive).

Proof

Letg (xl, N, 4 Z f X1, .ee) Xn, y Then we have the following recursion:

y<z

g(xlr ey xn,o):O
g(x1, ooy X, z+1) =g(x1, .o, X0, 2)+ f (X1, ..0s X4, 2)

If h(xy, ..., Xu,2) = Zf(xl, ..s X4, ), then

y<z
h(x1, ..., X4,2)=g(x1, ..., X,z +1)(substitution)

The proofs for bounded products and doubly bounded sums and products
are left as exercises.

Examples

Let t(x) be the number of divisors of x, if x > 0, and let ©(0) = 1. (Thus, t(x) is
the number of divisors of x that are less than or equal to x.) Then 7 is primi-
tive recursive, since

w(x) = ) sg(rm(y, )

y<x

Given expressions for number-theoretic relations, we can apply the connec-
tives of the propositional calculus to them to obtain new expressions for
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relations. For example, if R,(x, y) and R,(x, u, v) are relations, then R,(x, v) A
R,(x, u, v) is a new relation that holds for x, y, u, v when and only when both
Ry(x, y) and R,(x, u, v) hold. We shall use (¥y),..R(x;, ..., x,, y) to express the
relation: for all y, if y is less than z, then R(x,, ..., x,, y) holds. We shall use
(Y9)y< (3Y),., and (Fy), . in an analogous way; for example, (Iy),..R(x;, ..., X, Y)
means that there is some y < z such that R(x,, ..., x,, ) holds. We shall call
(YY) y<er (Y)y<zr (FY) <o and (y),. bounded quantifiers. In addition, we define a
bounded p-operator:

the least y < z for which R(x;, ..., x,,¥)
Wyy<-R(x1, ..., x,,y) = {holds if thereis such a y
z otherwise

The value z is chosen in the second case because it is more convenient in later
proofs; this choice has no intuitive significance. We also define py,..R(x,, ...,
Xr ]/) to be pyy<z+1R(x1/ oo Xy y)

A relation R(x,, ..., x,) is said to be primitive recursive (or recursive) if and
only if its characteristic function Cg(xy, ..., x,) is primitive recursive (or recur-
sive). In particular, a set A of natural numbers is primitive recursive (or
recursive) if and only if its characteristic function C,(x) is primitive recursive
(or recursive).

Examples

1. The relation x, = x, is primitive recursive. Its characteristic function
is sg(|x; — x,|), which is primitive recursive, by Proposition 3.16(f, g).

2. The relation x;, < x, is primitive recursive, since its characteristic
function is sg(x, - x; ), which is primitive recursive, by Proposition
3.16(e, h).

3. The relation x, | x, is primitive recursive, since its characteristic func-
tion is sg(rm(x;, x,)).

4. The relation Pr(x), x is a prime, is primitive recursive, since Cp(x) =
sg(|t(x) — 2|). Note that an integer is a prime if and only if it has
exactly two divisors; recall that ©(0) = 1.

Proposition 3.18

Relations obtained from primitive recursive (or recursive) relations by means
of the propositional connectives and the bounded quantifiers are also primi-
tive recursive (or recursive). Also, applications of the bounded p-operators
MY, and py, .. lead from primitive recursive (or recursive) relations to primi-
tive recursive (or recursive) functions.
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Proof

Assume Ry(xy, ..., x,) and R,(x, ..., x,) are primitive recursive (or recursive) rela-
tions. Then the characteristic functions Cg, and Cg, are primitive recursive (or
recursive). ButC_g, (x1, ..., x,) =1=Cg (1, ..., X,); hence~R;isprimitiverecur-
sive (or recursive). Also, Cgr,(X1, ..., %) =Cg, (X1, ..., X,) - Cr, (X1, ..., X1);
so, R, V R, is primitive recursive (or recursive). Since all propositional connec-
tives are definable in terms of — and vV, this takes care of them. Now, assume
R(xy, ..., x,, y) is primitive recursive (or recursive). If Q(x,, ..., x,, 2) is the rela-
tion (3y),.R(xy, ..., x,, y), then it is easy to verify that Cy(x;, ..., x,, 2) = I, ..Cr(x;,
.., X, i), which, by Proposition 3.17, is primitive recursive (or recursive). The
bounded quantifier (3y),.. is equivalent to (3y),...;, which is obtainable from
(FY),. by substitution. Also, (Vy),.. is equivalent to —(Jy),..~, and (¥y),<, is
equivalent to =(3y),.~. Doubly bounded quantifiers, such as (3y),,.., can be
defined by substitution, using the bounded quantifiers already mentioned.
Finally, IT,.,Cx(xy, ..., x,, u) has the value 1 for all y such that R(x;, ..., x,, u) is
false for all u < y; it has the value 0 as soon as there is some u < y such that
R(x,, ..., x,, u) holds. Hence, Z . (IMy<yCr(x1, ..., X,,u)) counts the number of

v .
integers from 0 up to but not including the first y < z such that R(x,, ..., x,, v)
holds and is z if there is no such y; thus, it is equal to py,.R(x,, ..., x,, y) and
so the latter function is primitive recursive (or recursive) by Proposition 3.17.

Examples

1. Let p(x) be the x,, prime number in ascending order. Thus, p(0) = 2,
p(1) =3, p(2) = 5, and so on. We shall write p, instead of p(x). Then p,
is a primitive recursive function. In fact,

Po =2
Pri1 = l-l]/yé(px)!ﬂ(px <y APr(y))

Notice that the relation u < y A Pr(y) is primitive recursive. Hence,
by Proposition 3.18, the function py,.,(u <y A Pr(y)) is a primitive
recursive function g(u, v). If we substitute the primitive recursive
functions z and z! + 1 for u and v, respectively, in g(u, v), we obtain
the primitive recursive function

h(z) = Wy<z11(z <y APr(y))

and the right-hand side of the second equation above is h(p,); hence,
we have an application of the recursion rule (V). The bound (p,)! + 1
on the first prime after p, is obtained from Euclid’s proof of the
infinitude of primes (see Exercise 3.23).

2. Every positive integer x has a unique factorization into prime pow-
ers: x =py'pi"---pi*. Let us denote by (x); the exponent 4; in this
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factorization. If x = 1, (x); = 1 for all j. If x = 0, we arbitrarily let
(x); = 0 for all j. Then the function (x); is primitive recursive, since
(0 = wyes (pf 12 A (P 1)),

3. For x > 0, let {7i(x) be the number of nonzero exponents in the fac-
torization of x into powers of primes, or, equivalently, the number

of distinct primes that divide x. Let {%(0) = 0. Then {7 is primitive
recursive. To see this, let R(x, y) be the primitive recursive rela-

tion Pr(y) A y|x A x # 0. Then ¢h(x) = Z %(CR (x,))- Note that
y<x

this yields the special cases ¢h(0) = ¢A(1) = 0. The expression “¢h(x)”
should be read “length of x.”

4. If the number x =2"3" ...p* is used to “represent” or “encode”
the sequence of positive integers a,, a,, ..., a, and y=2%3" ... phr
“represents” the sequence of positive integers by, by, ..., b,,, then the
number

ak .,bo

— M 141 b,
x*y—Z 3"... pk pk+1pk+2 pkihm

“represents” the new sequence a, 4, ..., 4, by, by, ..., b,, obtained by
juxtaposing the two sequences. Note that ¢A(x) = k + 1, which is the
length of the first sequence, £7i(y) = m + 1, which is the length of the
second sequence, and b; = (y), Hence,

(y)
Xry=xx | I (Porars)”

j<th(y)

and, thus, * is a primitive recursive function, called the juxtaposition
function. It is not difficult to show that x * (y * z) = (x * y) * z as long
as y # 0 (which will be the only case of interest to us). Therefore,
there is no harm in omitting parentheses when writing two or more
applications of = Also observe thatx*0=x+1=ux.

Exercises

3.16 Assume that R(x,, ..., x,, y) is a primitive recursive (or recursive) rela-
tion. Prove the following:

A (Y ueyoR ¥, - X0 Y)y @AYycy<eRE, - X, Y), and (FY)gpeR (x5 -2 X,
y) are primitive (or recursive) relations.

b. Myu<y<vR(xlr ceor Xy y)/ pyusyng(xlr “eor Xy y)r and uyu5y<vR (xlr “eor Xy y)
are primitive recursive (or recursive) functions.

c. If, for all natural numbers x;, ..., x,, there exists a natural number y
such that R(xy, ..., x,, y), then the function f(x,, ..., x,) = pyR(xy, ..., X,, 1)
is recursive. [Hint: Apply the restricted p-operator to Cr(xy, ..., X, y).]
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3.17

3.18

3.19

3.20

3.21

3.22

3.23

a. Show that the intersection, union and complement of primitive
recursive (or recursive) sets are also primitive recursive (or recur-
sive). Recall that a set A of numbers can be thought of as a relation
with one argument, namely, the relation that is true of a number x
when and only when x € A.

b. Show that every finite set is primitive recursive.

Prove that a function f(x, ..., x,) is recursive if and only if its represent-
ing relation f(x,, ..., x,) = y is a recursive relation.

Let [/] denote the greatest integer less than or equal to v/1, and let
I1(n) denote the number of primes less than or equal to n. Show that
[Vn]and I1(n) are primitive recursive.

Let e be the base of the natural logarithms. Show that [ne], the greatest
integer less than or equal to ne, is a primitive recursive function.

Let RP(y, z) hold if and only if y and z are relatively prime, that is, y and
z have no common factor greater than 1. Let ¢(17) be the number of posi-
tive integers less than or equal to n that are relatively prime to n. Prove
that RP and ¢ are primitive recursive.

Show that, in the definition of the primitive recursive functions, one
need not assume that Z(x) = 0 is one of the initial functions.

Prove that p;,; < (pops.-- po + 1. Conclude that p,,, <p!+ 1.

For use in the further study of recursive functions, we prove the following
theorem on definition by cases.

Proposition 3.19

Let

gi(x1, ..., x,)  if Ri(xy, ..., x,)holds

flx X)) = 9a(x1, ..., %,)  if Ryo(xy, ..., x,)holds
17 «oer An) — .

g (xy, ..., x,)  if Ri(xy, ..., x,)holds

If the functions g, ..., g, and the relations R, ..., R are primitive recursive
(or recursive), and if, for any x;, ..., x,, exactly one of the relations Ry(x, ..., x,),
oo Ri(xy, ..., x,) is true, then f is primitive recursive (or recursive).

Proof

f(xl/ ey Xn):91(x1, ceey xn).%(CRl(xll veey x11))+ et

ge(x1, <oy %) -88(Cro (X1, ..., X))
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Exercises

3.24 Show that in Proposition 3.19 it is not necessary to assume that R, is
primitive recursive (or recursive).

3.25 Let
x2 if x is even
x =
f@&@) {x+1 if xis odd

Prove that f is primitive recursive.
3.26 Let

h) 2 if Goldbach’s conjecture is true
X)=
1  if Goldbach’s conjecture is false

Is h primitive recursive?

It is often important to have available a primitive recursive one—one cor-
respondence between the set of ordered pairs of natural numbers and the set
of natural numbers. We shall enumerate the pairs as follows:

(0,0), (0,1),(1,0),(1,1), (0,2),(2,0),(1,2),(2,1),(2,2),

After we have enumerated all the pairs having components less than or
equal to k, we then add a new group of all the new pairs having components
less than or equal to k + 1 in the following order: (0, k + 1), (k + 1, 0), (1, k + 1),
k+1,1),...,¢k+1),(k+1k), (k+1, k+1).If x <y, then (x, y) occurs before (y, x)
and both are in the (y + 1)th group. (Note that we start from 1 in counting
groups.) The first y groups contain y? pairs, and (x, y) is the (2x + 1)th pair
in the (y + 1)th group. Hence, (x, y) is the (y? + 2x + 1)th pair in the ordering,
and (y, x) is the (y? + 2x + 2)th pair. On the other hand, if x = y, (x, y) is
the ((x + 1)»th pair. This justifies the following definition, in which ¢2(x, )
denotes the place of the pair (x, y) in the above enumeration, with (0, 0) con-
sidered to be in the Oth place:

o%(x,y) =sg(x = y)-(x? + 2y + 1) +sg(x = y)- (y* + 2x)

Clearly, 62 is primitive recursive.

Let us define inverse functions o7 and o3 such that oi(c*(x,y))=x,
o3(c*(x,y)) = y and 6°(67(2), 03(2)) = z. Thus, 61(z) and c3(z) are the first and
second components of the zth ordered pair in the given enumeration. Note
first that 67(0) = 0,03(0) =0,

o5(n) if 61(n) < o3(n)
oi(n+1)=<05(n)+1 if oi(n)>o3(n)
0 if 61(n) = 53(n)
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and

oi(n+1)= {G%(”) if o}(n) # 63(n)

oi(n)+1 if oi(n)=o3(n)
Hence,

oi(n+1) = 63(n)- (sg(c3(n) = o1 (1)) +(02(n) +1)- (sg(c1 (1) = 53(n))
= (o1 (n), c3(n))

o3(n+1) = o1 (n)-(sg(| 03(n) — o1(m) ) + (o1 (1) +1)- (s8(| o1 (1) — &3(1) |))
= y(ci(n), 03(n))

where ¢ and y are primitive recursive functions. Thus, o? and o3 are defined

recursively at the same time. We can show that 01 and o3 are primitive recur-
sive in the following devious way. Let /(1) = 27103 Now, h is primitive
recursive, since /(0)= 210350 _ 2030 1 and (n+1)=2" Horlge3 D) _
2‘1’(01 (), 02(11))3\41(51 (m,o3(m) _ 20(Um)o ()W (B0 (r(m)n) Remembering. that the
function (x); is primitive recursive (see Example 2 on page 181), we conclude
by recursion rule (V) that h is primitive recursive. But o1(x) = (h(x)), and
o3(x) = (h(x)).. By substitution, 67 and o3 are primitive recursive.

One-one primitive recursive correspondences between all n-tuples of nat-
ural numbers and all natural numbers can be defined step-by-step, using
induction on n. For n = 2, it has already been done. Assume that, for n = k, we
have primitive recursive functions Gk(xl, ceey Xg),00(x), ..., of(x) such that
cf (6" (xy, ..., x¢))=x; for 1<i<k, and o&*(ci(x), ..., oi(x)=x). Now, for
n=k+1, define " (xy, ..., X¢, Xpi1) = 6% (6" (xy, ... xk) Xii1), 05 (%) = oF (o3(x))
for1<i<kand ofii(x)=o3(x). Then 6*",65", ..., oflareall primitive recur-
sive, and we leave it as an exercise to verify that oo (xy, ..., Xp1)) = x; for
1<i<k+1,and o*(cf"(x), ..., okil(x)) = x.

It will be essential in later work to define functions by a recursion in which
the value of f(x,, ..., x,, y + 1) depends not only upon f(x,, ..., x,, y) but also upon
several or all values of f(x,, ..., x,, u) with u <v. This type of recursion is called

a course-of-values recursion. Let f #(x1, ..., x,,y) = H p{f G xn) Note that
u<y
f can be obtained from f # as follows: f(xi, ..., x,,¥) =(f #(x1, ..., X, y +1)),.

Proposition 3.20 (Course-of-Values Recursion)

If h(xy, ..., x,, Y, 2) is primitive recursive (or recursive) and f (xy, ..., x,, y) = h(x,,
o X, Y, fH#(xy, ..., X, 1)), then fis primitive recursive (or recursive).



186 Introduction to Mathematical Logic

Proof
fH#(xy, ..., x,,0)=1
X1, oy X,y +1) = fF#(x, o, X, y) pf Y
= f#(xy, ..., xn,y)~pﬁ(“"“'"”’y’f’“’“""“'“y”

Thus, by the recursion rule, f# is primitive recursive (or recursive), and

fley, o X y) = (X, .., X, ¥ + D),

Example

The Fibonacci sequence is defined as follows: f(0) = 1, (1) = 1, and fik + 2) = f(k) +
flk + 1) for k > 0. Then f is primitive recursive, since

f(n)=sg(n)+sg(|n—11)+((f#1n)r+(fH#(n))y-r) -sgn=1)
The function
h(y,z) =sg(y)+sg(| y —1])+((2)ye1 +(2)y-2) -sg(y = 1)

is primitive recursive, and f(n) = h(n, f # (n)).

Exercise

3.27 Let g(0) =2, g(1) = 4, and g(k + 2) = 3g(k + 1) —(2g(k) + 1). Show that g is
primitive recursive.

Corollary 3.21 (Course-of-Values Recursion for Relations)

If H(xy, ..., x,, ¥, 2) is a primitive recursive (or recursive) relation and
R(xy, ..., x,, y) holdsifand only if H(x, ..., x,,y,(Cr)#(x1, ..., x,,¥)), where Cy
is the characteristic function of R, then R is primitive recursive (or recursive).

Proof

Crlxy, ..oy x,, ¥) = Cylxy, .., x,, Y, (C#(xy, ..., x,, ¥)). Since Cy is primitive
recursive (or recursive), Proposition 3.20 implies that C; is primitive
recursive (or recursive) and, therefore, so is R.

Proposition 3.20 and Corollary 3.21 will be drawn upon heavily in what
follows. They are applicable whenever the value of a function or relation for y
is defined in terms of values for arguments less than y (by means of a primi-
tive recursive or recursive function or relation). Notice in this connection
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that R(x, ..., x,, u) is equivalent to Cy(xy, ..., x,, u) = 0, which, in turn, for u <y,
is equivalent to (Cpi#(xy, ..., x,, ), = 0.

Exercises

3.28 Prove that the set of recursive functions is denumerable.

3.29 Iff,, fi, f ... is an enumeration of all primitive recursive functions (or
all recursive functions) of one variable, prove that the function £,(y) is
not primitive recursive (or recursive).

Lemma 3.22 (Godel’s p-Function)

Let B(xy, x5 x3) = rm(1 + (x3 + 1) - x,, xy). Then B is primitive recursive, by
Proposition 3.16(n). Also, f is strongly representable in S by the following wf
Bt(xy, x,, x5, 1):

Aw)(q =Q+ 3+ -x0) w+yAy <1+(x3+1)-x2)

Proof

By Proposition 3.11 kg (3y)Bt(xy, x,, X3 y). Assume P(ky, k,, k;) = m.
Then ky = (1 + (k3 + 1) - ky) - k + m for some k, and m < 1 + (k3 + 1) - k.
So, sk =(T+(k3 +T) . kz)-k +m, by Proposition 3.6(a). Moreover,
b <1+ (E3 n j) .k, by the expressibility of < and Proposition 3.6(a). Hence,

b ky = (T+(l?3 +T)~E2)~E+ﬁ1Arﬁ < T+(E3 +T)-l?2 from which by rule E4,
ks Bt (El,Ez, ks, rﬂ) Thus, Bt strongly represents f in S.

Lemma 3.23

For any sequence of natural numbers ky, ki, ..., k,, there exist natural numbers
b and ¢ such that p(b, ¢, i) = k; for 0 <i < n.

Proof

Let j = max(n, ky, k,, ..., k,) and let c = j!. Consider the numbers 1, =1 + (i + 1)c
for 0 < i < n; no two of them have a factor in common other than 1. In fact,
if p were a prime dividingboth 1+ (( + )cand 1 + (m + Dcwith0 <i<m < n,
then p would divide their difference (m — i)c. Now, p does not divide c, since,
in that case p would divide both (i + 1)c and 1 + (i + 1)c, and so would divide 1,
which is impossible. Hence, p also does not divide (m —i); form —i <n <j
and so, m — i divides j! = c. If p divided m — i, then p would divide c.
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Therefore, p does not divide (m — i)c, which yields a contradiction. Thus,
the numbers u,, 0 <i <, are relatively prime in pairs. Also, for 0 <i <n, k; <j <
j'=c<1+ @+ 1)c=u; thatis, k; < u;. Now, by the Chinese remainder theorem
(see Exercise 3.30), there is a number b < uyu, ... u, such that rm(u;, b) = k; for
0<i<nButp@®,ci)=rm(l + @+ 1)c, b) = rm(u, b) =k,

Lemmas 3.22 and 3.23 enable us to express within S assertions about finite
sequences of natural numbers, and this ability is crucial in part of the proof
of the following fundamental theorem.

Proposition 3.24

Every recursive function is representable in S.

Proof

The initial functions Z, N, and U}’ are representable in S, by Examples 1-3 on
page 171. The substitution rule (IV) does not lead out of the class of repre-
sentable functions, by Example 4 on page 172.

For the recursion rule (V), assume that g(x,, ..., x,) and h(x,, ..., x,, y, 2) are
representable in S by wfs .»(x,, ..., x,.,;) and ~ (xy, ..., x,.5), respectively, and let

L f(x]/~~~/ x,,,0)=g(x],..., xn)
fx .. xn,y+1):h(x1, e X Y f (31, xn,y))

Now, f(xy, ..., x,, y) = z if and only if there is a finite sequence of numbers
by, ..., b,such that b, = g(xy, ..., x,), by = h(xy, ..., x,,, w, b,) forw +1 <y, and
b, =z. But, by Lemma 3.23, reference to finite sequences can be paraphrased
in terms of the function f and, by Lemma 3.22, § is representable in S by the
wi Bt(xy, x,, X3, ).

We shall show that f(x,, ..., x,, x,.,) is representable in S by the following
wi 7(xy, ..., X,p0):

(Fu)(F)[(Fw)(Bt(u,v,0,w) A 7 (x1, ..., Xn,w))) ABtHU, v, X111, Xps2)
AVw)(w < X1 = Fy)3z2)(Bt(u, v, w, y) ABt(w, v, W', 2) A (x4, ..., Xy, W, Y,2)))]

i. First, assume that f(x;, ..., x, p) = m. We wish to show that
S D(E, e, En,ﬁ,ﬁi). If p =0, then m = g(k, ..., k,). Consider the
sequence consisting of m alone. By Lemma 3.23, there exist b and ¢
such that B(b, ¢, 0) = m. Hence, by Lemma 3.22,

(X) +sBt(b,c,0,m)



Formal Number Theory

ii.

Also, sincem = g(k,, ..., k,), we have s % (El, o ko, ﬁfz) Hence, by rule E4,

(x%) s (30)(Bt(B,¢,0,w) A (K .., k)
In addition, since Fgw £ 0, a tautology and Gen yield

(x2x)(vw)(w < 0= (3y)(3z)(Bt(b,c,w,y))

A(Bt(E,E,w’,z)A 7 (E, ., En,w,y,z))))

Applying rule E4 to the conjunction of (X), (XX), and (XXX), we obtain
s 2 (El, ., En,O,ﬁl). Now, for p > 0, f(k,, ..., k,, p) is calculated from
the equations (I) in p + 1 steps. Let r; = f(k,, ..., k,, i). For the sequence
of numbers r,, ..., Ty there are, by Lemma 3.23, numbers b and ¢ Euch
that B(b, ¢, i) = r, for 0 <i < p. Hence, by Lemma 3.22, k5 Bt(b,E, i ,E).
In particular, B(b,c,0)=1r=f(ki, ..., ks,0)=g(ki, ..., k). Therefore,
=S Bt(B,E,O,?O)/\ //(El, ., EW,FO), and, by rule E4, () s (3w)
(Bt(E,E,O/w)/\ //(Elrn./ Enrw)). Since rl’:f(lil/"" k"/p):m’
we have B(b,c,p)=m. Hence, (i) 's Bt(b,f, ;7,771). For
0<i<p-1,B(b,c,i)=1.= f(ky, ..., k1) and Bb,c,i+1)=r,=
fla, ..., ky,i+1)=hlky, ..., ko, i, f(ke, ..., ky,0))=h(ky, ..., ko, i,7).
Therefore, FS Bt(E/ E/ ?/ 71)/\]3t(E/ E/ 17// 7i+1) N7 (El/ ey Enr?/ 7i/ 7i+1)' By
Rule B4, s (3y)(3z)(Bt(b,¢,7,y) aBt(b, ¢, i, 2) nr (i, ooy K1, 2)
So, by Proposition 3.8(b)), (i) s (Vw)(w<p=(3y)(3z)
(Bt(ﬁ,?,w,y)/\Bt(E,Z,w’,z)/\ 7z (la, e Ez,w,y,z))). Then, apply-
ing rule E4 twice to the conjunction of (i), (ii), and (iii), we obtain
s o (kl, R S m) Thus, we have verified clause 1 of the definition
of representability (see page 170). B
We must show that ks (31x,42) (kl, .., kn,ﬁ,xm). The proof is by

induction on p in the metalanguage. Notice that, by what we have
proved above, it suffices to prove only uniqueness. The case of p = 0 is

left as an easy exercise. Assume ts (31x,.2) 7 (El, s kB, X2 ) Leta=
g(kll ey kn)/ B :f(kll LRy km P)/ and y :f(kll ey km P + 1) = h(kll LRy km P/ B) Then

(1) '75 ‘ (Ell ey ’Ellﬁ/ﬁl?)
2) s 2k, ..., ky, @)
(3) '75 7 (Ell eey En/ﬁrﬁ)

(4) s I/(El/ ceey Erum/?)

() ks Fxp2) 2 (Elf Ry kn,?, Xpi2)

189
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Assume
(6) 7 (El/ ceey EH/P'F 1rxn+2)
We must prove x,,,, =¥. From (6), by rule C,

a. (EIw)(Bt(b,c,O,w)/\ //(El, e En,w))

b. Bt(blclm/xn+2)
C. (Vw)(w<p+1:>(EIy)(Hz)(Bt(b,c,w,y)ABt(b,c,w’,z)A

(R Ra,,2))
From (c),

d. (Vw)(w<p= (EIy)(EIz)(Bt(b,c,w,y) ABt(b,c,w',z) A

(R R,,2)))

From (c) by rule A4 and rule C,
e. Bt(b,c,fa,d)/\Bt(b,c,m,e)/\ 7 (El, .., En,ﬁ,d,e)

From (a), (d), and (e),
f. ’/(];1,..., En,ﬁ,d)

From (f), (5) and (3),
& d=p

From (e) and (g),
h. /(El,..., En,?,ﬁ,e)

Since f represents /i, we obtain from (1) and (h),
i y=e

From (e) and (i),
J- Bt(b,c,p+1,7%)

From (b), (j), and Lemma 3.22,
k. Xn42 = 7

This completes the induction.

The p-operator (VI). Let us assume, that, for any x,, ..., x,, there is some y
such that g(xy, ..., x,, y) = 0, and let us assume g is representable in S by a wf
A%, <o Xppo)- Let floy, ..., x,) = py(g(xy, .., X, y) = 0). Then we shall show that f
is representable in S by the wf (xy, ..., x,,,1):

(%1 e x,M,O)/\(Vy)(y <A = (3, xn,y,O))
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Assume fik,, ..., k,) =m. Then g(k,, ..., k,, m) =0and, for k <m, g(k,, ..., k,, k) #0.
So, ks « (El, ., En,nﬁ,O) and, for k<m, g — (El, ., En,lz,O). By Proposition
3.8(b"), ts (Vy)(y <= = (E, ., En,y,O)). Hence, s ./’(l;l, ., l;n,nﬁ).

We must also show: kg (Ellxm)./(kl, ., En,xm). It suffices to prove the
uniqueness. Assume (El, . E,,,u,O)/\(Vy)(y <UD (El, e, En,y,O)). By

Proposition 3.7(0"), ks m<uvim=uvu<im. Since s ~ (E, ety E,,,n?,O), we

cannot have i <u. Since ks (Vy)(y <= = (El, ., En,y,O)), we cannot
have 4 < n. Hence, u = . This shows the uniqueness.
Thus, we have proved that all recursive functions are representable in S.

Corollary 3.25

Every recursive relation is expressible in S.

Proof

Let R(x;, ..., x,) be a recursive relation. Then its characteristic function Cy
is recursive. By Proposition 3.24, C; is representable in S and, therefore, by
Proposition 3.13, R is expressible in S.

Exercises

3.30% a. Show that, if 2 and b are relatively prime natural numbers, then
there is a natural number ¢ such that ac = 1(mod b). (Two numbers
a and b are said to be relatively prime if their greatest common divi-
sor is 1. In general, x = y(mod z) means that x and y leave the same
remainder upon division by z or, equivalently, that x — i is divisible
by z. This exercise amounts to showing that there exist integers u
and v such that 1 = au + bv.)

b. Prove the Chinese remainder theorem: if x,, ..., x; are relatively
prime in pairs and y;, ..., y, are any natural numbers, there is a nat-
ural number z such that z = y,(mod x,), ..., z = y(mod x;). Moreover,
any two such z’s differ by a multiple of x, ... x;. [Hint: Let x = x; ... x;
and let x = wyx; = wyx; =+ = wix. Then, for 1 <j <k, wj is relatively
prime to x; and so, by (a), there is some z; such that w;z; = 1(mod x)).
Now let z = wiz1y1 + WrzoY» + -+ + Wizk Y. Then z = wzy; = yj(mod X))-
In addition, the difference between any two such solutions is divis-
ible by each of x,, ..., x, and hence by x; ... x;.]

3.31 Call a relation R(xy, ..., x,) arithmetical if it is the interpretation of some
wf 2(x,, ..., x,) in the language v, of arithmetic with respect to the
standard model. Show that every recursive relation is arithmetical.
[Hint: Use Corollary 3.25.]
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3.4 Arithmetization: Godel Numbers

For an arbitrary first-order theory K, we correlate with each symbol u of K an
odd positive integer g(u), called the Gddel number of u, in the following manner:

9(0=3, 90)=5, 9()=7, 9(=)=9, g=)=11, ¢(V)=13,
g(xc)=13+8k fork>1
g(a)=7+8k fork>1
g(f)=1+8(2"3") fork,n>1

g(Af)=3+8(2"3%) fork,n>1

Clearly, every Godel number of a symbol is an odd positive integer. Moreover,
when divided by 8, g(u) leaves a remainder of 5 when u is a variable, a remain-
der of 7 when u is an individual constant, a remainder of 1 when u is a func-
tion letter, and a remainder of 3 when u is a predicate letter. Thus, different
symbols have different Godel numbers.

Examples
9(x2)=29, g(as)=39, ¢(f2)=97, g(A})=147

Given an expression ul, ... u, where each u; is a symbol of K, we define its
Godel number g(uyu; ... u,) by the equation

g(uouty ... u, ) = 28(w)g8(m) pf(“’)

where p; denotes the jth prime number and we assume that p, = 2. For
example,

g(Alz(xll xz)) _ 22(1412 138(059(x1)78()1 18(x2)1380)
— 29933521771129135

Observe that different expressions have different Godel numbers, by virtue
of the uniqueness of the factorization of integers into primes. In addition,
expressions have different Gddel numbers from symbols, since the former
have even Gddel numbers and the latter odd Gédel numbers. Notice also
that a single symbol, considered as an expression, has a different Godel
number from its Gddel number as a symbol. For example, the symbol x, has
Godel number 21, whereas the expression that consists of only the symbol x;
has Gédel number 22,
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If ey, e, ..., ¢, is any finite sequence of expressions of K, we can assign a
Godel number to this sequence by setting

g(eo, €1, ..., 8,) = 2g(eo)3g(e1) pf(e,)

Different sequences of expressions have different Godel numbers. Since a
Godel number of a sequence of expressions is even and the exponent of 2 in
its prime power factorization is also even, it differs from Godel numbers of
symbols and expressions. Remember that a proof in K is a certain kind of
finite sequence of expressions and, therefore, has a Godel number.

Thus, g is a one—one function from the set of symbols of K, expressions of K, and
finite sequences of expressions of K, into the set of positive integers. The range of
g is not the whole set of positive integers. For example, 10 is not a Godel number.

Exercises

3.32 Determine the objects that have the following Gédel numbers.
a. 1944 b.49 c. 15 d. 13824 e 25315
3.33 Show that, if  is odd, 4n is not a Godel number.

3.34 Find the Godel numbers of the following expressions.
a. fim) b.(Vas)(=AT(m,x3)))

This method of associating numbers with symbols, expressions and
sequences of expressions was originally devised by Godel (1931) in order to
arithmetize metamathematics,* that is, to replace assertions about a formal
system by equivalent number-theoretic statements and then to express these
statements within the formal system itself. This idea turned out to be the key
to many significant problems in mathematical logic.

The assignment of Godel numbers given here is in no way unique. Other meth-
ods are found in Kleene (1952, Chapter X) and in Smullyan (1961, Chapter 1, § 6).

Definition

A theory Kis said to have a primitive recursive vocabulary (or a recursive vocabu-
lary) if the following properties are primitive recursive (or recursive):

a. IC(x): x is the Godel number of an individual constant of K;
b. FL(x): x is the Godel number of a function letter of K;
c. PL(x): x is the Godel number of a predicate letter of K.

* An arithmetization of a theory K is a one—one function g from the set of symbols of K, expres-
sions of K and finite sequences of expressions of K into the set of positive integers. The fol-
lowing conditions are to be satisfied by the function g: (1) g is effectively computable; (2) there
is an effective procedure that determines whether any given positive integer 7 is in the range
of g and, if m is in the range of g, the procedure finds the object x such that g(x) = m.
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Remark

Any theory K that has only a finite number of individual constants, func-
tion letters, and predicate letters has a primitive recursive vocabulary. For
example, if the individual constants of K are a;,a,,, ..., a;,, then IC(x) if and
onlyifx=7+8j;vx=7+8j,Vv...Vvx=7+8j.Inparticular, any theory Kin
the language v, of arithmetic has a primitive recursive vocabulary. So, S has
a primitive recursive vocabulary.

Proposition 3.26

Let K be a theory with a primitive recursive (or recursive) vocabulary. Then
the following relations and functions (1-16) are primitive recursive (or recur-
sive). In each case, we give first the notation and intuitive definition for the
relation or function, and then an equivalent formula from which its primi-
tive recursiveness (or recursiveness) can be deduced.

1. EVDI(x): x is the Godel number of an expression consisting of a vari-
able, (32),.,(1 < z A x = 213+8), By Proposition 3.18, this is primitive
recursive.
EIC(x): x is the Godel number of an expression consisting of an indi-
vidual constant, (Iy),..(IC(y) A x = 2) (Proposition 3.18).
EFL(x): x is the Godel number of an expression consisting of a func-
tion letter, (3y),(FL(y) A x = 2¥) (Proposition 3.18).
EPL(x): x is the Godel number of an expression consisting of a predi-
cate letter, (3y),..(PL(y) A x = 2¥) (Proposition 3.18).

2. Argr(x) =(qt(8,x 1))y If x is the Godel number of a function letter

/', then Arg(x) = n. Arg;(x) is primitive recursive.

Argp(x) = (qt(8, x = 3))o: If x is the Godel number of a predicate letter
Aj, then Argp(x) = n. Argp(x) is primitive recursive.

3. Gd(x): x is the Godel number of an expression of K, EVbl(x) v EIC(x)
VEFL(x) VEPLx) vx=22vx=25vx=2"vx=2vx=2lly x=2Bv
(1) r(F0) . ox = 1 # v A Gd(1) A Gd(v)). Use Corollary 3.21. Here, * is
the juxtaposition function defined in Example 4 on page 182.

4. MP (x, y, 2): The expression with Godel number z is a direct conse-
quence of the expressions with Gédel numbers x and y by modus
ponens, y =27+ x*2'"+z%2° AGd(x) A Gd(z).

5. Gen(x, y): The expression with Godel number y comes from the
expression with Godel number x by the generalization rule:

(30)oey (EVDL(0) Ay =2° #2% #2195 9% 27 % x + 2° A Gd(x))
6. Trm(x): x is the G6del number of a term of K. This holds when and

only when either x is the Godel number of an expression consisting
of a variable or an individual constant, or there is a function letter fi'
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and terms ¢, ..., t, such that x is the Godel number of f'(f, ..., t,).
The latter holds if and only if there is a sequence of n + 1 expressions

fkn kn (tlr fkn (t1/t2/ fkn (tll ceey ti‘l*l/ fkn(tll ey tnfl/tn)

the last of which, f£'(t,...,t,), has Godel number x. This
sequence can be represented by its Godel number y. Clearly,
y<23 . pn=2-3-...-pa)<(pa)" <(p:!)". Note that th(y) =n + 1
and also that n = Arg((x),), since (x), is the Gédel number of f".
Hence, Trm(x) is equivalent to the following relation:

EVbl(x) v EIC(x) v (Ely)y«pg( . [x = W)ang)a A

th(y) = Argr((x)o) + TAFL(((¥)o)o) A ((¥)o)r =3 A
Eh((y)()) =2A (vu)udh(y);Z (Elv)v<x ((y)u+1 = (y)u % 27 N Trm(v)) N

(30 oex (Winpy1r = V) anyy-2 #0%2° ATrm(0))]

Thus, Trm(x) is primitive recursive (or recursive) by Corollary 3.21,
since the formula above involves Trm(v) for only v < x. In fact, if we
replace both occurrences of Trm(v) in the formula by (z), = 0, then the
new formula defines a primitive recursive (or recursive) relation H(x, z),
and Trm(x) & H(x, (Cp,)*(x)). Therefore, Corollary 3.21 is applicable.

7. Atfml(x): x is the Godel number of an atomic wf of K. This holds if
and only if there are terms t,, ..., t, and a predicate letter Ay such
that x is the Godel number of A{(t;, ..., t,). The latter holds if and
only if there is a sequence of 11 + 1 expressions:

Al:l Altl (tll AI:’ (t1/t2/ Altl (tll ey tnfl ’ Al?(tll s tnflltn)

the last of which, A{(t, ..., t,), has Godel number x. This sequence
of expressions can be represented by its Godel number y. Clearly,
y <(p.!) (asin (6) above) and n = Argp((x),). Thus, Atfml(x) is equiva-
lent to the following:

(Hy)y<(px Iy [x= (y)éh(y);1 Ah(y) = Argp((x)o)+1A
PL(((1)0)o) A((¥)o)1 =3 A Lh((y)o) =2 A
(vu)udh(y);Z (Elv)v<x ((y)u+1 = (y)u % 27 N Trm(v)) N

0 oex (Winpy1 = (V) inyy-2 *0#2° ATrm(v))]

Hence, by Proposition 3.18, Atfml(x) is primitive recursive (or
recursive)
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10.

11.
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Fml(y): y is the Godel number of a formula of K:

Atfml(y) v (3z)__y [(Fml(z) Ay =2° 2% #2%2%)v
(Fml((2)0) AFmI((2)) Ay = 2% #(2)0 * 2" #(2), *2°) v
(Fml((2)o) AEVDI((2)1) Ay =2 #2° %21 % (2); #2° #(2) * 2°)]

It is easy to verify that Corollary 3.21 is applicable.

Subst(x, y, u, v): x is the Godel number of the result of substituting in
the expression with Gédel number y the term with Gédel number u
for all free occurrences of the variable with Gédel number v:

Gd(y) ATrm(u) AEVDI2°) A[(y =2° Ax =u)v
(AW)wey (Y =2 Ay 22" Ax=Yy)Vv
(32).<y FW)wey Fml(w) Ay =2°#2P #2722 w2z A

(o) ger (x = 2% %22 %27 % 27 v + o A Subst(at, z, 1, V))) v

—(32) ey (FW0) ey (FI(w) Ay = 27 £ 2% 227 2 27 %104 2) | A
y Y

(Ela)th(ElB)[kx (Elz)z<y (1 <ZA y = Z(y)“ *ZAX=0% B A
Subst(a,, 2", 11,v) A Subst(B, z,1,7)))]

Corollary 3.21 is applicable.* The reader should verify that this for-
mula actually captures the intuitive content of Subst(x, y, u, v).

SuB (y, u, v): the Godel number of the result of substituting the term
with Gédel number u for all free occurrences in the expression with
Godel number y of the variable with Gdel number v:

Sub(y,u,v) = pux e Subst(u, y,u,v)

x<(p,,y

Therefore, Sub is primitive recursive (or recursive) by Proposition
3.18. (When the conditions on u, v, and y are not met, SuB (y, u, v) is
defined, but its value is of no interest.)

Fr(y, v): y is the Godel number of a wf or term of K that contains free
occurrences of the variable with Godel number v:

(Fml(y) v Trm(y)) A EVbI(2°) A —Subst(y, y,2"***, 0)

* Actually a simultaneous recursion in x and y is involved. In the given formula, replace “x”
by “(q),” and “y” by “(g),” and the result by Corollary 3.21 yields a recursive relation R(g, u, ).

Now define Subst(x, y, u, v) as R(2*3Y, u, v).
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(That is, substitution in the wf or term with Gédel number vy of a
certain variable different from the variable with Godel number v
for all free occurrences of the variable with Gédel number v yields
a different expression.)

12. Ff(u, v, w): u is the Godel number of a term that is free for the vari-
able with Godel number v in the wf with Godel number w:

Trm(u) AEVDI(2?) A Fml(w) A[Atfml(w)
A FY)y<w(w = 23 %27 %y +2° AFf(u,0,v))
Vv (3Y)y<w (32) <0 (w = 23 % y* 2114 405
~Ff(u,v,y) AFf(u,v,2)) v
(3Y)yew(32)zcor (10 =27 # 2% # 2% %27 2% 4 1y 2°
AEVDI(2*) A(z #v= Ff(u,v,y)
A(Fr(,2) = —Fr(y, )]

Use Corollary 3.21 again.
13. a. Ax(x): x is the Godel number of an instance of axiom schema (A1l):

(F14) <2 (30) e (Fm(12) A Fml(0)
Ax =23y 2123 40 214y 2% £2%)

b. Ax,(x): x is the Godel number of an instance of axiom schema (A2):

(Elu)u<x (Elv)v<x (E'ZU)w<x (le(ll) N le(U) AN le(ZU)
Ax=2%%2% w2 w23 w2 aqp 225254 214234 D3 4y

#2125 % 21w 2% gy 2w gp 2 27+ 27 % 2°)
c. Axg(x): x is the Godel number of an instance of axiom schema (A3):

(314)4<x (30)yer (Fl(12) A Fml(0)
Ax=2%%2%42340% 5022542114234 09 42254254011

23423 42342% %0225 %21 w225 22wy 25 *25)
d. Ax,(x): x is the Godel number of an instance of axiom schema (A4):

(F1)ucx (30)oer (FY) yx (Fml(y) A Trm(u) AEVDI(2°) AFf(u, v, y)
Ax=2%%23%23 %21 %27 % 2% x % 2« Sub(y, u,v) * 2°)
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e. Axs(x): x is the Godel number of an instance of axiom schema (A5):
() u<x (30)per (F) o (Fml(u) A Fml(w) A EVD1(27) A —=Fr(u, v)
Ax=22%23%23 428427 27w 23wy 2w qp 2 27 2°

*211*23*74*211*23*23*213*20*25*,(/()*25*25*25)

f. LAX(y): y is the Godel number of a logical axiom of K
Axy(y) v Axa(y) v Axs(y) v Axa(y) v Axs(y)

14. The following negation function is primitive recursive. Neg(x): the
Godel number of (—.) if x is the Godel number of .

Neg(x) =2% #27 % x*2°

15. The following conditional function is primitive recursive. Cond(x, v):
the Godel number of (= ) if x is the Godel number of .7 and vy is
the Godel number of +:

Cond(x,y)=2xx#2" xy*2°

16. Clos(u): the Godel number of the closure of 7if u is the Godel num-
ber of a wf . First, let V(u) = pv,.(EVbI(2°) A Fr(u, v). V is primi-
tive recursive (or recursive). V(u) is the least Godel number of a free
variable of u (if there are any). Let Sent(x) be Fml(u) A =(3v),.,Fr(u, v).
Sent is primitive recursive (or recursive). Sent(1) holds when and
only when u is the Godel number of a sentence (i.e., a closed wf).
Now let

G(u) = L

23423 %2852V w2544 2% if Fml(u) A —Sent(u)
otherwise

G is primitive recursive (or recursive). If u is the Godel number of a wf s that
is not a closed wf, then G(u) is the Godel number of (Vx) 2, where x is the free
variable of that has the least Godel number. Otherwise, G(1) = u. Now, let
H(u,0) = G(u)
H(u,y+1)=G(H(u, y))
H is primitive recursive (or recursive). Finally,

Clos(u) = H(u, wy,<,(H(u, y) = H(u, y +1)))

Thus, Clos is primitive recursive (or recursive).
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Proposition 3.27

Let K be a theory having a primitive recursive (or recursive) vocabulary and
whose language contains the individual constant 0 and the function letter
ff of v,. (Thus, all the numerals are terms of K. In particular, K can be S
itself.) Then the following functions and relation are primitive recursive (or
recursive).

17. Num(y): the Gédel number of the expression y

Num(0) =2"
Num(y +1) = 2% % 2% * Num(y) * 2°

Num is primitive recursive by virtue of the recursion rule (V).
18. Nu(x): x is the Godel number of a numeral

(Fy)y<x(x = Num(y))

Nu is primitive recursive by Proposition 3.18.
19. D(u): the Gédel number of .~ (i1), if u is the Godel number of a wf #(x,):

D(u) = Sub(u, Num(u), 21)

Thus, D is primitive recursive (or recursive). D is called the diagonal
function.

Definition

A theory K will be said to have a primitive recursive (or recursive) axiom set if
the following property PrAx is primitive recursive (or recursive):

PrAx(y): y is the Godel number of a proper axiom of K

Notice that S has a primitive recursive axiom set. Let a,, a,, ..., a5 be the
Godel numbers of axioms (S1)-(S8). It is easy to see that a number y is the Godel
number of an instance of axiom schema (S9) if and only if

(30)ocy (FW)ey (EVDI(2°) A Fml(w)
Ay =22 +Sub(w,2",0)* 2" %2% %23 23 %213 4 27 % 2°
#2% 20+ 21+ Sub(w, 2% # 2% %27 % 2% )% 2% %25« 211
£23%2% %213 %27« 25 % g% 25 % 2°)
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Denote the displayed formula by Ay(y). Then y is the Gédel number of a
proper axiom of S if and only if

Y=mVvy=amVv..vy=asVvAy(y)

Thus, PrAx(y) is primitive recursive for S.

Proposition 3.28

Let K be a theory having a primitive recursive (or recursive) vocabulary and
a primitive recursive (or recursive) axiom set. Then the following three rela-
tions are primitive recursive (or recursive).

20. Ax(y): y is the Godel number of an axiom of K:

LAX(y) v PrAx(y)

21. Prf(y): y is the Godel number of a proof in K:

(Ft)ucy (F0)ocy (32)zcy )y ([y =2 A Ax(w)]v

[Prf(u) AFml((1),) Ay =u=*2" AGen((1),,0)]v

[Prf(u) AFml((1),) AFml((1)) Ay =1u*2° AMP((1),, (1), 0)]
VIPrf(u) Ay =u=*2" A Ax(v)]

Apply Corollary 3.21.
22. Pf(y, x): y is the Godel number of a proof in K of the wf with Godel
number x:

Pri(y) A x = (Y-

The relations and functions of Propositions 3.26-3.28 should have the sub-
script “K” attached to the corresponding signs to indicate the dependence
on K. If we considered a different theory, then we would obtain different
relations and functions.

Exercise

3.35 a. IfKis a theory for which the property Fml(y) is primitive recursive
(or recursive), prove that K has a primitive recursive (or recursive)
vocabulary.

b. Let K be a theory for which the property Ax(y) is primitive recur-
sive (or recursive).
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i.  Show that K has a primitive recursive (or recursive) vocabulary.

ii. Assuming also that no proper axiom of K is a logical axiom,
prove that K has a primitive recursive (or recursive) axiom set.

Proposition 3.29

Let K be a theory with equality whose language contains the individual con-
stant 0 and the function letter f;' and such that K has a primitive recursive (or
recursive) vocabulary and axiom set. Also assume:

(*) For any natural numbers r and s, if b 7 =5, then r=s.

Then any function f(x,, ..., x,) that is representable in K is recursive.

Proof

Let #(x,, ..., x,, x,,1) be awf of K that represents f. Let P (u,, ..., u,, 1,5, y) mean
that y is the Godel number of a proof in K of the wf . (ﬁl, e, Uy, ﬁm). Note
that, if P (uy, ..., u,, U, y), then flu,, ..., u,) = u,,. (In fact, let flu,, ..., u,) =r.
Since ~represents fin K, k¢ . (ﬂl, e, Uy, 7) and ¢ (Elly) //(171, e, Uy, y). By
hypothesis, P (u,, ..., u,, u,,, y). Hence, ¢ . (ﬂl, ey Uy, Uy ) Since K is a the-
ory with equality, it follows that k¢ 7 = u,,,1. By (*), = u,,,;.) Now let m be the
Godel number of #(xy, ..., x,, X,,1). Then P_(u,, ..., u,, u,,1, y) is equivalent to:

Pf(y,Sub(... Sub(Sub(m, Num(),21), Num(u,),29) ... Num(u,,1),21+ 8n))

So, by Propositions 3.26-3.28, P (u,, ..., u,, u,,, y) is primitive recursive (or
recursive). Now consider any natural numbersk;, ..., k,. Letf(k,, ..., k,) = . Then
F« 2 (El, . En,?). Letjbe the Godel number of a proof in K of .» (El, e E,,,?).
Then P, (kl, O | ) Thus, for any x;, ..., x,, there is some y such that P_(x;,
oo X, o, (1)1)- Then, by Exercise 3.16(c), py(P , (xy, --., x,, (), (¥)1) is recursive.
But, f(x,, ..., x,) = (py(P (x4, ..., x,, o (YW)))o and, therefore, fis recursive.

Exercise

3.36 Let K be a theory whose language contains the predicate letter =, the
individual constant 0, and the function letter f/'.

a. If K satisfies hypothesis (*) of Proposition 3.29, prove that K must be
consistent.

b. If K is inconsistent, prove that every number-theoretic function is
representable in K.

c. If Kis consistent and the identity relation x = y is expressible in K,
show that K satisfies hypothesis (*) of Proposition 3.29.
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Corollary 3.30

Assume S consistent. Then the class of recursive functions is identical with
the class of functions representable in S.

Proof

We have observed that S has a primitive recursive vocabulary and axiom
set. By Exercise 3.36(c) and the already noted fact that the identity relation is
expressible in S, we see that Proposition 3.29 entails that every function rep-
resentable in S is recursive. On the other hand, Proposition 3.24 tells us that
every recursive function is representable in S.

In Chapter 5, it will be made plausible that the notion of recursive function
is a precise mathematical equivalent of the intuitive idea of effectively comput-
able function.

Corollary 3.31

A number-theoretic relation R(x,, ..., x,) is recursive if and only if it is express-
ible in S.

Proof

By definition, R is recursive if and only if Cy is recursive. By Corollary 3.30,
Cgis recursive if and only if Cy is representable in S. But, by Proposition 3.13,
Cg is representable in S if and only if R is expressible in S.

It will be helpful later to find weaker theories than S for which the repre-
sentable functions are identical with the recursive functions. Analysis of the
proof of Proposition 3.24 leads us to the following theory.

Robinson’s System

Consider the theory in the language ¢, with the following finite list of proper
axioms.

1 x=x

2. X=X, X=X

3. x=%>0=%=>x =X,

4. x,=%x,=>x=x,

5. X=X, (X + X3 =X + X3 A X3+ X = X3+ Xp)
6. X3=X,= (X X3=Xp- X3 AXg+ Xy = X5 Xp)

7.0x =X 25 =%,

8. 0#ux/

9. x;# 0= (A =xy)

10. x;+0=1x
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11 x+ %) =@ +x,)

12. x%,-0=0

13, x; - %) = (g - x,) + X

14. (x, =21 X3+ X3 A Xy <Xy A Xy =Xp - X5+ Xg A Xg < Xq) = Xy = X, (Unique-
ness of remainder)

We shall call this theory RR. Clearly, RR is a subtheory of S, since all the axioms
of RR are theorems of S. In addition, it follows from Proposition 2.25 and axioms
(1)—(6) that RR is a theory with equality. (The system Q of axioms (1)—(13) is due
to R.M. Robinson (1950). Axiom (14) has been added to make one of the proofs
below easier.) Notice that RR has only a finite number of proper axioms.

Lemma 3.32

In RR, the following are theorems.

a. #n+im=mn+mfor any natural numbers n and m
b. 7-m=mn-m for any natural numbers n and m
c. 1 # i for any natural numbers such that n # m
d. 7n <m for any natural numbers n and m such that n <m
e. x¢£0 B
f. x<n=x=0vx=1v...vx=n for any natural number n
g. x <nvn<xfor any natural number n
Proof

Parts (a)-(c) are proved the same way as Proposition 3.6(a). Parts (d)—(g) are
left as exercises.

Proposition 3.33

All recursive functions are representable in RR.

Proof

The initial functions Z, N, and U are representable in RR by the same wfs
as in Examples 1-3, page 171. That the substitution rule does not lead out of
the class of functions representable in RR is proved in the same way as in
Example 4 on page 172. For the recursion rule, first notice that f(x;, x,, x5) is
represented in RR by Bt(x;, x,, x5, ) and that by Bt(xy, x,, x5, y) A Bt(x,, x,, x5, 2)
= y = z. Reasoning like that in the proof of Proposition 3.24 shows that the
recursion rule preserves representability in RR* The argument given for the
restricted p-operator rule also remains valid for RR.

* This part of the argument is due to Gordon McLean, Jr.
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By Proposition 3.33, all recursive functions are representable in any exten-
sion of RR. Hence, by Proposition 3.29 and Exercise 3.36(c), in any consistent
extension of RR in the language v, that has a recursive axiom set, the class
of representable functions is the same as the class of recursive functions.
Moreover, by Proposition 3.13, the relations expressible in such a theory are
the recursive relations.

Exercises

3.37° Show that RR is a proper subtheory of S. [Hint: Find a model for RR

3.38

3.39

3.40

that is not a model for S.] (Remark: Not only is S different from RR, but
it is not finitely axiomatizable at all, that is, there is no theory K having
only a finite number of proper axioms, whose theorems are the same
as those of S. This was proved by Ryll-Nardzewski, 1953.)

Show that axiom (14) of RR is not provable from axioms (1)—(13) and,
therefore, that Q is a proper subtheory of RR. [Hint: Find a model of
(1)—(13) for which (14) is not true.]

Let K be a theory in the language +, with just one proper axiom: (Vx,)
(Vxp)x; = x,.

a. Show that K is a consistent theory with equality.

b. Prove that all number-theoretic functions are representable in K.

c.  Which number-theoretic relations are expressible in K? [Hint: Use
elimination of quantifiers.]

d. Show that the hypothesis ¢ 0 # 1 cannot be eliminated from
Proposition 3.13.

e. Show that, in Proposition 3.29, the hypothesis (*) cannot be
replaced by the assumption that K is consistent.

Let R be the theory in the language v, having as proper axioms the
equality axioms (1)-(6) of RR as well as the following five axiom sche-
mas, in which n and m are arbitrary natural numbers:

R) 7+ =n+m

R2) 7-im=n-m

RI)nzm ifnzm
RY)x<n=x=0v..vx=n
RE)x<nvn<x

Prove the following.

a. Risnot finitely axiomatizable. [Hint: Show that every finite subset
of the axioms of R has a model that is not a model of R.]

b. Ris a proper subtheory of Q.
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cP Every recursive function is representable in R. (See Monk, 1976, p. 248))
d. The functions representable in R are the recursive functions.

e. The relations expressible in R are the recursive relations.

3.5 The Fixed-Point Theorem: Godel’s Incompleteness Theorem

If Kis a theory in the language ~,, recall that the diagonal function D has the
property that, if u is the Godel number of a wf = (x,), then D(u) is the Godel
number of the wf  (i1).

Notation

When ~is an expression of a theory and the Godel number of ~is g, then we
shall denote the numeral g by "~ . We can think of "~ "as being a “name” for
~within the language v,.

Proposition 3.34 (Diagonalization Lemma)

Assume that the diagonal function D is representable in a theory with equal-
ity K in the language . Then, for any wf ~ (x,) in which x; is the only free
variable, there exists a closed wf « such that

}_K AR = (’_/ _‘)
Proof

Let 7(x,, x,) be a wf representing D in K. Construct the wf

(V)(v2)(7 (x1,x2) = ¢ (x2))
Let m be the Godel number of (V). Now substitute i for x; in (V):
() (vx2)( (1, x2) = ¢ (x2))
Let g be the Godel number of this wf . So, 7 is "~ . Clearly, D(m) = g. (In fact,

m is the Godel number of a wf .27(x;), namely, (V), and g is the Godel number
of »(m).) Since 7 represents D in K,

() F 7 (mq)
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a. Letus show k¢ » = (7).

NS W N

b. Letus provety «(7)= .

1
2
3
4.
5.
6
7.
8
9

10.
11.

- (7)

& (TT’Z,XQ)

Introduction to Mathematical Logic

Hyp
Same as 1

2, rule A4

©)

3,4, MP

1-5

1-6, Corollary 2.6

Hyp
Hyp

7 represents D

©)
2-4, properties of =

1, 5, substitutivity of =
1-6

1-7, Corollary 2.6

8, Gen

1-9, Corollary 2.6

Same as 10

From parts (a) and (b), by biconditional introduction, ¢ « < # (ﬁ)

Proposition 3.35 (Fixed-Point Theorem)*

Assume that all recursive functions are representable in a theory with equal-
ity K in the language v,. Then, for any wf ~ (x;) in which x, is the only free

variable, there is a closed wf ~ such that

¢« @(,(r/ j)

* The terms “fixed-point theorem” and “diagonalization lemma” are often used interchange-
ably, but I have adopted the present terminology for convenience of reference. The central
idea seems to have first received explicit mention by Carnap (1934), who pointed out that the
result was implicit in the work of Godel (1931). The use of indirect self-reference was the key
idea in the explosion of progress in mathematical logic that began in the 1930s.
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Proof

By Proposition 3.27, D is recursive* Hence, D is representable in K and
Proposition 3.34 is applicable.

By Proposition 3.33, the fixed-point theorem holds when K is RR or any
extension of RR. In particular, it holds for S.

Definitions

Let K be any theory whose language contains the individual constant 0 and
the function letter fi- Then K is said to be w-consistent if, for every wf 7 (x) of
K containing x as its only free variable, if x — ~ (i7) for every natural number
n, then it is not the case that F (3x).7 (x).

Let K be any theory in the language v,. K is said to be a true theory if all
proper axioms of K are true in the standard model. (Since all logical axioms
are true in all models and MP and Gen lead from wfs true in a model to wfs
true in that model, all theorems of a true theory will be true in the standard
model.)

Any true theory K must be o-consistent. (In fact, if i — (7 for all natural
numbers 7, then . (x) is false for every natural number and, therefore, (3x).»~
(x) cannot be true for the standard model. Hence, (3x) # (x) cannot be a theo-
rem of K)) In particular, RR and S are w-consistent.

Proposition 3.36

If K is w-consistent, then K is consistent.

Proof

Let #(x) be any wf containing x as its only free variable. Let .#(x) be #(x) A
=(x). Then -~ (7) is an instance of a tautology. Hence, bx — 7 (7) for every
natural number 1. By w-consistency, not-+ (3x). (x). Therefore, K is consis-
tent. (Remember that every wf is provable in an inconsistent theory, by virtue
of the tautology -A = (A = B). Hence, if at least one wf is not provable, the
theory must be consistent.)

It will turn out later that the converse of Proposition 3.36 does not hold.

* In fact, D is primitive recursive, since K, being a theory in v, has a primitive recursive
vocabulary.
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Definition

An undecidable sentence of a theory K is a closed wf v of K such that neither ./
nor —.7is a theorem of K, that is, such that not-+ .7and not-, =..

Godel’s Incompleteness Theorem

Let K be a theory with equality in the language ~, satisfying the following
three conditions:

1. Khas a recursive axiom set (that is, PrAx(y) is recursive).
2. }_K 0=1.
3. Every recursive function is representable in K.

By assumption 1, Propositions 3.26-3.28 are applicable. By assumptions
2 and 3 and Proposition 3.13, every recursive relation is expressible in K.
By assumption 3, the fixed-point theorem is applicable. Note that K can
be taken to be RR, S, or, more generally, any extension of RR having a
recursive axiom set. Recall that Pf(y, x) means that y is the Godel number
of a proof in K of a wf with Gédel number x. By Proposition 3.28, Pf is
recursive. Hence, Pf is expressible in K by a wf 27 (x,, x;). Let ~ (x,) be the
wf (Vx,) 7.7 7 (x,, x;). By the fixed-point theorem, there must be a closed
wf 7 such that

($) R R=" (sz)—..y (xz,’_'c _‘).

Observe that, in terms of the standard interpretation, (Vx,)—.7 (%2, ) says
that there is no natural number that is the G6del number of a proof in K of the
wf ¢, which is equivalent to asserting that there is no proof in K of «. Hence,
vis equivalent in K to an assertion that # is unprovable in K. In other words,
v says “I am not provable in K”. This is an analogue of the liar paradox: “I am
lying” (that is, “I am not true”). However, although the liar paradox leads to
a contradiction, Godel (1931) showed that  is an undecidable sentence of K.
We shall refer to < as a Gddel sentence for K.

Proposition 3.37 (Godel’s Incompleteness Theorem)

Let K satisfy conditions 1-3. Then

a. If K is consistent, not- «.
b. If K is w-consistent, not-+; —«.

Hence, if K is w-consistent, ¢ is an undecidable sentence of K.
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Proof

Let q be the Gédel number of «.

a. Assume b «. Let r be the Godel number of a proof in K of «. Then
Pf(r, q). Hence, tx .~/ (7,q), that is ¢ /(7,72 7). But, from ($)
above by biconditional elimination, F(Vx,) .2/ (x,, | ]). By rule A4,
tx =7 (7,7¢ 7). Therefore, K is inconsistent.

b. Assume K is w-consistent and Fy —~«. From ($) by biconditional elim-
ination, ¢ —(Vx,)—.7/(x,, 7<), which abbreviates to

(*) Fc(3x2)/ (x2707)

On the other hand, since K is w-consistent, Proposition 3.36 implies that K
is consistent. But, ¢ —. Hence, not-+ «, that is, there is no proof in K of «.
So, Pf(n, g) is false for every natural number 1 and, therefore, b -/ (71,77 7)
for every natural number n. (Remember that "< is §7.) By o-consistency, not-
Fx(3x,).7/(x,, 7<), contradicting (*).

Remarks

Godel’s incompleteness theorem has been established for any theory with
equality K in the language v, that satisfies conditions 1-3 above. Assume
that K also satisfies the following condition:

(+) Kisa true theory.

(In particular, K can be S or any subtheory of S.) Proposition 3.37(a) shows
that, if K is consistent, « is not provable in K. But, under the standard inter-
pretation, © asserts its own unprovability in K. Therefore, « is true for the
standard interpretation.

Moreover, when K is a true theory, the following simple intuitive argu-
ment can be given for the undecidability of «in K.

i. Assume by 7. Since g v < (Vx,) ~.7/(x,, 727, it follows that i (Vx,)
=7/ (x,, T27). Since K is a true theory, (Vx,) =7 (x,, 7<) is true
for the standard interpretation. But this wf says that © is not
provable in K, contradicting our original assumption. Hence,
not-F¢ «.

ii. Assume g 7. Since by ¢ & (Vx,) 7.7/ (xy, T, Fx =(Vxy) = .7/ (x,, 7).
So, by (3x,).7/(x,, 7). Since K is a true theory, this wf is true for the
standard interpretation, that is, ¢ is provable in K. This contradicts
the result of (i). Hence, not-+ —«.
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Exercises

3.41 Let v be a Godel sentence for S. Let S, be the extension of S obtained
by adding — as a new axiom. Prove that, if S is consistent, then S, is
consistent, but not w-consistent.

3.42 A theory K whose language has the individual constant 0 and func-
tion letter f;' is said to be w-incomplete if there is a wf ~(x) with one free
variable x such that ¢ (i) for every natural number n, but it is not
the case that k- (Vx) (x). If K is a consistent theory with equality in the
language ~, and satisfies conditions 1-3 on page 208, show that K is
o-incomplete. (In particular, RR and S are o-incomplete.)

3.43 Let K be a theory whose language contains the individual constant 0
and function letter ff. Show that, if K is consistent and w-inconsistent,
then K is o-incomplete.

3.44 Prove thatS, as well as any consistent extension of S having a recursive
axiom set, is not a scapegoat theory. (See page 85.)

3.45 Show that there is an w-consistent extension K of S such that K is not a
true theory. [Hint: Use the fixed point theorem.]

The Godel-Rosser Incompleteness Theorem

The proof of undecidability of a Godel sentence « required the assumption
of w-consistency. We will now prove a result of Rosser (1936) showing that, at
the cost of a slight increase in the complexity of the undecidable sentence, the
assumption of w-consistency can be replaced by consistency.

As before, let K be a theory with equality in the language «, satisfying
conditions 1-3 on page 208. In addition, assume:

= x=0vx=1v...vx=7 for every natural number 7.

4. '_K X
5. k¢ x <nvn < x for every natural number 7.

<n
<n

Thus, K can be any extension of RR with a recursive axiom set. In particular,
KcanbeRRorS.

Recall that, by Proposition 3.26 (14), Neg is a primitive recursive function
such that, if x is the Godel number of a wf ., then Neg(x) is the Godel num-
ber of (—). Since all recursive functions are representable in K, let. +,(x;, x,)
be a wf that represents Neg in K. Now construct the following wf ~ (x;):

(sz)(.// (x2,%1)= (VxS)( i (x1,%3) = (Elx4)(x4 <X Ay (x40 ))))

By the fixed-point theorem, there is a closed wf »such that

(*) }_K = (I_ %'—l)
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»1is called a Rosser sentence for K. Notice what the intuitive meaning of ~is
under the standard interpretation. -~ asserts that, if «»has a proof in K, say
with Godel number x,, then =~ has a proof in K with Gédel number smaller
than x,. This is a roundabout way for -/to claim its own unprovability under
the assumption of the consistency of K.

Proposition 3.38 (Godel-Rosser Theorem)

Let K satisfy conditions 1-5. If K is consistent, then »is an undecidable sen-
tence of K.

Proof

Let p be the Godel number of ». Thus, 777 is p. Let j be the Godel number
of ~.

a. Assume by . Since k¢ . = #(74"), biconditional elimination yields
Fx #("4), that is

F¢ (‘v’xz)(//(xz,ﬁ) = (‘v’x3)( w(pxs)= (3x4)(x4 SNy (x4,x3))))

Let k be the Godel number of a proof in K of ..». Then Pf(k, p) and,
therefore, k¢ .y (k, ﬁ). Applying rule A4 to #("/"), we obtain

¢ .7 (E,;?): (Vx3)( /,,(ﬁ,x3):>(3x4)(x4 SEA.y(x4,x3)))

So, by MP,
(%) i (V) s (Poxs) = (3s) (xa < A (x0,33))

Since j is the Godel number of -, we have .. (p, j), and,
therefore, Fx /w(ﬁ]'). Applying rule A4 to (%), we obtain
Fx ’//(?,]')3(33(4)(954 <kn //(x4,j)). Hence, by MP, H (3x,)

(x4 <k Ay (x4, ] )), which is an abbreviation for
(#) (Vo) —(xs < A (2,7))

Since b ., the consistency of K implies not-+y = ». Hence, Pf(n, j) is
false for all natural numbers n. Therefore, b —. % (71, j ) for all natural
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numbers 7. Since K is a theory with equality, Fx X4 =7 = =/ (x4,7)
for all natural numbers n. By condition 4,

(jg) l_K X4SEZ>X4:O\/X4:TV...VX4:]C
But

(%g) l_Kx4:ﬁ:>—|.4/(X4,7) for n:0,1,...,k

So, by a suitable tautology, (35) and (H) yield Fx x4 <k = -y (x4,])
and then, by another tautology, F« —|(X4 <kny (x4, ])) By Gen,
% (Vx4)—|(x4 <kny (x4, j )) This, together with (#), contradicts
the consistency of K.

Assume Fy . Let m be the Godel number of a proof of —.» in K. So,
Pf(m,j)istrueand, therefore,rx . 7 (771, j ) .Hence, by anapplicationofrule
E4 and the deduction theorem, h 7 < x, = (34 )(xa <22 A 4 (x4, ])
By consistency of K, not-+¢ » and, therefore, Pf(n, p) is false for all
natural numbers n. Hence, ¢ - (7,p) for all natural numbers
n. By condition 4, kx x;<m=x,=0vx,=1v ... vx,=m. Hence,
x x2 < =>—.7 (x2,p). Consider the following derivation.

Ly (x,p) Hyp

2. i (p.xs) Hyp

3. xmy<mvim<x, Condition 5

4. m<x;=(Iny (x4 <X Ay (x4,7)) Proved above

)
5. x<m= -y (x2,p) Proved above
(3x

6. =y (x2, P)v (x4 <A //(x4,f)) 3-5, tautology

s)
7. (3xs) (X4 SXony (x4, )) 1, 6, disjunction rule

8. iy (?, ?) Proved in part (a)
9. (Fix3) 1 (7, x3) i, represents Neg
10. x3=7 2, 8,9, properties of =

11. (HX4)(X4 <X A Y (X4,X3))

12.

»V(xZ/?)/ ”7(?/x3)|_1< (39(4)

(xa<xany (x4,x3))

7,10, substitutivity of =
1-11
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13. 7/ (%2,P) x4 (P,x3) = (Fxy) 1-12, Corollary 2.6
(x4 <X A7/ (X4,X3))

4.y (x2, ) (Va3) (1 (P, 23) 13, Gen
= @xy)(xg <x2 A7 (X4, X3)))

15, k7 (%2, P) = (Vx3) (0 (P, X3) 1-14, Corollary 2.6

= (HX4)(X4 < Xo A Va (X4,X3)))
16. ¢ (Vxo)( (x2,P) = (Vx3) (1, (P, X3) 15, Gen

= (@), 2, A 7 (X, X3))))
17. by .7 (®), 16, biconditional
elimination)

Thus, k¢ #and k¢ =, contradicting the consistency of K.

The Godel and Rosser sentences for the theory S are undecidable sentences
of S. They have a certain intuitive metamathematical meaning; for exam-
ple, a Godel sentence ¢ asserts that ¢ is unprovable in S. Until recently, no
undecidable sentences of S were known that had intrinsic mathematical
interest. However, in 1977, a mathematically significant sentence of combi-
natorics, related to the so-called finite Ramsey theorem, was shown to be
undecidable in S (see Kirby and Paris, 1977; Paris and Harrington, 1977; and
Paris, 1978).

Definition

A theory K is said to be recursively axiomatizable if there is a theory K* having
the same theorems as K such that K* has a recursive axiom set.

Corollary 3.39

Let Kbe a theory in the language v,. If K is a consistent, recursively axiomat-
izable extension of RR, then K has an undecidable sentence.

Proof

Let K* be a theory having the same theorems as K and such that K* has a recur-
sive axiom set. Conditions 1-5 of Proposition 3.38 hold for K*. Hence, a Rosser
sentence for K* is undecidable in K* and, therefore, also undecidable in K.

An effectively decidable set of objects is a set for which there is a mechanical
procedure that determines, for any given object, whether or not that object
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belongs to the set. By a mechanical procedure we mean a procedure that is
carried out automatically without any need for originality or ingenuity in
its application. On the other hand, a set A of natural numbers is said to be
recursive if the property x € A is recursive.’ The reader should be convinced
after Chapter 5 that the precise notion of recursive set corresponds to the intuitive
idea of an effectively decidable set of natural numbers. This hypothesis is known
as Church’s thesis.

Remember that a theory is said to be axiomatic if the set of its axioms
is effectively decidable. Clearly, the set of axioms is effectively decidable
if and only if the set of Godel numbers of axioms is effectively decidable
(since we can pass effectively from a wf to its Gédel number and, con-
versely, from the Godel number to the wf). Hence, if we accept Church’s
thesis, to say that K has a recursive axiom set is equivalent to saying that K
is an axiomatic theory, and, therefore, Corollary 3.39 shows RR is essentially
incomplete, that is, that every consistent axiomatic extension of RR has an
undecidable sentence. This result is very disturbing; it tells us that there
is no complete axiomatization of arithmetic, that is, there is no way to set
up an axiom system on the basis of which we can decide all problems of
number theory.

Exercises

3.46 Church’s thesis is usually taken in the form that a number-theoretic func-
tion is effectively computable if and only if it is recursive. Prove that this is
equivalent to the form of Church’s thesis given above.

3.47 Let Kbe a true theory that satisfies the hypotheses of the Godel-Rosser
theorem. Determine whether a Rosser sentence .- for K is true for the
standard interpretation.

3.48 (Church, 1936b) Let Tr be the set of Godel numbers of all wfs in the lan-
guage v, that are true for the standard interpretation. Prove that Tr is
not recursive. (Hence, under the assumption of Church’s thesis, there is
no effective procedure for determining the truth or falsity of arbitrary
sentences of arithmetic.)

3.49 Prove that there is no recursively axiomatizable theory that has Tr as
the set of Godel numbers of its theorems.

3.50 Let K be a theory with equality in the language +, that satisfies condi-
tions 4 and 5 on page 210. If every recursive relation is expressible in K,
prove that every recursive function is representable in K.

* To say that x € A is recursive means that the characteristic function C, is a recursive function,
where C,(x) =0if x € Aand C,(x) = 1if x & A (see page 180).
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Godel’s Second Theorem

Let K be an extension of S in the language v, such that K has a recursive
axiom set. Let «..i be the following closed wf of K:

(Vxl)(VXz)(Vx3)(Vx4)—.(.// (1, 23) Ay (X2, X4 ) A /,,(x3,x4))

For the standard interpretation, ».., asserts that there are no proofs in K of a
wf and its negation, that is, that K is consistent.
Consider the following sentence:

(G)/WK 7

where ¢ is a Godel sentence for K. Remember that ~ asserts that « is unprov-
able in K. Hence, (G) states that, if K is consistent, then « is not provable in
K. But that is just the first half of Godel’s incompleteness theorem. The meta-
mathematical reasoning used in the proof of that theorem can be expressed
and carried through within K itself, so that one obtains a proof in K of (G)
(see Hilbert and Bernays, 1939, pp. 285-328; Feferman, 1960). Thus, k- «.x = «.
But, by Godel’s incompleteness theorem, if K is consistent, « is not provable
in K. Hence, if K is consistent, v.. is not provable in K.

This is Godel’s second theorem (1931). One can paraphrase it by stating that,
if K is consistent, then the consistency of K cannot be proved within K, or,
equivalently, a consistency proof of K must use ideas and methods that go
beyond those available in K. Consistency proofs for S have been given by
Gentzen (1936, 1938) and Schiitte (1951), and these proofs do, in fact, employ
notions and methods (for example, a portion of the theory of denumerable
ordinal numbers) that apparently are not formalizable in S.

Godel’s second theorem is sometimes stated in the form that, if a “sufficiently
strong” theory K is consistent, then the consistency of K cannot be proved
within K. Aside from the vagueness of the “sufficiently strong” (which can be
made precise without much difficulty), the way in which the consistency of
K is formulated is crucial. Feferman (1960, Cor. 5.10) has shown that there is a
way of formalizing the consistency of S—say, «..s*—such that -5 «..s*. A pre-
cise formulation of Godel’s second theorem may be found in Feferman (1960).
(See Jeroslow 1971, 1972, 1973) for further clarification and development.)

In their proof of Godel’s second theorem, Hilbert and Bernays (1939) based
their work on three so-called derivability conditions. For the sake of definite-
ness, we shall limit ourselves to the theory S, although everything we say also
holds for recursively axiomatizable extensions of S. To formulate the Hilbert-
Bernays results, let .z.(x;) stand for (3x,). (x,, x;). Thus, under the standard
interpretation, .z.(x;) means that there is a proof in S of the wf with Godel
number x;; that is, the wf with Gédel number x, is provable in S.* Notice that a
Godel sentence « for S satisfies the fixed-point condition: k- v < —..(77).

* Bew” consists of the first three letters of the German word beweisbar, which means “provable.”
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The Hilbert-Bernays Derivability Conditions*

(HB1) If I, then ks 4.(7/7)
(HB2) ks 2. (T = 2= (2.(T )= 2.(707)

(HB3) ks //;,,(7/7): /,;,,,(r A;//(l‘/ —l)‘l)

Here, ~ and 7 are arbitrary closed wfs of S. (HBI) is straightforward and
(HB2) is an easy consequence of properties of /. However, (HB3) requires
a careful and difficult proof. (A clear treatment may also be found in Boolos
(1993, Chapter 2), and in Shoenfield (1967, pp. 211-213).)

A Godel sentence « for S asserts its own unprovability in S: ¢ © & = 2.(727).
We also can apply the fixed-point theorem to obtain a sentence » such that
b 7 . 2.(77). #is called a Henkin sentence for S.  asserts its own provability
in S. On intuitive grounds, it is not clear whether 7 is true for the standard
interpretation, nor is it easy to determine whether  is provable, disprovable
or undecidable in S. The problem was solved by Lob (1955) on the basis of
Proposition 3.40 below. First, however, let us introduce the following conve-
nient abbreviation.

Notation

Let [J~ stand for .2.("/7), where « is any wf. Then the Hilbert-Bernays deriv-
ability conditions become

(HB1) If ks ~ , then FsOr
(HB2) kO(+ = o )= (0r =07)
(HB3) KO- =00~

The Godel sentence © and the Henkin sentence 7 satisfy the equivalences
Feoo-Ovand b 7o [ 7.

Proposition 3.40 (Lob’s Theorem)

Let #be a sentence of S. If 5[] = ¢, then k¢ ~.

* These three conditions are simplifications by Lob (1955) of the original Hilbert-Bernays
conditions.
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Proof

Apply the fixed-point theorem to the wf .(x;) = ~ to obtain a sentence
such that g v < (2.(79") = #). Thus, kg v< ((J = ). Then we have the fol-
lowing derivation of ~.

L Fsve@dr=0) Obtained above
2. Fsy=>@dv=0) 1, biconditional
elimination
3. FsO(v=>v= ) 2, (HB1)
4 FOvy=>000=0) 3, (HB2), MP
5 FO00Cv=)=>C0v=>0) (HB2)
6. FsOv=0O0v=>0) 4, 5 tautology
7. FsOv=00~ (HB3)
8. FsOv=>0~ 6, 7, tautology
9. FsOr=>» Hypothesis of the theorem
10. FsOv=> - 8,9, tautology
1L k5o 1, 10, biconditional
elimination
12. O~ 11, (HB1)
13. ks v 10, 12, MP
Corollary 3.41

Let » be a Henkin sentence for S. Then g # and 7 is true for the standard
interpretation.
Proof

ks #< [ 7 By biconditional elimination, 5[] #= 7. So, by Lob’s theorem,
ks . Since 7 asserts that # is provable in S, 7 is true

Lob’s theorem also enables us to give a proof of Godel’s second theorem
for S.

Proposition 3.42 (Godel’s Second Theorem)

If S is consistent, then not-+¢ ...

Proof

Assume S consistent. Since I 0 # 1, the consistency of S implies not+s 0 = 1. By
Lob’s theorem, not-+s D(O = T) = 0=1. Hence, by the tautology =A = (A = B),
we have:

(*) notts ﬁm(o = T)
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But, since I 0 1, (HB1) yields s D(O #* T). Then it is easy to show that
ks 75 = —0(0=1). So, by (*), not+s .s.

Boolos (1993) gives an elegant and extensive study of the fixed-point theo-
rem and Lob’s theorem in the context of an axiomatic treatment of provabil-

ity predicates. Such an axiomatic approach was first proposed and developed
by Magari (1975).

Exercises

3.51 Prove (HB1) and (HB2).

3.52 Give the details of the proof of 5 .5 = — /,:,,,,('—0 = Tj) , which was used
in the proof of Proposition 3.42.

3.53 If < is a Godel sentence of S, prove ks v < — . (VO :T”). (Hence, any
two Godel sentences for S are provably equivalent. This is an instance
of a more general phenomenon of equivalence of fixed-point sentences,
first noticed and verified independently by Bernardi (1975, 1976),
De Jongh and Sambin (1976). See Smoryriski (1979, 1982).

3.54 In each of the following cases, apply the fixed-point theorem for S
to obtain a sentence of the indicated kind; determine whether that
sentence is provable in S, disprovable in S, or undecidable in S;
and determine the truth or falsity of the sentence for the standard
interpretation.

a. A sentence - that asserts its own decidability in S (that is, that -5 ~
or g 7).

b. A sentence that asserts its own undecidability in S.

c. A sentence - asserting that not-+g -~
A sentence - asserting that ¢~

3.6 Recursive Undecidability: Church’s Theorem
If K is a theory, let Ty be the set of Godel numbers of theorems of K.

Definitions

Kis said to be recursively decidable if Ty is a recursive set (that is, the property
x € Ty is recursive). K is said to be recursively undecidable if Ty is not recursive.
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K is said to be essentially recursively undecidable if K and all consistent exten-
sions of K are recursively undecidable.

If we accept Church’s thesis, then recursive undecidability is equivalent to
effective undecidability, that is, nonexistence of a mechanical decision pro-
cedure for theoremhood. The nonexistence of such a mechanical procedure
means that ingenuity is required for determining whether arbitrary wfs are
theorems.

Exercise

3.55 Prove that an inconsistent theory having a recursive vocabulary is
recursively decidable.

Proposition 3.43

Let K be a consistent theory with equality in the language ~, in which
the diagonal function D is representable. Then the property x € Ty is not
expressible in K.

Proof

Assume x € Ty is expressible in K by a wf /(x;). Thus

a. IfneTy,k ().

b. Ifn ¢ Ty, =7 (ﬁ)
By the diagonalization lemma applied to —~(x,), there is a sentence ~
such that ki < —~/(77). Let g be the Godel number of ~. So

s e-(7).

Case 1: ¢ ». Then q € Ty. By (@), kv (ﬁ) But, from k¢ ~and (c), by bicon-
ditional elimination, bk =/~ (ﬁ) Hence K is inconsistent, contradicting our
hypothesis.

Case 2: not-+y +. So, q & T. By (b),  — /(7). Hence, by (c) and biconditional
elimination, F .
Thus, in either case a contradiction is reached.

Definition

A set B of natural numbers is said to be arithmetical if there is a wf %(x) in the
language v,, with one free variable x, such that, for every natural number #,
n € Bif and only if (1) is true for the standard interpretation.
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Corollary 3.44 [Tarski’s Theorem (1936)]

Let Tr be the set of Godel numbers of wfs of S that are true for the standard
interpretation. Then Tr is not arithmetical.

Proof

Let ./ be the extension of S that has as proper axioms all those wfs that
are true for the standard interpretation. Since every theorem of ./ must be
true for the standard interpretation, the theorems of ./ are identical with
the axioms of ./. Hence, T, = Tr. Thus, for any closed wf .7, .7 holds for the
standard interpretation if and only if -, . It follows that a set B is arithmeti-
cal if and only if the property x € B is expressible in . /. We may assume that

/is consistent because it has the standard interpretation as a model. Since
every recursive function is representable in S, every recursive function is
representable in ./ and, therefore, D is representable in . /. By Proposition
343, x € Tr is not expressible in /. Hence, Tr is not arithmetical. (This result
can be roughly paraphrased by saying that the notion of arithmetical truth is
not arithmetically definable.)

Proposition 3.45

Let K be a consistent theory with equality in the language -, in which all
recursive functions are representable. Assume also that ¢ 0 # 1. Then K is
recursively undecidable.

Proof

D is primitive recursive and, therefore, representable in K. By Proposition
343, the property x € Ty is not expressible in K. By Proposition 3.13, the char-
acteristic function Cr, is not representable in K. Hence, Cr, is not a recursive
function. Therefore, Tx is not a recursive set and so, by definition, K is recur-
sively undecidable.

Corollary 3.46

RR is essentially recursively undecidable.

Proof

RR and all consistent extensions of RR satisfy the conditions on K in
Proposition 3.45 and, therefore, are recursively undecidable. (We take for
granted that RR is consistent because it has the standard interpretation as
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a model. More constructive consistency proofs can be given along the same
lines as the proofs by Beth (1959, § 84) or Kleene (1952, § 79).)

We shall now show how this result can be used to give another derivation
of the Godel-Rosser theorem.

Proposition 3.47

Let K be a theory with a recursive vocabulary. If K is recursively axiomatiz-
able and recursively undecidable, then K is incomplete (i.e., K has an unde-
cidable sentence).

Proof

By the recursive axiomatizability of K, there is a theory ] with a recursive
axiom set that has the same theorems as K. Since K and J have the same theo-
rems, Ty = Tj and, therefore, | is recursively undecidable, and K is incomplete
if and only if ] is incomplete. So, it suffices to prove ] incomplete. Notice that,
since K and ] have the same theorems, ] and K must have the same individual
constants, function letters, and predicate letters (because all such symbols
occur in logical axioms). Thus, the hypotheses of Propositions 3.26 and 3.28
hold for J. Moreover, ] is consistent, since an inconsistent theory with a recur-
sive vocabulary is recursively decidable.

Assume ] is complete. Remember that, if x is the Godel number of a wf,
Clos(x) is the Godel number of the closure of that wf. By Proposition 3.26 (16),
Clos is a recursive function. Define:

H(x) = pwy[(Fml(x) A (Pf(y, Clos(x)) v Pf(y, Neg(Clos(x))))) v =Fml(x)]

Notice that, if x is not the Godel number of a wf, H(x) = 0. If x is the Godel
number of a wf ., the closure of .~ is a closed wf and, by the completeness of
J, there is a proof in | of either the closure of . or its negation. Hence, H(x) is
obtained by a legitimate application of the restricted p-operator and, therefore,
H is a recursive function. Recall that a wf is provable if and only if its closure
is provable. So, x € T; if and only if Pf(H(x), Clos(x)). But Pf(H(x), Clos(x)) is
recursive. Thus, T is recursive, contradicting the recursive undecidability of J.

The intuitive idea behind this proof is the following. Given any wf », we
form its closure ~ and start listing all the theorems in J. (Since PrAx is recur-
sive, Church'’s Thesis tells us that J is an axiomatic theory and, therefore, by
the argument on page 84, we have an effective procedure for generating all
the theorems.) If ] is complete, either ~ or —~ will eventually appear in the
list of theorems. If ~ appears, .7is a theorem. If =~ appears, then, by the con-
sistency of J, ~ will not appear among the theorems and, therefore, ..~ is not
a theorem. Thus, we have a decision procedure for theoremhood and, again
by Church’s thesis, ] would be recursively decidable.
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Corollary 3.48 (Godel-Rosser Theorem)

Any consistent recursively axiomatizable extension of RR has undecidable
sentences.

Proof

This is an immediate consequence of Corollary 3.46 and Proposition 3.47.

Exercises

3.56 Prove thata recursively decidable theory must be recursively axiomatizable.

3.57 Let K be any recursively axiomatizable true theory with equality.
(So, T¢x C Tr) Prove that K has an undecidable sentence. [Hint: Use

Proposition 3.47 and Exercise 3.48]

3.58 Two sets A and B of natural numbers are said to be recursively inseparable
if there is no recursive set C such that A C C and B < C. (C is the com-
plement o —C.) Let K be any consistent theory with equality in the lan-
guage v, in which all recursive functions are representable and such that
k¢ 0 # 1. Let Refg be the set of Godel numbers of refutable wfs of K, that
is, {x|Neg(x) € Ti}. Prove that Ty and Refy are recursively inseparable.

Definitions
Let K; and K, be two theories in the same language.

a. K, is called a finite extension of K, if and only if there is a set A of wfs
and a finite set B of wfs such that (1) the theorems of K, are precisely
the wfs derivable from A; and (2) the theorems of K, are precisely the
wfs derivable from A U B.

b. Let K; UK, denote the theory whose set of axioms is the union of the
set of axioms of K; and the set of axioms of K,. We say that K; and K,
are compatible if K; U K, is consistent.

Proposition 3.49

Let K; and K, be two theories in the same language. If K, is a finite extension
of K, and if K, is recursively undecidable, then K, is recursively undecidable.

Proof

Let A be a set of axioms of K; and A U {4, ..., 4} a set of axioms for K,. We
may assume that ., ..., ., are closed wfs. Then, by Corollary 2.7, it is easy to
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see that a wf ~ is provable in K, if and only if (4 A ... A ) = ~ is provable
in K;. Let ¢ be a Gédel number of (4 A ... A .%,). Then b is a Godel number of
a theorem of K, when and only when 23 # ¢ * 211 x b = 25 is a Godel number of a
theorem of K;; that is, b is in T, if and only if 23 » ¢ * 211 = b » 25is in Ty, . Hence,
if Ty, were recursive, Ty, would also be recursive, contradicting the recursive
undecidability of K,.

Proposition 3.50

Let K be a theory in the language . If K is compatible with RR, then K is
recursively undecidable.

Proof

Since K is comptatible with RR, the theory K U RR is a consistent extension
of RR. Therefore, by Corollary 3.46, K U RR is recursively undecidable. Since
RR has a finite number of axioms, K U RR is a finite extension of K. Hence, by
Proposition 3.49, K is recursively undecidable.

Corollary 3.51

Every true theory K is recursively undecidable.

Proof

K U RR has the standard interpretation as a model and is, therefore, consis-
tent. Thus, K is compatible with RR. Now apply Proposition 3.50.

Corollary 3.52

Let Pg be the predicate calculus in the language ;. Then Ps is recursively
undecidable.

Proof

P;URR = RR. Hence, Pg is compatible with RR and, therefore, by Proposition
3.50, recursively undecidable.

By PF we mean the full first-order predicate calculus containing all predi-
cate letters, function letters and individual constants. Let PP be the pure
first-order predicate calculus, containing all predicate letters but no function
letters or individual constants.
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Lemma 3.53

There is a recursive function / such that, for any wf . of PF having Godel
number u, there is a wf %’ of PP having Godel number h(17) such that . is
provable in PF if and only if ' is provable in PP.

Proof

Let ® be a wf of PF. First we will eliminate any individual constants from ®.
Assume b is an individual constant in ®. Let AL, be the first new symbol of
that form. Intuitively we imagine that A,, represents a property that holds
only for b. Let ®*(z) be obtained from @ by replacing all occurrences of b by z.
We will associate with ® a new wf ¥, where ¥ has the form

(@2 L) A () (x =y = [ AL & AL ])} = (2] Ah(D) = 0= (2)]

Then ¥ is logically valid if and only if @ is logically valid. We apply the
same procedure to ¥ and so on until we obtain a wf ®% that contains no
individual constants and is logically valid if and only if ® is logically
valid. Now we apply to ®° a similar, but somewhat more complicated, pro-
cedure to obtain a wf @ that contains no function letters and is logically
valid if and only if @ is logically valid. Consider the first function letter f/"
in @%. Take the first new symbol A;*! of that form. Intuitively we imagine
that A/ holds for (x,, ..., x,,) if and only if f/(xy, ..., x,) = X,,1. We wish
to construct a wf that plays a role similar to the role played by ¥ above.
However, the situation is more complex here because there may be iterated
applications of f;" in ®%. We shall take a relatively easy case where f;" has
only simple (noniterated) occurrences, say, f/'(si, ..., s,) and f/'(f, ..., t,).
Let ®% be obtained from ®% by replacing the occurrences of f/'(sy, ..., s,)
by v and the occurrences of f/'(t;, ..., t,) by w. In the wf ® analogous to
¥, use as conjuncts in the antecedent (Vx1)...(Vx,)(Fiz) A (xa, ..., X0, 2)
and the n+1 equality substitution axioms for A" and, as the consequent
(VO)(YW)AMYS,, ..., S, ) AAM N (H, ..., by, w) = D%%). We leave it to the
reader to construct ® when there are nonsimple occurrences of f". If u is
the Godel number of the original wf @, let h(u) be the Godel number of the
result ®. When u is not the Gddel number of a wf of PF, define h(u) to be 0.
Clearly, h is effectively computable because we have described an effective
procedure for obtaining ® from ®. Therefore, by Church’s thesis, & is
recursive. Alternatively, an extremely diligent reader could avoid the use
of Church’s thesis by “arithmetizing” all the steps described above in the
computation of k.
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Proposition 3.54 (Church’s Theorem (1936A))

PF and PP are recursively undecidable.

Proof

a.

By Godel’s completeness theorem, a wf v of Py is provable in Py if
and only if »is logically valid, and 7 is provable in PF if and only
if 7is logically valid. Hence, I, 7 if and only if Fp .. However,
the set Fmlp, of Godel numbers of wfs of Pg is recursive. Then
Tr, = Tos "Fmlyp, where Ty, and Tpp are, respectively, the sets of
Go6del numbers of the theorems of Pg and PF. If T, were recursive,
Tp, would be recursive, contradicting Corollary 3.52. Therefore, PF is
recursively undecidable.

By Lemma 3.53, u is in Ty if and only if h(u) is in Tpp. Since h is recur-
sive, the recursiveness of Ty, would imply the recursiveness of Tpy,
contradicting (a). Thus, Tpp is not recursive; that is, PP is recursively
undecidable.
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If we accept Church’s thesis, then “recursively undecidable” can be replaced
everywhere by “effectively undecidable.” In particular, Proposition 3.54
states that there is no decision procedure for recognizing theoremhood,
either for the pure predicate calculus PP or the full predicate calculus PE. By
Godel’s completeness theorem, this implies that there is no effective method for
determining whether any given wf is logically valid.

Exercises

3.59P a. By a wf of the pure monadic predicate calculus (PMP) we mean

a wf of the pure predicate calculus that does not contain predi-
cate letters of more than one argument. Show that, in contrast to
Church’s theorem, there is an effective procedure for determining
whether a wf of PMP is logically valid. [Hint: Let B, B,, ..., B, be the
distinct predicate letters in a wf »». Then .~ is logically valid if and
only if 7is true for every interpretation with at most 2* elements.
(In fact, assume 7 is true for every interpretation with at most 2*
elements, and let M be any interpretation. For any elements b and ¢
of the domain D of M, call b and ¢ equivalent if the truth values of
By(b), B,(b), ..., Bi(b) in M are, respectively, the same as those of B,(c),
B,(c), ..., Bi(c). This defines an equivalence relation in D, and the
corresponding set of equivalence classes has at most 2 members
and can be made the domain of an interpretation M* by defining
interpretations of B;, ..., B, in the obvious way, on the equivalence
classes. By induction on the length of wfs ~ that contain no predicate
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letters other than B, ..., B;, one can show that «is true for M if and
only if it is true for M* Since .7 is true for M¥ it is also true for M.
Hence, 7is true for every interpretation.) Note also that whether ./
is true for every interpretation that has at most 2* elements can be
effectively determined.]*

b. Prove thata wf..sof PMP is logically valid if and only if .»7is true for

all finite interpretations. (This contrasts with the situation in the
pure predicate calculus; see Exercise 2.56 on page 92.)

If atheory K* is consistent, if every theorem of an essentially recursively
undecidable theory K| is a theorem of K* and if the property Fmly, ()
is recursive, prove that K* is essentially recursively undecidable.

(Tarski et al., 1953, I)
a. Let Kbe a theory with equality. If a predicate letter A}, a function

letter f" and an individual constant 4; are not symbols of K, then
by possible definitions of A}, f}", and a; in K we mean, respectively,

expressions of the form

i (Vx) .. (Vx,,)(A]*‘ (x1, .0, xu) & 7 (20, ..., xn))

ii. (V) ... (Vxﬂ)(Vy)(fj” (x1, o0, X)) =y =7 (x1, ..., xn,y))

iii. (Yy)a;=y < 7(y)
where 7, +, and 2 are wfs of K; moreover, in case (ii),
we must also have Fy(Vx) ... (¥x)3w)7 (x, ..., X, V),
and, in case (iii), Fy(3y)7(y). Moreover, add to (ii) the
requirement of 7 new equality axioms of the form
y=z= f"(X1, ... X1, Y, X1, oo, Xn) = 1 (X1, o) Xi, 2, X1, ooy X))
If K is consistent, prove that addition of any possible defini-
tions to K as new axioms (using only one possible definition
for each symbol and assuming that the set of new logical con-
stants and the set of possible definitions are recursive) yields
a consistent theory K/, and K’ is recursively undecidable if and
only if K is.

By a nonlogical constant we mean a predicate letter, function let-

ter or individual constant. Let K; be a theory with equality that

has a finite number of nonlogical constants. Then K, is said to be

interpretable in a theory with equality K if we can associate with

* The result in this exercise is, in a sense, the best possible. By a theorem of Kalmar (1936), there
is an effective procedure producing for each wf  of the pure predicate calculus another wf
4 of the pure predicate calculus such that » contains only one predicate letter, a binary one,
and such that ~is logically valid if and only if  is logically valid. (For another proof, see
Church, 1956, § 47) Hence, by Church’s theorem, there is no decision procedure for logical
validity of wfs that contain only binary predicate letters. (For another proof, see Exercise 4.68
on page 277)
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3.62

3.63

3.64

each nonlogical constant of K; that is not a nonlogical constant of
K a possible definition in K such that, if K* is the theory obtained
from K by adding these possible definitions as axioms, then every
axiom (and hence every theorem) of K| is a theorem of K*. Notice
that, if K, is interpretable in K, it is interpretable in every extension
of K. Prove that, if K| is interpretable in K and K is consistent, and
if K| is essentially recursively undecidable, then K is essentially
recursively undecidable.

Let K be a theory with equality and A{- a monadic predicate let-
!

ter not in K. Given a closed wf 7, let » A (called the relativization of

~ with respect to Aj) be the wf obtained from - by replacing every

subformula (starting from the smallest subformulas) of the form

(Vx).7 () by (Vx)(A]1 (x)= //(x)). Let the proper axioms of a new

(4

theory with equality K" be: (i) all wfs « ), where ~ is the clo-
sure of any proper axiom of K; (i) (3x)A}(x); (iii) Aj(a,) for each
individual constant 4, of K; (iv) x; =x, = (A/(x1) = Aj(x,)); and
W) Aj(x)A .. AAj(x) = Aj(fi'(x1, ..., X)) for any function letter f{'
of K. Prove the following.

! !
a. Asproper axioms of K" we could have taken all wfs ¢ ), where «

is the closure of any theorem of K.

1
b. K" is interpretable in K.
1
c. K" is consistent if and only if K is consistent.

1
d. K"is essentially recursively undecidable if and only if K is (Tarski
et al., 1953, pp. 27-28).

K is said to be relatively interpretable in K’ if there is some predicate
1

letter A} not in K such that K" is interpretable in K. If K is relatively
interpretable in a consistent theory with equality K" and K is essen-
tially recursively undecidable, prove that K’ is essentially recursively
undecidable.

Call a theory K in which RR is relatively interpretable sufficiently
strong. Prove that any sufficiently strong consistent theory K is essen-
tially recursively undecidable, and, if K is also recursively axiomatiz-
able, prove that K is incomplete. Roughly speaking, we may say that
K is sufficiently strong if the notions of natural number, 0, 1, addi-
tion and multiplication are “definable” in K in such a way that the
axioms of RR (relativized to the “natural numbers” of K) are prov-
able in K. Clearly, any theory adequate for present-day mathematics
will be sufficiently strong and so, if it is consistent, then it will be
recursively undecidable and, if it is recursively axiomatizable, then it
will be incomplete. If we accept Church’s thesis, this implies that any
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consistent sufficiently strong theory will be effectively undecidable
and, if it is axiomatic, it will have undecidable sentences. (Similar
results also hold for higher-order theories; for example, see Godel,
1931.) This destroys all hope for a consistent and complete axiomatization of
mathematics.

3.7 Nonstandard Models

Recall from Section 3.1 that the standard model is the interpretation of the lan-
guage £, of arithmetic in which:

a. The domain is the set of nonnegative integers
b. The integer 0 is the interpretation of the symbol 0

c. The successor operation (addition of 1) is the interpretation of the
function ’ (that is, of f1)

d. Ordinary addition and multiplication are the interpretations of +
and -

e. The predicate letter = is interpreted by the identity relation

By a nonstandard model of arithmetic we shall mean any normal interpretation
M of £, that is not isomorphic to the standard model and in which all formu-
las are true that are true in the standard model (that is, M and the standard
model are elementarily equivalent). Also of interest are nonstandard models of
S, that is, normal models of S that are not isomorphic to the standard model,
and much of what we prove about nonstandard models of arithmetic also
holds for nonstandard models of S. (Of course, all nonstandard models of
arithmetic would be nonstandard models of S, since all axioms of S are true
in the standard model.)

There exist denumerable nonstandard models of arithmetic. Proof:
Remember (page 221) that s is the theory whose axioms are all wfs true
for the standard interpretation. Add a constant ¢ to the language of arith-
metic and consider the theory K obtained from ./ by adding the axioms
c#n for all numerals 71. K is consistent, since any finite set of axioms of
K has as a model the standard model with a suitable interpretation of c.
(Ifc#ny,c#ny, ..., c#n, are the new axioms in the finite set, choose the inter-
pretation of ¢ to be a natural number not in {n,, ..., n,}.) By Proposition 2.26,
K has a finite or denumerable normal model M. M is not finite, since the
interpretations of the numerals will be distinct. M will be a nonstandard
model of arithmetic. (If M were isomorphic to the standard model, the inter-
pretation ¢y, of ¢ would correspond under the isomorphism to some natural
number m and the axiom ¢ # m would be false.)
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Let us see what a nonstandard model of arithmetic M must look like.
Remember that all wfs true in the standard model are also true in M. So, for
every x in M, there is no element between x and its successor x” = x + 1. Thus,
if z is the interpretation of 0, then z, z/, z, z”, ..., form an initial segment z <
z' <z" <z <..., of M that is isomorphic to the standard model. Let us call
these elements the standard elements of M. The other elements of M will be
greater than the standard elements and will be called nonstandard elements
of M. Since every nonzero element w of M has an “immediate predecessor” u
such that w = u’ and u will have an immediate predecessor ¢, and so on, every
nonstandard element w will belong to a block B,={..., t, u, w, w', w”", ...} con-
sisting of nonstandard elements. B,, is isomorphic to a copy of the ordinary
integers, where w, w’, w”, ..., correspond to 0, 1, 2, ..., and ..., t, u correspond
to ..., =2, —1. More precisely, we can define a binary relation R on the set of
nonstandard elements by specifying that x R y if and only if there is a stan-
dard element s such that x + s =y or y + s = x. Ris an equivalence relation and
the resulting equivalence classes are the blocks. The blocks inherit an order
relation from M. If one element of a block B, is less than an element of a block
B,, then every element of B, is less than every element of B,; in that case, we
specify that B, < B,. The resulting ordering of the blocks is obviously a total
order and it is dense and without first or last member. (See Exercise 2.67.) To
see that there is no last member, note that, if w belongs to a block B, then 2w
belongs to a larger block. To see that there is no first member, note that, if w
belongs to a block B, then there exists a non-standard element x such that
either w = 2x or w = 2x + 1, and, therefore, the block of x is smaller than B. To
show that the ordering is dense, assume that x belongs to a block B, and that
y belongs to a larger block B,. We may assume that x and y are even. (If x is
not even, we could consider x + 1, and similarly for y.) Then there is a non-
standard element z such that 2z = x + . We leave it as an exercise to check that
x <z and z < y and that the block of z is strictly between B, and B,.

Exercise 3.65

Show that, if < and <, are dense total orders without first and last element
and their domains D, and D, are denumerable, then there is a “similarity
mapping” f from D, onto D, (that is, for any x and y in D,, x <; y if and only
if f(x) <, f(y)). (Hint: Start with enumerations <a,, a,, ...> and <b,, b,, ...> of D,
and D,. Map g, to b;. Then look at a,. If a,> a;, map a, to the first unused b,
such that b; >, b, in D,. On the other hand, if 4, <, a;, map 4, to the first unused
b; such that b; <, b, in D,. Now look at a,, observe its relation to 4, and a,, and
map 45 to the first unused b, so that the b’s are in the same relation as the a’s.
Continue to extend the mapping in similar fashion.)

Note that, with respect to its natural ordering, the set of rational num-
bers is a denumerable totally ordered set without first or last element. So, by
Exercise 3.65, the totally ordered set of blocks of any denumerable nonstan-
dard model of arithmetic looks just like the ordered set of rational numbers.
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Thus, the model can be pictured in the following way: First come the natural
numbers 0, 1,2, ... . These are followed by a denumerable collection of blocks,
where each block looks like the integers in their natural order, and this denu-
merable collection of blocks is ordered just like the rational numbers.

Exercise 3.66

Prove that there is no wf ®(x) of the language of arithmetic such that, in each
nonstandard model M of arithmetic, ® is satisfied by those and only those
elements of M that are standard. (Hint: Note that ®(0) and (Vx)(®@(x) = D(x"))
would be true in M, and the principle of mathematical induction holds in M.)

We have proved that there are denumerable nonstandard models of S, as
well as denumerable nonstandard models of arithmetic. We may assume
that the domain of any such model M is the set @ of natural numbers. The
addition and multiplication operations in the model M are binary opera-
tions on o (and the successor operation is a unary operation on ). Stanley
Tennenbaum proved that, in any denumerable nonstandard model of arith-
metic, it is not the case that the addition and multiplication operations are
both recursive. (See Tennenbaum, 1959.) This was strengthened by Georg
Kreisel, who proved that addition cannot be recursive, and by Kenneth
McAloon, who proved that multiplication cannot be recursive, and by
George Boolos, who proved that addition and multiplication each cannot be
arithmetical. (See Kaye, 1991; Boolos et al., 2007.)
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Axiomatic Set Theory

4.1 An Axiom System

A prime reason for the increase in importance of mathematical logic in the
twentieth century was the discovery of the paradoxes of set theory and the
need for a revision of intuitive (and contradictory) set theory. Many differ-
ent axiomatic theories have been proposed to serve as a foundation for set
theory but, no matter how they may differ at the fringes, they all have as
a common core the fundamental theorems that mathematicians require for
their daily work. We make no claim about the superiority of the system we
shall use except that, from a notational and conceptual standpoint, it is a
convenient basis for present-day mathematics.

We shall describe a first-order theory NBG, which is basically a system of
the same type as one originally proposed by J. von Neumann (1925, 1928)
and later thoroughly revised and simplified by R. Robinson (1937), Bernays
(1937-1954), and Godel (1940). (We shall follow Godel’s monograph to a great
extent, although there will be some significant differences.)*

NBG has a single predicate letter A7 but no function letter or individual
constants." In order to conform to the notation in Bernays (1937-1954) and
Godel (1940), we shall use capital italic letters X;, X,, X;, ... as variables instead
of xy, Xy, X3, ... . (As usual, we shall use X, Y, Z, ... to represent arbitrary vari-
ables.) We shall abbreviate A3(X,Y)by X € Y, and —A3(X,Y)by X ¢ Y.

Intuitively, € is to be thought of as the membership relation and the values
of the variables are to be thought of as classes. Classes are certain collections
of objects. Some properties determine classes, in the sense that a property
P may determine a class of all those objects that possess that property. This
“interpretation” is as imprecise as the notions of “collection” and “property.”
The axioms will reveal more about what we have in mind. They will provide
us with the classes we need in mathematics and appear modest enough so
that contradictions are not derivable from them.

Let us define equality in the following way.

* I coined the name NBG in honor of von Neumann, Bernays, and Godel. Paul Halmos, who
favored the Zermelo-Fraenkel system, suggested that “NBG” stood for “No Bloody Good.”
* We use Aj instead of A} because the latter was used previously for the equality relation.
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Definition
X=Yfor(VZ)(ZeX < ZeY)*

Thus, two classes are equal when and only when they have the same
members.

Definitions

XcY for (VZ)(ZeX=ZeY) (inclusion)
XcY for XcYAX=zY (proper inclusion)

When X C Y, we say that X is a subclass of Y. When X C Y, we say that Xis a
proper subclass of Y.
As easy consequences of these definitions, we have the following.

Proposition 4.1

akFX=YeXCYAYCX)
b.-X=X
ckFX=Y=>Y=X
dFX=Y=>(Y=2=>X=2)

We shall now present the proper axioms of NBG, interspersing among the
axioms some additional definitions and various consequences of the axioms.

We shall define a class to be a set if it is a member of some class. Those
classes that are not sets are called proper classes.

Definitions

M(X) for 3Y)(XeY) (Xisaset)
Pr(X) for —M(X) (X is a proper class)

It will be seen later that the usual derivations of the paradoxes now no lon-
ger lead to contradictions but only yield the results that various classes are
proper classes, not sets. The sets are intended to be those safe, comfortable
classes that are used by mathematicians in their daily work, whereas proper

* As usual, Z is to be the first variable different from X and Y.
* The subscript NBG will be omitted from kg in the rest of this chapter.
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classes are thought of as monstrously large collections that, if permitted to be
sets (i.e., allowed to belong to other classes), would engender contradictions.

Exercise
41 Provetk XeY = M(X).

The system NBG is designed to handle classes, not concrete individuals.*
The reason for this is that mathematics has no need for objects such as cows
and molecules; all mathematical objects and relations can be formulated in
terms of classes alone. If nonclasses are required for applications to other
sciences, then the system NBG can be modified slightly so as to apply to both
classes and nonclasses alike (see the system UR in Section 4.6 below).

Let us introduce lower-case letters x;, x,, ... as special restricted variables
for sets. In other words, (Vx) ~ (x) stands for (VX)(M(X) = (X)), that is, »
holds for all sets, and (3x)) 7 (x) stands for FX)(M(X) A .~ (X)), thatis, ~holds
for some set. As usual, the variable X used in these definitions should be
the first one that does not occur in . » (x]-). We shall use x, y, z, ... to stand for
arbitrary set variables.

Example

(VX1)(Vx)(Jy)(3X;5)(Xy € x Ay € X;) stands for
(VX)(VX2)M(X2) = (3X)(M(X4) A (BX3)(Xh € Xy A Xy € X3)))

Exercise

4.2 Provethatk X =Y & (Vz)(z € X & z € Y). This is the so-called exten-
sionality principle: two classes are equal when and only when they
contain the same sets as members.

Axiom T

X1=X2:>(X1 €X3 <:>X2€X3)
This axiom tells us that equal classes belong to the same classes.

Exercise

4.3 Prove that-M(Z) A Z =Y = M(Y).

* If there were concrete individuals (that is, objects that are not classes), then the definition
of equality would have to be changed, since all such individuals have the same members
(namely, none at all).
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Proposition 4.2

NBG is a first-order theory with equality.

Proof

Use Proposition 4.1, axiom T, the definition of equality, and the discussion
on page 97.

Note that Proposition 4.2 entails the substitutivity of equality, which will
be used frequently in what follows, usually without explicit mention.

Axiom P (Pairing Axiom)
(Vx)(Vy)Fz)(Vu)(uezu=xvu=y)

Thus, for any sets x and y, there is a set z that has x and y as its only members.

Exercises

4.4 Prove - (Vx)(Vy)(3,2)(Vu)(u € z © u = x V u =y). This asserts that there
is a unique set z, called the unordered pair of x and y, such that z has
x and y as its only members. Use axiom P and the extensionality
principle.

4.5 Prove - (VX)M(X) & (Ay)(X € y)).

4.6 Prove - (3X) Pr(X) = ~(VY)(VZ)AW)VU) U e We U=Y Vv U=2Z).

Axiom N (Null Set)

B(Y)(y € x)

Thus, there is a set that has no members. From axiom N and the extensionality
principle, there is a unique set that has no members—that is, - (3,x)(Vy)(y & x).
Therefore, we can introduce a new individual constant @ by means of the
following condition.

Definition
(Vy)y D)

It then follows from axiom N and Exercise 4.3 that @ is a set.

Since we have (by Exercise 4.4) the uniqueness condition for the unordered
pair, we can introduce a new function letter g(x, y) to designate the unor-
dered pair of x and y. In accordance with the traditional notation, we shall
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write {x, y} instead of g(x, y). Notice that we have to define a unique value for
{X, Y} for any classes X and Y, not only for sets x and y. We shall let {X, Y} be
@ whenever X is not a set or Y is not a set. One can prove

F@EZ)[(=M(X)v =M(Y) A Z =SV [MX)AMY)A (V) (ueZ o u=Xvu=Y)]).

This justifies the introduction of a term {X, Y} satisfying the following
condition:

MX)AMMANV)ue{X,Yfeou=Xvu=Y)]
VI(M(X) v -M(Y)) A {X, Y} =]

One can then prove F (Vx)(Vy)(Vu)u € {x, y} © u=x Vv u =y) and F (VX)(VY)

Definition
{X} for {X, X}

For a set x, {x} is called the singleton of x. It is a set that has x as its only
member.

In connection with these definitions, the reader should review Section 2.9
and, in particular, Proposition 2.28, which assures us that the introduction
of new individual constants and function letters, such as @ and {X, Y}, adds
nothing essentially new to the theory NBG.

Exercise

4.7 a. Prove{X Y}={Y, X}.
b. Prove F (Vx)(Vy)(x} = {y} © x =y).

Definition
(X,Y) for {X},{X,Y}}

For sets x and y, (x, y) is called the ordered pair of x and y.

The definition of (X, Y) does not have any intrinsic intuitive meaning. It
is just a convenient way (discovered by Kuratowski, 1921) to define ordered
pairs so that one can prove the characteristic property of ordered pairs
expressed in the following proposition.
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Proposition 4.3
= (V) (Vy ) (Vu) (Vo) ((x,y) = (u,0) = x =uny =0)

Proof

Assume (x, y) = (u, v). Then {{x}, {x, y}} = {{u}, {u, v}}. Since {x} € {{x}, {x, y}},
{x} € {{u}, {u, v}}. Hence, {x} = {u} or {x } = {u, v}. In either case, x = u. Now, {u, v}
€ {{u}, {u, v}}; so, {u, v} € {{x}, {x, y}}. Then {u, v} = {x} or {u, v} = {x, y}. Similarly,
{x, yy ={u} or {x, y} = {u, v}. If {u, v} = {x} and {x, y} = {u}, thenx =y =u =7,
if not, {u, v} = {x, y}. Hence, {u, v} = {u, y}. So, if v # u, then y = v; if v = u, then
y =v. Thus, in all cases, y = v.

Notice that the converse of Proposition 4.3 holds by virtue of the substitu-
tivity of equality.

Exercise

4.8 a. Show that, instead of the definition of an ordered pair given in the
text, we could have used (X, Y) = {{g, X}, {{&g}, Y}}; that is, Proposition
4.3 would still be provable with this new meaning of (X, Y).

b. Show that the ordered pair also could be defined as {{@, {X}}, {{Y}}}.
(This was the first such definition, discovered by Wiener (1914). For a
thorough analysis of such definitions, see A. Oberschelp (1991).)

We now extend the definition of ordered pairs to ordered n-tuples.

Definitions
(X)=X
<X1/ ceey Xn/ Xn+1> = <<X1/ ceey Xrt)/ Xn+1>

Thus, (X, Y, Z) = (X, Y), Z) and (X, Y, Z, U) = (X, Y), Z), U).
It is easy to establish the following generalization of Proposition 4.3:

F (V1) oo (V20 (VY1) oo (YY) (X, o X =Y ey Yu) =
X1 =Y1A o AXy =1Yy)

Axioms of Class Existence

(B) @AX)(Vw)(Vo)(u,v) € X & u €v) (e-relation)
(B2) (VX)(VY)@Z)Vu ueZsueXAueY) (intersection)
(B3) (vVX)A2)(VuueZ o u¢X) (complement)

(B4) (VX)EZ)Vu)(u € Z < (Fv)(u, v) € X)) (domain)
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(B5) (VX)AZ2)(Vu)(Vo)({u, v) € Z o u € X)
(B6) (VX)AZ)(Vu)(Vo)(Yw)(u, v, w) € Z < (v, w, u) € X)
(B7) (vX)@AZ)(Vu)(Vo)(Vw)({(u, v, w) € Z < (u, w, v) € X)

From axioms (B2)—(B4) and the extensionality principle, we obtain:

F (VX)(VY)(EIlZ)(Vu)(u eZoueXaue Y)
H(YX)(3Z)(Vu)(ueZ e u ¢ X)

F(VX)(31Z)(Vu)(u € Z < (F0) ((u,0) € X))

These results justify the introduction of new function letters: n, -, and 2.

Definitions

Vu)ueXnY<oueXaueY) (intersection of X and Y)
(Vu)ueX < uegX) (complement of X)
Vu)(u e 7(X) < (Fv)((u,v) e X)) (domain of X)
XuY=XNY (unionof X and Y)
V=@ (universal class)*
X-Y=XNY (difference of X and Y)

Exercises

49 Prove:

a FVMuyueXuYsueXvuey)

b. F(VwueV)

¢ FVMyueX-YeoueXAugy)
4.10 Prove:

a FXnY=YnX
FXuY=YuX
FXCYeXnY=X
FXCYeXuY=Y
FXnY)nZ=Xn((Yn2Z)
FXuY)uzZ=XuYu2)

- 0o 2 n o

* It will be shown later that V' is a proper class, that is, V is not a set.
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FX-X-Y)=XnY
FYcX=X-Y=X

FX=X

FV=02
FXnYuZ)=XnY)u(Xn2)
FXuYnZ)=XuY)nXu?2)

4.11 Prove the following wfs.

a.

b.

F (vX)@AZ2)(Vu)(Vo)(u, v) € Z < (v, u) € X) [Hint: Apply axioms (B5),
(B7), (B6), and (B4) successively]

F (VX)(AZ2)(Vu)(Vo)(Vw)((u, v, w) € Z < (u, w) € X) [Hint: Use (B5)
and (B7).]

F (vX)@E2)(Vo)(Yxy) ... (Vx,)(xq, ..., X, U) EZ S (XY, ..., X,) € X) [Hint:
Use (B5).]

F (vX)EZ2)(V,) ... (Vo,)(Vxy) ... (Vx)(xy, ..o Xy Uy eer, Uy € Z S
(xy, ..., x,) € X) [Hint: Iteration of part (c)]

F (VX)3A2)(Voy) ... (Y0, ) (V) ... (VX )Xy, <o Xyiyy D1y ooy Oy X)) EZ S
(x1, ..., x,) € X) [Hint: For m = 1, use (b), substituting (x,, ..., x,_;) for
u and x, for w; the general case then follows by iteration.]
F(vVX)AZ)(Vx)(Vvy) ... (V0,)( vy, ..., v,, x) € Z & x € X) [Hint: Use (B5)
and part (a).]

F(X)AZ)(Vxy) ... (Vx)(xy, .. x) €Z S Ay)(xy, -, X, y) € X)) [Hint:
In (B4), substitute (x,, ..., x,) for u and y for v]

F (VX)3Z2)(Yu)(Vo)(Yw)((v, u, w) € Z < (u, w) € X) [Hint: Substitute
(u, w) for u in (B5) and apply (B6).]

F (vVX)@2)(Vo,) ... Yop(Yu)(Yw)((v,, ..., v, U, W) € Z < (u, w) € X)
[Hint: Substitute (v,, ..., v;) for v in part (h).]

Now we can derive a general class existence theorem. By a predicative wfwe mean

awf X, .., X, Y, ..., Y,) whose variables occur among X;, ..., X, Y3, ..., Y,

m
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and in which only set variables are quantified (i.e., ¢ can be abbreviated in such
a way that only set variables are quantified).

Examples
(3x))(x; € Y)) is predicative, whereas (3Y})(x; € Y;) is not predicative.

Proposition 4.4 (Class Existence Theorem)

Let Xy, ..., X,, Yy, ..., Y,) be a predicative wf. Then + (3Z)(Vx,) ... (Vx,)
(xy, ..., x) €EZS @y, oo X, Yy, oo Y)

Proof

We shall consider only wfs ¢ in which no wf of the form Y; € W occurs, since
Y; € W canbe replaced by (3x)(x = Y; A x € W), which is equivalent to (Ix) [(Vz)(z € x
© z €Y) A x € W]. Moreover, we may assume that ¢ contains no wf of the form
X € X, since this may be replaced by (Ju)(u = X A u € X), which is equivalent to
(Ju) [(V2)(z € u © z € X) A u € X]. We shall proceed now by induction on the num-
ber k of connectives and quantifiers in ¢ (written with restricted set variables).

Base: k = 0. Then ¢ has the form x; € x;or x; € x;or x; € Y,, where 1 <i <j <n.
For x; € x;, axiom (B1) guarantees that there is some W, such that (Vax;)(Vx)((x;
x) € W, & x; € x). For x; € x;, axiom (B1) implies that there is some W, such
that (Vx)(Vx)(x; x;) € W, & x; € x;) and then, by Exercise 4.11(a), there is some
W, such that (Vx)(x)(x; x;)) € W; & x; € x)). So, in both cases, there is some
W such that (Vx)(Vx)(x; x) € W & @(x;, ..., X, Y5, ..., Y,)). Then, by Exercise
4.11(i) with W = X, there is some Z; such that (Vx;) ... (Vx,_)(Vx)(Vx)((x;, ...,
Xi, Xy X)) € Z1 © @(xy, ..y Xy, Yy, .., Yy). Hence, by Exercise 4.11(e) with Z, = X,
there exists Z, such that (Vx)) ... (Vx)(Vx;,) ... (Vx)(xy, ..., X)) € Z, & @(xy, ..,
X, Yy, ..., Y,)). Then, by Exercise 4.11(d) with Z, = X, there exists Z such that
(Vxy) ... (O )(xy, .. X)) €EZ S @lxy, ..., X, Y5, ..., Y,). In the remaining case, x;
€ Y, the theorem follows by application of Exercise 4.11(f, d).

Induction step. Assume the theorem provable for all k < r and assume that ¢
has r connectives and quantifiers.

a. @ is =y. By inductive hypothesis, there is some W such that (Vx) ... (Vx,)
(xy v xy EWS WX, ..., X, Yy, ..., Y,). Let Z =W.

b. ¢ is y = 9. By inductive hypothesis, there are classes Z, and Z, such
that (Vx;) ... (vx)(xy, ..., x,) € Z; © wlxy, ..., X, Y, ..., Y,)) and (Vxy) ...
(Yx,)({xy, oo x,) € 2o, Sy, ooy X, Ye, -2 Y))-Let Z=2,027,.

c. ¢ is (Vx)y. By inductive hypothesis, there is some W such that (Vx)) ...
(VX )(Y0)(xy, .. X, X) €W & y(xy, ..., X, X, Yy, ..., Y,,). Apply Exercise
4.11(g) with X = W to obtain a class Z, such that (Vx,) ... (Vx,){x,, ..., X,)
€Z, e (@)~ ylxy ..., x, %Y, ..., Y,)) Now let Z = Z,, noting that (Vx)y
is equivalent to —(3x)y.



240 Introduction to Mathematical Logic

Examples

1. Let o(X, Yy, Y5) be Qu)F)(X = (4, v) Au € Y; A v € Y,). The only
quantifiers in ¢ involve set variables. Hence, by the class existence
theorem, - (AZ)(Vx)(x € Z & Fu)(TAv)(x = (u, v) Au€ Y, Av EY,)). By
the extensionality principle,

F(GH:2)(Vx)(x € Z & Fu)To)(x =(u, v)AuecYiAveY,).

So, we can introduce a new function letter x.

Definition
(Cartesian product of Y; and Y5)

(Vx)(xeYixY, < (Fu)@v)(x=(u,v)rueYiAnve)))

Definitions

Y? forYxY
Y" forY"'xY whenn>?2
Rel(X) forXcV? (Xis a relation)*

V2 is the class of all ordered pairs, and V" is the class of all ordered n-tuples.
In ordinary language, the word “relation” indicates some kind of connection
between objects. For example, the parenthood relation holds between parents
and their children. For our purposes, we interpret the parenthood relation to
be the class of all ordered pairs (i, v) such that u is a parent of v.

2. Let ¢(X, Y) be X C Y. By the class existence theorem and the extension-
ality principle, - (3,Z)(Vx)(x € Z < x C Y). Thus, there is a unique class Z
that has as its members all subsets of Y. Z is called the power class of Y
and is denoted P(Y).

Definition

(Vx)(x eP(Y)erxc Y)

3. Let ¢(X, Y) be (Fv)(X € v A v € Y)). By the class existence theorem and
the extensionality principle, - (3,2)(VY)(x € Z & (Av)x € v A v € Y)).

* More precisely, Rel(X) means that X is a binary relation.
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Thus, there is a unique class Z that contains all members of members
of Y. Z is called the sum class of Y and is denoted | Y.

Definition
Vx)(x e Y © (Fu)(xevaveY))

4. Let ¢(X) be (Fu)(X = (u, u)). By the class existence theorem and the exten-
sionality principle, there is a unique class Z such that (¥Vx)(x € Z < (3u)
(x = (u, wy)). Z is called the identity relation and is denoted L

Definition
(Vx)(x e I & (Ju)(x = (u,u))
Corollary 4.5

If Xy, ..., X,, Yy, ..., Y,) is a predicative wf, then

FEW)(W SV AV o (V2) (1 oy ) €W S 0(1, 00y X iy, Vo))

Proof

By Proposition 4.4, there is some Z such that (Vx;) ... (¥x)(x;, .., x,) €Z &
oy, ..., X, Yy, ..., Y,). Then W = Z n V" satisfies the corollary, and the unique-
ness follows from the extensionality principle.

Definition

Given a predicative wf ¢(X, ..., X, Yy, ..., Y,), let {{xy, ..., x,)|@o(xy, .., X, Yy,
Y, )} denote the class of all n-tuples (x,, ..., x,) that satisfy ¢(x,, ..., x,, Y3, ...,
Y,); that is,

(V) e{{xi, ..., xpy |o(x1, ..., X0, Y0, .., V)l &

(Elxl) (Elxn)(u :<xl/ cees xn>/\(p(xlr (KR xnIY1I ey Ym)))

This definition is justified by Corollary 4.5. In particular, when n = 1, - (Vu)
welxlok Y, ... Y, b e oMY, ..., Y,).
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Examples

1. Take @ tobe (xz, x) €Y. Let Ybean abbreviation for {(x;, x,) | (xz, x) €Y}
Hence, Y c V2 A (V) (Vxp)({x, x0) € = (x5,x1) €Y).Call Y the inverse

relation of Y.

2. Take ¢ to be (Fv)(, x) € Y). Let »(Y) stand for {x|(Iv)((v, x) € Y)}. Then
F(Vu)u e »(Y) © (Fv)(v, x) € Y)). »(Y) is called the range of Y. Clearly,

oY) = 7(Y).

Notice that axioms (B1)—(B7) are special cases of the class existence theo-
rem, Proposition 4.4. Thus, instead of the infinite number of instances of the
axiom schema in Proposition 4.4, it sufficed to assume only a finite number

of instances of that schema.

Exercises

4.12 Prove:

o

-

5 ® -~ 0o & n T

- ®» m 08T o B3~ &

FUo=2

FU el =

FUV=V

F.o(V)=
FXCY=UXcUYaArX)co(Q)
l—U./’(X)ZX

FXCc o (UX)
FXNY)x(WnZ)=XxW)n (Y x2)
FXUuY)x(WuZ)=XxW)uXxZ2)u Y xW)n (Y xZ)
FoXnY)=X)n ~(Y)

F(X)u A(Y)C AXUY)

FRel(Y) =Y C 7 (Y)x #(Y)
FUXUY=(UXUUY
'-U(?fﬂY);(UX)ﬂ(UY)
FZ=Y=Z=YNV?

FRel() Al =1

F (@) = {2}

F (2 =2, o)

F () xy € /(7 (xuy)

What simple condition on X and Y is equivalent to /(X U Y) C .~

X) U AY)?
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Until now, although we can prove, using Proposition 4.4, the existence of a
great many classes, the existence of only a few sets, such as @, {@}, {2, (@},
and {{@}}, is known to us. To guarantee the existence of sets of greater com-
plexity, we require more axioms.

Axiom U (Sum Set)
(Vx)Qy)(Vu)u ey < (Fv)(uevavex))

This axiom asserts that the sum class |J x of a set x is also a set, which we
shall call the sum set of x, that is, (¥ x)M( | x). The sum set |J x is usu-
ally referred to as the union of all the sets in the set x and is often denoted

mDEI’U.

Exercises

4.13 Prove:
a. V(YU Iyl =xuy)
b. H(Vx)(Vy)M(x U 1)
c Fx)(U i =x)
d. Hv0(Y)(U x y) = tx, v)

4.14 Define by induction {x;, ..., x,} to be {x;, ..., x4} U {x,}. Prove I (Vx,) ...
(Vx, ) V) elx, .., x,} ©u=xVv...vu=x,) Thus, for any sets x,, ..., x,,
there is a set that has xy, ..., x, as its only members.

Another means of generating new sets from old is the formation of the set
of subsets of a given set.

Axiom W (Power Set)
(Vx)@y)(Vu)(uey < ucx)

This axiom asserts that the power class .~/ (x) of a set x is itself a set, that is,
F (VX)M( 7 (x)).

A much more general way to produce sets is the following axiom of
subsets.

Axiom S (Subsets)

V)(VY)Az)(Vu)uezouexrueY)



244 Introduction to Mathematical Logic

Corollary 4.6

a. F (Yx)(VY) M(x n Y) (The intersection of a set and a class is a set.)
b. = (VX)(VY)(Y C x = M(Y)) (A subclass of a set is a set.)
c. For any predicative wf . (y), F (Yx)M({y|y € x A 2 (y)}).

Proof

a. By axiom S, there is a set z such that (Vu)(u € z © u € x Au € Y), which
implies (Vu)(u € z & u € x nY). Thus, z = x N Y and, therefore, x N Yis a
set.

b. If Y C x, then x N Y = Y and the result follows by part (a).

c. Let Y ={y|y € x A 7 (y)}* Since Y C x, part (b) implies that Y is a set.

Exercise

4.15 Prove:
a. F (Vo)(M(7 (x)) A M(7(x))).
b. F (Vx)(Vy) M(x x y). [Hint: Exercise 4.12(s).]
c. FM(7(Y)) AM(#2(Y)) ARel(Y) = M(Y). [Hint: Exercise 4.12(t).]
d. FPr(Y)AY C X = Pr(X).

On the basis of axiom S, we can show that the intersection of any nonempty
class of sets is a set.
Definition

NX for {y |(Vx)(xe X = y ex)} (intersection)

Proposition 4.7

a. FHVx)(xeX=>(XCx)
b. FX # @ = M([] X)
cHFNo=V

Proof
a. Assume u € X. Consider any y in (] X. Then (Vx)(x € X = y € x). Hence,
y€u. Thus, (| X Cu.

* More precisely, the wf Y € X A () is predicative, so that the class existence theorem yields
aclass {y|y € X A #(y)}. In our case, X is a set x.
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b. Assume X # @. Let x € X. By part (a), () X C x. Hence, by Corollary
4.6(b), [ X is a set.

c. Since - (Vx)(x € @), F (Yy)(¥x)(x € @ = y € x), from which we obtain F(V )
(y € () @). From - (¥y)(y € V) and the extensionality principle, - (| @ = V.

Exercise

4.16 Prove:

a FNy=xNy
b. ) {x}=x
¢ FXCY=NYcNX

A stronger axiom than axiom S will be necessary for the full development of
set theory. First, a few definitions are convenient.

Definitions

Fne(X) forRel(X) A (") (V)(V2)(x, ¥) € X A(x, zy) e X > y=2) Xisa

function)
XY—>Z forFneX) A 9X)=Y A »(X) CZ (Xis a function from Y into Z)
YIX for X n (Y x V) (restriction of X to the domain Y)

Fng(X)  for Fnc(X) A Fnc(X) (X is a one—one function)
XY = z if(Vu)(<.Y, uyeXou=z)
& otherwise
X"Y = 2 (YIX)
If there is a unique z such that (y, z) € X, then z = X'y; otherwise, X'y = @.

If X is a function and y is a set in its domain, Xy is the value of the function
applied to y. If X is a function, X"Y is the range of X restricted to Y*

Exercise

4.17 Prove:
a. FFnecX)Aye 7X)=> (V2)Xy=z (y,z) € X)
b. FFnc(X) AY C #X) = Fnc(YIX) A9(YIX) =Y A (Vv e Y => X'y =
(YIX)'y)
c¢. FFneX) = [Fng(X) e (V)(V2)(ye 7(X)Aze 9(X) Ay #z=> X'y # X'2)]
d FFncX)AYC 9X)=> V)zeX' Yo AyyeYAXy=2)

* In traditional set-theoretic notation, if F is a function and y is in its domain, F'y is written as
F(y), and if Y is included in the domain of F, F"Y is sometimes written as F[Y].
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Axiom R (Replacement)

Fne(Y) = (Vx)@y)(Vu)(u e y < (Fv)((v,u) € Y AV € X))

Axiom R asserts that, if Y is a function and x is a set, then the class of second
components of ordered pairs in Y whose first components are in x is a set (or,
equivalently, #(xlY) is a set).

Exercises

4.18 Show that, in the presence of the other axioms, the replacement axiom
(R) implies the axiom of subsets (S).

4.19 Prove F Fnc(Y) = (VX)M(Y"x).
4.20 Show that axiom R is equivalent to the wf Fne(Y) A M(7 (Y)) = M(»(Y)).

4.21 Show that, in the presence of all axioms except R and S, axiom R is
equivalent to the conjunction of axiom S and the wf Fnc,(Y) A M(~ (Y))
= M(~(Y)).

To ensure the existence of an infinite set, we add the following axiom.

Axiom I (Axiom of Infinity)
)P exAn(Vu)(uex=>uuiu}ex)

Axiom I states that there is a set x that contains @ and such that, whenever
a set u belongs to x, then u U {u} also belongs to x. Hence, for such a set x,
(o) € x, (@, (@)} € x, @, @), (@ {B)}} €x, and so on. If we let 1 stand for {&},
2for{@, 1},3for (@, 1,2}, ..., nfor {z,1,2,..,n -1}, etc, then, for all ordinary
integersn >0, nex,and@#1, @#2,1#2,@#3,1#3,2#3,....

Exercise
4.22 a. Prove that any wf that implies (IX)M(X) would, together with axiom
S, imply axiom N.
b. Show that axiom I is equivalent to the following sentence (I*):

@)@y e x A(Vw)(u & y) A(Vu)(u e x = uuu} € x))
Then prove that (I') implies axiom N. (Hence, if we assumed (I*¥)

instead of (I), axiom N would become superfluous.)

This completes the list of axioms of NBG, and we see that NBG has only
a finite number of axioms—namely, axiom T, axiom P (pairing), axiom
N (null set), axiom U (sum set), axiom W (power set), axiom S (subsets),
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axiom R (replacement), axiom I (infinity), and the seven class existence axi-
oms (B1)—(B7). We have also seen that axiom S is provable from the other axi-
oms; it has been included here because it is of interest in the study of certain
weaker subtheories of NBG.

Let us verify now that the usual argument for Russell’s paradox does not
hold in NBG. By the class existence theorem, there is a class Y = {x|x & x}.
Then (Vx)(x € Y © x ¢ x). In unabbreviated notation this becomes (VX)(M(X)
> (XeY e X¢X)). Assume M(Y). Then Y € Y & Y ¢ Y, which, by the tau-
tology (A & =A) = (A A -A), yields Y € Y A Y € Y. Hence, by the derived
rule of proof by contradiction, we obtain - =M(Y). Thus, in NBG, the argu-
ment for Russell’s paradox merely shows that Russell’s class Y is a proper
class, not a set. NBG will avoid the paradoxes of Cantor and Burali-Forti in
a similar way.

Exercise

4.23 Prove - -M(V), that is, the universal class V is not a set. [Hint: Apply
Corollary 4.6(b) with Russell’s class Y]

4.2 Ordinal Numbers

Let us first define some familiar notions concerning relations.

Definitions

XIrrYforRelX)A (Vy)(y €Y = (y, y) € X)

(X is an irreflexive relation on Y)
X TrY for Rel(X) A (Vu)(Vo)(Vw)([u EYAV EYAWEY A

W, vy € XA v, wy € X] = u,w) €X)

(X is a transitive relation on Y)
XPartY for XIrr Y)A(XTrY) (X partially orders Y)
XConY forRel(X) A Vi)(Vo)([ue YAvEY Au#v]=> (u,v) € XV (v,u) € X)

(X is a connected relation on Y)
XTotYfor XIrr Y)AXTrY)A (X ConY) (X totally orders Y)
XWeYfor XIrr YVANVZY[ZCYAZ#@]=> @Yy eZA

M)wveZAavEy=>(yvyeXA@Y) &X))

(X well-orders Y, that is, the relation X is irreflexive on Y and every nonempty
subclass of Y has a least element with respect to X).
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Exercises

4.24 Prove X We Y = X Tot Y. [Hint: Toshow X Con Y, letxe YAy € Y A
x # y. Then {x, y} has a least element, say x. Then (x, y) € X. To show X
TrY,assumexeYAyeYAze YA y) € XA(y z) € X.Then {x, y, z}
has a least element, which must be x.]

4.25 Prove-XWeYAZCY => X WeZ.

Examples (from intuitive set theory)
1. The relation < on the set P of positive integers well-orders P.

2. The relation < on the set of all integers totally orders, but does not well-
order, this set. The set has no least element.

3. The relation C on the set W of all subsets of the set of integers par-
tially orders W but does not totally order W. For example, {1} ¢ {2} and

{2} ¢ {1).

Definition

Simp(Z, Wy, W,) for (3x,)(3x,)(3r)(3r,)(Rel(r;) A Rel(ry)) A Wy = (r, x)) AW, =
(ry, %) NFNC(Z) A 9(Z) = 2y A L) = 23 A(VU)(VO)u EX; AV E X, = (U, 0) €Ty
& (Z'u, Z'vy €1y))

(Z is a similarity mapping of the relation r; on x; onto the relation r, on x,.)

Definition

Sim(W;, W;) for (3z)Simp(z, Wi, W,)
(W; and W, are similar ordered structures)

Example

Let r; be the less-than relation < on the set A of nonnegative integers {0, 1,
2, ...}, and let r, be the less-than relation < on the set B of positive integers
{1, 2,3, ...}. Let z be the set of all ordered pairs (x, x + 1) forx € A. Then zis a
similarity mapping of (r,, A) onto (r,, B).

Definition

Xy 0X, for {(u, v) | (3z)((u, z) € Xy A{z,v) € X1)}
(the composition of X, and X;)



Axiomatic Set Theory 249

Exercises

4.26 Prove:
a. FSimp(Z, X, Y) = M(Z) A M(X) A M(Y)
b. +Simp(Z,X,Y)= Simp(Z,Y, X)

4.27 a. Prove: F Rel(X;) A Rel(X,) = Rel(X; o X))

b. Let X; and X, be the parent and brother relations on the set of human
beings. What are the relations X, o X, and X; o X,?

¢. Prove: F Fnc(X;) A Fne(X,) = Fne(X; o X))
d. Prove: - Fn¢ (X)) A Fng(X,) = Fng (X, o X))
e. Prove F (X Z->WAX;: Yo Z)=2 X 0Xgp Y > W

Definitions

Fld(X)for 7(X)u #(X) (the field of X)
TOR(X)for Rel(X) A (X Tot (FId(X))) (X is a total order)
WOR(X)for Rel(X) A (X We (FId(X))) (X is a well — ordering relation)

Exercise

4.28 Prove:

a. FSim(W,, W,) = Sim(W,, W,)
b. F Sim(W,, W,) A Sim(W,, W,) = Sim(W,, W,)

¢ F Sim((X, FIdX), (Y, Fld(Y)) = (TORXX) & TOR(Y)) A (WOR(X) <
WOR(Y))

If x is a total order, then the class of all total orders similar to x is called the
order type of x. We are especially interested in the order types of well-ordering
relations, but, since it turns out that all order types are proper classes (except
the order type {2} of @), it will be convenient to find a class W of well-ordered
structures such that every well-ordering is similar to a unique member of W.
This leads us to the study of ordinal numbers.

Definitions

E for {(x, y)|x € y} (the membership relation)

Trans(X) for (Vu)u € X =>u C X) (X is transitive)

Secty (X, Z) for ZC X A (V) Vo)[ue XAveZAuv)EY]>u€eE )
(Z is a Y-section of X, that is, Z is a subclass of X and every
member of X that Y-precedes a member of Z is also a member
of Z.)
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Segy(X, W) for {x|x € X A (x, W) € Y} (the Y-segment of X determined by W,
that is, the class of all members of X that Y-precede W).

Exercises

4.29 Prove:
a. FTrans(X) © (Vu)(Vo)veuArue X=>veX)
b. Flrans(X)e |J X< X
F Trans(@)
+ Trans({@})
F Trans(X) A Trans(Y) = Trans(X U Y) A Trans(X N Y)
FTrans(X) = Trans(|J X)
g. (VY u)(u € X = Trans(u)) = Trans(|J X)
4.30 Prove:
a. F (Vu) [Segp(X, u) = X nu A M(Segg(X, u))]
b. F Trans(X) & (Vu)(u € X = Segy(X, u) = u)
c. FEWe X ASecty(X, Z) A Z# X = (Fu)(u € X A Z =5egp(X, u)

- 0 2 n

Definitions

Ord(X) for E We X A Trans(X) (X is an ordinal class if and only if the
e-relation well — orders X and any mem-
ber of X is a subset of X)

On for {x|Ord(x)} (The class of ordinal numbers)

Thus, F (Vx)(x € On < Ord(x)). An ordinal class that is a set is called an ordi-
nal number, and On is the class of all ordinal numbers. Notice that a wf x €
On is equivalent to a predicative wf—namely, the conjunction of the follow-
ing wfs:

a Vuuex=>ué¢u)
b VyuCxAu#g=>F)0eunVu)w EUAW#V=>VE W AW & V)
¢ (Vi uex=>ucx)

(The conjunction of (a) and (b) is equivalent to E We x, and (c) is Trans(x).) In
addition, any wf On € Y can be replaced by the wf Ay)(y € Y A (V2)z ey &
z € On)). Hence, any wf that is predicative except for the presence of “On” is
equivalent to a predicative wf and therefore can be used in connection with
the class existence theorem.
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Exercise

4.31 Prove: (a) - @ € On. (b) - 1 € On, where 1 stands for {&}.

We shall use lower-case Greek letters o, B, v, §, 7, ... as restricted variables
for ordinal numbers. Thus, (Vo). (o) stands for (Vx)(x € On = 7 (x)), and (Ja).%
(o) stands for (x)(x € On A .7 (x)).

Proposition 4.8

EFOrdX)=> (X EXAVu)(u e X = uéu)

. FOrdX) AYC X ATrans(Y)=> Y e X

EOrdX)AOrd(Y)=> (YcXeoYeX)
FOrdX)AOd(Y) =2 [(XeYVX=YVYeX)A(XeYAYeEX)A
A(XeYAX=Y)

O n Tw

e FOrdX)AYeX=>YeOn

f. - EWe On

g. = Ord(On)

h. F = M(On)

i FOrd(X)=> X=0nv XeOn

j Fy € OnATrans(y) = y € On

k FxeOnAayeOn= xCyvyCx)

Proof

a. If Ord(X), then E is irreflexive on X; so, (Vu)(u € X => u ¢ u); and, if X € X,
X & X. Hence, X ¢ X.

b. Assume Ord(X) A Y € X A Trans(Y). It is easy to see that Y is a proper
E-section of X. Hence, by Exercise 4.30(b, ¢), Y € X.

¢. Assume Ord(X) A Ord(Y).If Y € X, then Y C X, since X is transitive; but
Y # X by (a); so, Y € X. Conversely, if Y C X, then, since Y is transitive,
we have Y € X by (b).

d. Assume Ord(X) AOrd(Y) A X # Y.Now, XNnY C Xand XN Y C Y. Since
X and Y are transitive, sois XN Y. If XnY c Xand XN Y C Y, then, by
(b, XNYeXand XNY € Y; hence, X N Y € X N Y, contradicting the
irreflexivity of E on X. Hence, either XNY =Xor XnY =Y, thatis, XCY
or Y C X. But X # Y. Hence, by (c) X € Yor Y € X. Also, if X € Y and
Y € X, then, by (c), X ¢ Y and Y C X, which is impossible. Clearly,
X € Y A X =Y isimpossible, by (a).

e. Assume Ord(X) A Y € X. We must show E We Y and Trans(Y). Since
Y € X and Trans(X), Y ¢ X. Hence, since E We X, E We Y. Moreover,
if u € Y and v € u, then, by Trans(X), v € X. Since ECon Xand Y € X A
veX, thenveYvo=YvYewu Ifeitherv=Y orY € v, then, since
ETr Xand u € Y Av € u, we would have u € u, contradicting (a). Hence
v e Y.So,if u € Y, then u CY, that is, Trans(Y).
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. By (@), E Irr On. Now assume X C On A X # @. Let a € X. If a is the least

element of X, we are done. (By least element of X we mean an element
vin X such that (Vu)(u € X A u # v = v € u).) If not, then E We a and X n
a # @; let f be the least element of X N a. It is obvious, using (d), that p is
the least element of X.

We must show E We On and Trans(On). The first part is (f). For the
second, if u € On and v € u, then, by (e), v € On. Hence, Trans(On).

If M(On), then, by (g), On € On, contradicting (a).

Assume Ord(X). Then X € On. If X # On, then, by (c), X € On.
Substitute On for X and y for Y in (b). By (h), y € On.

Use parts (d) and (c).

We see from Proposition 4.8(i) that the only ordinal class that is not an ordi-
nal number is the class On itself.

Definitions

X<,y for xeOnanyeOnaxey
x<,y for yeOna(x=yvx<,y)

Thus, for ordinals, <, is the same as €; so, <, well-orders On. In particular,
from Proposition 4.8(e) we see that any ordinal x is equal to the set of smaller
ordinals.

Proposition 4.9 (Transfinite Induction)

I—(VB)[(VOL)(OLeB:an):[}eXJ:OngX

(If, for every f, whenever all ordinals less than p are in X, f must also be in X,
then all ordinals are in X.)

Proof

Assume (Vf) [(Va)(@ € p = a € X) = p € X]. Assume there is an ordinal in
On — X. Then, since On is well-ordered by E, there is a least ordinal p in On — X.
Hence, all ordinals less than p are in X. So, by hypothesis, p is in X, which is
a contradiction.

Proposition 4.9 is used to prove that all ordinals have a given prop-

erty

#(a). We let X = {x|.#(x) A x € On} and show that (VB)[(Vo)(@ € p =

@) = AP)]-
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Definition
x' for x U {x}
Proposition 4.10

a. F (Yx)(x € On < x’ € On)
b. - (Vo) =(3FP)(x <, B <, ')
c. F (Vo)(VB)(@ = B = o = p)

Proof

a. x € x'. Hence, if x’ € On, then x € On by Proposition 4.8(e). Conversely,
assume x € On. We must prove E We (x U {x}) and Trans(x U {x}). Since
EWexand x ¢ x, EIrr (x n {x}). Also, if y # @ Ay C x U {x}, then either
y = {x}, in which case the least element of y is x, or y N x # @ and the least
element of y N x is then the least element of y. Hence, E we (x U {x}). In
addition, if y € x U {x} and u € y, then u € x. Thus, Trans(x U {x}).

b. Assume a <, <, o Then,a € p AP € o’ Since @ € p, f & o, and P # a by
Proposition 4.8(d), contradicting f € o’

c. Assume o’ = f’. Then f <, &’ and, by part (b), p <, a. Similarly, o <, f.
Hence, o = .

Exercise

4.32 Prove: - (Va)(ax C o)

Definitions
Suc(X) for X € On A (Fo)(X = ') (X is a successor ordinal)
K, for {x|x = @ v Suc(x)} (the class of ordinals of the first kind)

ofor{x|xeK AV uex=>ueckK))} (oistheclassof all ordinals
a of the first kind such that
all ordinals smaller than o are
also of the first kind)

Example
FZewAlE€n. (Recall that 1 = {}.)

Proposition 4.11

akFWVylaewnea €w

b. - M(w)
chFgeXAMVMyueX=>ueX)>wl X
dFV)aeoAp<,a=>pcwn)
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Proof

a. Assume a € o. Since Suc(®’), o’ € K;. Also, if p € o/, then p € a or = a.
Hence, p € K;. Thus, ' € 0. Conversely, if o’ € o, then, since a € a’ and
(VP)(p € a = P € o), it follows that a € w.

b. By the axiom of infinity (I), there is a set x such that @ € x and (Vu)(u €
x = u' € x). We shall prove o C x. Assume not. Let o be the least ordinal
in o — x. Clearly, a # @, since @ € x. Hence, Suc(a). So, (Ip)(a = p'). Let 5 be
an ordinal such that a = §". Then & <, @ and, by part (a), 8 € 0. Therefore,
d € x. Hence, &' € x. But a = §'. Therefore, a € x, which yields a contradic-
tion. Thus, o C x. So, M(w) by Corollary 4.6(b).

c. This is proved by a procedure similar to that used for part (b).

d. This is left as an exercise.

The elements of w are called finite ordinals. We shall use the standard nota-
tion: 1 for @, 2 for 1,3 for 2/, and soon. Thus, g e wn, 1 ew,2c€w,3 €, ....

The nonzero ordinals that are not successor ordinals are called limit
ordinals.

Definition
Lim(x) forx e On Ax ¢ K|

Exercise

4.33 Prove:
a. F Lim(w)
b. F (Vo)(VB)(Lim(a) A B <, o = B’ <, ).

Proposition 4.12

a. F (Vx)(x cOn=> [U xeOna(Va)(aex=a<,U x)A(VB)((V(x)

(aex=a<,B)=>Ux<, B)J . (If x is a set of ordinals, then | J x is an
ordinal that is the least upper bound of x.)

b. (V)X COnAx#@ A Vo) € x= @P)P € xAa<,p)l = Lim( U x).
(If x is a nonempty set of ordinals without a maximum, then U x is a
limit ordinal.)

Proof
a. Assume x C On. U x, as a set of ordinals, is well-ordered by E.
Also, if « € U x A B € a, then there is some y with y € x and « € 1.
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Then f € a A « € y; since every ordinal is transitive, p € y. So, p € U .
Hence, U x is transitive and, therefore, U x € On. In addition, if
o € x, then a € U x; so, « <. U x, by Proposition 4.8(c). Assume now
that (Vo)(a € x = a <, p). Clearly, if 6 € U x, then there is some y such
that 8 € y Ay € x. Hence, y <, p and so, & <, p. Therefore, U x C p and,
by Proposition 4.8(c), Ux <.

b. Assume x COnAx# @A Vo)aex=> @PPexra<, p).IfUx=
@, then o € x implies a = @. So, x = @ or x = 1, which contradicts our
assumption. Hence, U x # @. Assume Suc( U x). Then U x =y’ for
some y. By part (a), U x is a least upper bound of x. Therefore, y is not
an upper bound of x; there is some & in x with y <, 8. But then 8 = U x, since

x is an upper bound of x. Thus, U x is a maximum element of x,
contradicting our hypothesis. Hence, = Suc( U x), and Lim( U x) is the
only possibility left.

Exercise

4.34 Prove:
a. (Voc)([Suc((x) = (Ua) = oc] /\[Lim(oc) = Ua = a]).
b. If @ # x C On, then M x is the least ordinal in x.

We can now state and prove another form of transfinite induction.

Proposition 4.13 (Transfinite Induction: Second Form)

akF[@eXAM)yaeX=>ao eX)A Va)(Lim(x) A (VBB <, a = B € X)
s>aeX)=>0ncX

b. (Induction up tod) F [@ € X A (V)@ <, d Ao € X
=> o € X) A (Vo) <, 6 A Lim(o) A (VP)(B <,
>peX)>aeX)=>6C X

c. (Inductionuptoo)F @ e XA Vo)<, o AraeX=>a €X)=> w0 CX.

Proof

a. Assume the antecedent. Let Y = {x|x € On A (Va)(a <, x = a € X)}. Itis
easy to prove that (Va)(x <, y = a € Y) = y € Y. Hence, by Proposition
49,0n CY.ButY C X. Hence, On C X.

b. The proof is left as an exercise.

c. This is a special case of part (b), noting that I (Vo)(a <, @ = -Lim(x)).

Set theory depends heavily upon definitions by transfinite induction, which
are justified by the following theorem.
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Proposition 4.14

a. F (VX)3,Y)(Fnc(Y) A 2(Y) =On A Vo)(Y'a = X' (@lY))). (Given X, there is
a unique function Y defined on all ordinals such that the value of Y at «
is the value of X applied to the restriction of Y to the set of ordinals less
than o.)

b. F (VH)(VX)(VX)FY)Fnc(Y)A 7(Y)=0n AY'@=x A (Yo)(Y'(@') = X;'(Y'or)
A (Va)(Lim(a) =>Y'a = X, (@lY))).

c. (Induction up to 8.) F (VX)(VX)(VX)(FY)Fnc(Y) A AY) =8 AY' D =x
ANV)(a <, 86=>Y (o) =X (Y a)) A (Va)(Lim(o) A o <, 6 =Y =X,/
(@1Y))).

Proof

a. Let Y; = {u|Fnc() A 7 (u) € On A (Va)(a € 7 (1) = u'a = X'(alu))}. Now,
if u; € Y, and u, € Y;, then u; C u, or u, C u;. In fact, let y, = 7 (4,) and
Y, = 7 (uy). Either y; <, v, or v, <, vy say, 71 <. ¥»- Let w be the set of
ordinals a <, y; such that u,'a # u,’a; assume w # @ and let n be the
least ordinal in w. Then for all g <, n, u;'p = u,’p. Hence, u,'a = nlu,. But
un = X" (n luy) and u,'n = X" (nfuy); and so, u;n = u,"n, contradicting
our assumption. Therefore, w = @; that is, for all a <, y;, u;'a = u,'a.
Hence, u; = y,duy = y;lu, C u,. Thus, any two functions in Y; agree in
their common domain. Let Y = U Y,. We leave it as an exercise to prove
that Y is a function, the domain of which is either an ordinal or the
class On, and (Va)(@ € 7 (Y) = Ya= X' (alY)). That 7 (Y) = On follows
easily from the observation that, if 7 (Y) =8 and if we let W=Y U {(5,
X'Y)}, then W € Y;;s0, WC Yand 8 € 7 (Y) = §, which contradicts the
fact that 8 ¢ 8. The uniqueness of Y follows by a simple transfinite
induction (Proposition 4.9).

The proof of part (b) is similar to that of (a), and part (c) follows from (b).
Using Proposition 4.14, one can introduce new function letters by transfi-
nite induction.

Examples
1. Ordinal addition. In Proposition 4.14(b), take

x=B Xi={wo)|o=u} X,={uv)|o=Ur(u)

Hence, for each ordinal , there is a unique function Yp such that

Y)'D = B A (Vo) (Yy'(e) = (') AlLim(e) = Yy'e = U(Y,"a)])
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Hence there is a unique binary function +, with domain (On)? such that,
for any ordinals p and y, + ,(B, ) = Y;v. As usual, we write § +, v instead
of +,(B, v)- Notice that:

B+o®:B
B+o (Y') =(ﬁ to Y)'
Lim(o)) = B+o o = U(B+O 1)

T<o0

In particular,

B+o 1 :B+o (Q,) = (B+o Q)I :B’
2. Ordinal multiplication. In Proposition 4.14(b), take

x=@ Xi={u,vy|lv=u+,p} Xp={u,v)|v= #(u1)}

Then, as in Example 1, one obtains a function § x, y with the properties
Bx, D=2
Bxo (¥)=(Bxo7)+o P
Lim(a) = Bx, o = U (Bxo 1)

T<o0

Exercises

4.35 Prove: B x,1=PAPx,2= +,p.

4.36 Justify the following definition of ordinal exponentiation*
exp(B, ) =1
eXp(Br Y)= eXP(Br )% B

Lim(a) = exp(B, a) = U exp(B, 1)

D<o 1<

For any class X, let Ex be the membership relation restricted to X; that is,
Ex={u,v)jlucevrueXarveX}

* We use the notation exp (B, o) instead of p* in order to avoid confusion with the notation X" to
be introduced later.
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Proposition 4.15*

Let R be a well-ordering relation on a class Y; that is, R We Y. Let F be a function
from Y into Y such that, for any u and v in Y if (4, v) € R, then (F'u, F'v) € R.
Then, forall uinY, u = F' u or {u, F'u) € R.

Proof

Let X = {u|(F'u, u) € R}. We wish to show that X = @. Assume X # @. Since
X C Y and R well-orders Y, there is an R-least element u,, of X. Hence, (F'u,, u,)
€ R. Therefore (F'(F'u,), F'uy) € R. Thus, F'u, € X, but F'u is R-smaller than u,,
contradicting the definition of u,.

Corollary 4.16

If Yis a class of ordinals, F: Y — Y, and F is increasing on Y (thatis,a € Y A
EYAa<,f= Fa<,Fp),thena <, Foforall ain Y.

Proof

In Proposition 4.15, let R be E,. Note that E, well-orders Y, by Proposition
4.8(f) and Exercise 4.25.

Corollary 4.17

Let a <, pand y C «; that is, let y be a subset of a segment of f. Then (E;, p) is
not similar to (E,, ).

Proof

Assume (E, p) is similar to (E,, y). Then there is a function f from p onto y such
that, for any u and v in B, u <, v & f'u <, f'v. Since the range of fis y, fo € y. But
y € a. Hence f'a <, . But, by Corollary 4.16, o <, f'o, which yields a contradiction.

Corollary 4.18

a. Fora# P, (E, o) and (E;, B) are not similar.
b. For any o, if fis a similarity mapping of (E,, o) with (E,, a), then fis
the identity mapping, that is, f = p for all f <, a.

* From this point on, we shall express many theorems of NBG in English by using the cor-
responding informal English translations. This is done to avoid writing lengthy wfs that are
difficult to decipher and only in cases where the reader should be able to produce from the
English version the precise wf of NBG.
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Proof

a. Since o # p, it follows by Proposition 4.8(d, c) that one of « and f is a
segment of the other; say, a is a segment of p. Then Corollary 4.17 tells
us that (E;, B) is not similar to (E,, o).

b. By Corollary 4.16, '8 >, f for all p <, a. But, noting by Exercise 4.26(b) that
f is a similarity mapping of (E,, «) with (E,, «), we again use Corollary
4.16 to conclude that (f) >, p for all p <, a. Hence p = () (fB) =, f'B =,
f and, therefore, f'f = p.

Proposition 4.19

Assume that a nonempty set u is the field of a well-ordering r. Then there is a
unique ordinal y and a unique similarity mapping of (E,, y) with (, u).

Proof

Let F={{v, w)|lw e u—v A (V2)(z € u —v = (z, w) & r)}. F is a function such that,
if v is a subset of u and u — v # @, then F'v is the r-least element of u — v. Let
X = {{v, w)|{/(v), w) € F}. Now we use a definition by transfinite induction
(Proposition 4.14) to obtain a function Y with On as its domain such that (Vo)
Yo=X (@lY)).Let W= {a|Y'a CuAu—Y"0# @} Clearly,if a € Wand p € a,
then p € W. Hence, either W = On or W is some ordinal y. (If W # On, let y be the
least ordinal in On — W) If « € W, then Yo = X’ (alY) is the r-least element of
u—Y"0;s0, Yo € u and, if p € o, Y'a # Y’B. Thus, Y is a one-one function on W
and the range of Y restricted to Wis a subset of u. Now, leth=(W{Y)and f = h;
that is, let fbe the inverse of Y restricted to W. So, by the replacement axiom (R),
W is a set. Hence, W is some ordinal y. Let g = y[Y. Then g is a one-one func-
tion with domain y and range a subset u; of u. We must show that 1, = u and
that, if « and p are in y and B <, o, then (g'p, g'a) € r. Assume a and f are in
y and B <, a. Then ¢”p C g”a and, since g'a € u — g"a, g'a € u — g”p. But g’'p
is the r-least element of u — g”B. Hence, (g'f, g'a) € r. It remains to prove that
u; = u. Now, u; = Y"'y. Assume u —u; # @. Then y € W. But W =y, which yields
a contradiction. Hence, u = u;. That y is unique follows from Corollary 4.18(a).

Exercise

4.37 Show that the conclusion of Proposition 4.19 also holds when 1 = @ and
that the unique ordinal y is, in that case, @.

Proposition 4.20

Let R be a well-ordering of a proper class X such that, for each y € X, the class
of all R-predecessors of y in X (i.e, the R-segment in X determined by ) is a set.
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Then R is “similar” to E,,; that is, there is a (unique) one—one mapping H of

On onto X such thata € p & (H'o, H'B) € R.

Proof

Proceed as in the proof of Proposition 4.19. Here, however, W = On; also, one
proves that ./(Y) = X by using the hypothesis that every R-segment of X is a
set. (If X — /YY) # @, then, if w is the R-least element of X — 2A(Y), the proper
class On is the range of Y, while the domain of Y is the R-segment of X deter-
mined by w, contradicting the replacement axiom.)

Exercise

4.38 Show that, if X is a proper class of ordinal numbers, then there
is a unique one-one mapping H of On onto X such that a € f & H'«
e H'p.

4.3 Equinumerosity: Finite and Denumerable Sets

We say that two classes X and Y are equinumerous if and only if there is a one—
one function F with domain X and range Y. We shall denote this by X =Y.

Definitions

X%Y for Fnci(F)A 7 (F)=XA.2(F)=Y
X=zY for(EIF) (X%Y)

Notice that - (Vx)(Vy)(x = y < (3z)(x=y)). Hence, a wf x = y is predicative
(that is, is equivalent to a wf using only set quantifiers).
Clearly, 1fX Y, thenY X, where G = F. Also, 1fX YandY=Z, thenX Z,

B
where H is the compos1t10n F, o F,. Hence, we have the following result

Proposition 4.21

akFX=>X
bFXxY=>YxX
CHX2YANYx2Z=>X=2Z
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Proposition 4.22

A FX2YAZ2WAXNZ=0AYNW=02)=>XUZ2YUW
bFX2YAZ2ZW)=>XxZ=2YxW

o FXx{yt=X

dFXxYx>xYxX

e.

FXxY)xZ=zXx(YxZ)

Proof
a. LetX=Yand Z:W ThenXUZZYUW where H=F U G.
b. Let X= YandZ W.Let H = {(u, v)|(EIx)(EIy)(xEX/\yEZ/\u—(x )
/\U—(Fx G'y)k ThenXxZ Y xW.

cLetF={uv)jueXAv==u, y) }. Then X = Xx{y}
d. Let F = {(u, v)| Hx)(EIy(xeX/\er/\u—(x ) A v =y, x)).. Then
Y x

><Y_

e. LetF = {(u, v)|(EIx) JEADx e XAyeYAzeZAu={xY),2) AV =
(x, (¥, 2))}. Then (XXY)XZ%XX(YXZ).

Definition

XY for {u|u: Y — X}
XY is the class of all sets that are functions from Y into X.

Exercises

Prove the following,.
4.39 F(VX)VY)EX)AY )X 2 X, AY2Y A X NY, =Q)
440 +(y) =2¥ (Recall that2 = {g, 1} and 1 = {&})
441 a. F-MY)=>X"=@
b. F (Vx)(Vy) M(x¥)
442 a. FXp=1
b. Flvx=1
¢ FY#£P=>>0"=Q
443 + X~ X
444 FX2YANZ2W=> XZxYW
445 FXNY =@ => 72X = ZXx ZY
4.46 + (Vx)(Vy)(V2) [(x")7 = xv]
447 F(XxY)2xX%2xY?
4.48 + (Vx)(VR)(R We x = (Fa)(x = )
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We can define a partial order < on classes such that, intuitively, X < Y if
and only if Y has at least as many elements as X.

Definitions

X<Yfor(AZ)ZCYAX=Z)
(X is equinumerous with a subclass of Y)

X<Yfor X<xYA-(XxY)
(Y is strictly greater in size than X)

Exercises

Prove the following,.

449 FX<Yeo (X<YVvXzY)

450 F XY A-MX) = -M(Y)

451 FX<YA@BZ)(ZWeY)= 32)(Z We X)

4.52 + (Vo)(VP)(o < B Vv B < o) [Hint: Proposition 4.8(k).]

Proposition 4.23

akFXXA(X<X)

b.FXCY=>X<Y

CcHFXYAY<Z=>X<Z

d FXYAY<X=> X=2Y (Bernstein’s theorem)

Proof

(@), (b) These proofs are obvious.
c. Assume X = Yl AYicYAY= Zl AZy < Z. Let H be the composition of

FandG. Then »(H )CZ/\X— 7(H)-So, X< Z.
d. There are many proofs of this hontrivial theorem. The following one
was devised by Hellman (1961). First we derive a lemma.

Lemma

AssumeXNY=@, XNnZ=@andYNnZ= @andletX X uUY uZ. Then there
1saGsuchthatX XuUY.
Proof

Define a function H on a subclass of X x o as follows: ((u, k), v) € H if and
only if u € X and k € w and there is a function f with domain k’ such that
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f@=Fuand,ifjek, thenfje Xandf(j') = F(f]) and f'k = v. Thus, H'((u, @)) =
F'u, H((u, 1)) = F'(F'u) if F'u € X, and H'((u, 2)) = F'(F'(F'w)) if F'u and F'(F'u)
are in X, and so on. Let X* be the class of all # in X such that (Jy)(y € ® A
(u,y) € v (H) AH'((u, y)) € Z). Let Y* be the class of all # in X such that (Vy)
yeonuy)e vH)=> HEu y) ¢ Z). Then X = X* U Y* Now define G
as follows: 7 (G) = X and, if u € X* then G'u = u, whereas, if u € Y* then
G'u = F'u. Then X=X UY.(This is left as an exercise.)

Now, toprove Befnstein’s theorem,assume X =Y, AY, c Y AYZX A X, c X.
Let A=G"Y,C X, CX.ButAn(X,-A) =0, An (X -X,) = Fand (X -X,)
N (X; -A) = @. Also, X = (X —X;) U (X; —A) U A, and the composition H of F
and G is a one-one function with domain X and range A. Hence, A%X . So,
by the lemma, there is a one-one function D such that A = X (since (X; -A) U
A = X)). Let T be the composition of the functions H, D and G; thatis, T'u =
(G)(D'(H'w)). Then X%Y, since X%A and A%Xl and X; %Y.

Exercises

4.53 Carry out the details of the following proof (due to J. Whitaker)
of Bernstein’s theorem in the case where X and Y are sets. Let
X%Yl AY, gY/\Y%Xl AX; < X. We wish to find a set Z C X such
that G, restricted to Y — F”Z, is a one—one function of Y — F’Z onto X
—Z. [If we have such aset Z, let H = (ZIF)u(X - Z){G); thatis, H'x =
F'x forx € Z,and H'x = G'x for x € X —=Z. Then X=Y.] Let Z = {x|(3u)
W XAxeunG'(Y-F'u) CX-u)} Notice that this proof does not
presuppose the definition of w nor any other part of the theory of
ordinals.

454 Prove: @) F X< XUYDb)FX<Y=>-(Y<X)OQFX<YAY<Z>
X<Z

Proposition 4.24

Assume X <Y and A < B. Then:

aYNB=pg=>XUA<YUB
b. XxA<YxB
c. XA<YPifBisasetand “(X=A=Y =0 A B # @)

Proof

a. Assume X %Yl cY and A%Bl c B. Let H be a function with domain

X U A such that Hx = F'x for x € X, and H'x = G'x for x € A —X. Then
XuAﬁH”(XuA)gYuB.

b. and (c) are left as exercises.
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Proposition 4.25

a. F =3f)Fnc(f) A 7 (f) = x A 2(f) =.7(x)). (There is no function from x
onto .~ (x).)
b. F x < 7(x) (Cantor’s theorem)

Proof

a. Assume Fnc(f) A7 (f) =x A 2 (f) = 7(x). Lety = {u|lu € x A u & ful.
Then y € .»(x). Hence, there is some z in x such that f'z = y. But, (Yu)(u
ceysuecxAué¢fu).Hence, (Vi) €fz o uex Auéfu).Byrule A4,
zefzozex Az éfz Sincez € x, we obtain z € fz & z & f'z, which
yields a contradiction.

b. Let f be the function with domain x such that f'u = {u} for each u in x.
Then f"’x C .7(x) and fis one—one. Hence, x < .(x). By part (a), x = »(x)
is impossible. Hence, x < .7/ (x).

In naive set theory, Proposition 4.25(b) gives rise to Cantor’s paradox. If we
letx =V, then V < (V). But (V) CV and, therefore, (V) < V. From V < (V),
we have V < .7(V). By Bernstein’s theorem, V = »(V), contradicting V < ./(V).
In NBG, this argument is just another proof that V is not a set.

Notice that we have not proved F (Vx)(Vy)(x < y V v < x). This intuitively
plausible statement is, in fact, not provable, since it turns out to be equivalent
to the axiom of choice (which will be discussed in Section 4.5).

The equinumerosity relation = has all the properties of an equivalence
relation. We are inclined, therefore, to partition the class of all sets into
equivalence classes under this relation. The equivalence class of a set x would
be the class of all sets equinumerous with x. The equivalence classes are
called Frege—Russell cardinal numbers. For example, if u is a set and x = {u}, then
the equivalence class of x is the class of all singletons {v} and is referred to
as the cardinal number 1. Likewise, if # # v and y = {y, v}, then the equiva-
lence class of y is the class of all sets that contain exactly two elements and
would be the cardinal number 2; that is 2. is {x|Qw)(3z)w # z A x = {w, z})}.
All the Frege—Russell cardinal numbers, except the cardinal number
O. of @ (which is {@}), turn out to be proper classes. For example, V = 1.
(Let F'x = {x} for all x. Then V' =1..) But, -M(V). Hence, by the replacement
axiom, =M(1). i

Exercise

4.55 Prove - -M(2,).

Because all the Frege—Russell cardinal numbers (except O, are proper
classes, we cannot talk about classes of such cardinal numbers, and it is dif-
ficult or impossible to say and prove many interesting things about them.
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Most assertions one would like to make about cardinal numbers can be
paraphrased by the suitable use of =, <, and <. However, we shall see later
that, given certain additional plausible axioms, there are other ways of defin-
ing a notion that does essentially the same job as the Frege—Russell cardinal
numbers.

To see how everything we want to say about cardinal numbers can be said
without explicit mention of cardinal numbers, consider the following treat-
ment of the “sum” of cardinal numbers.

Definition

X +.Y for (X x {@}) U (Y x {1})

Note that - @ # 1 (since 1 is {@}). Hence, X x {@} and Y x {1} are disjoint
and, therefore, their union is a class whose “size” is the sum of the “sizes” of
Xand Y.

Exercise

4.56 Prove:

a. FXX+YAY<SX+ Y
FX2AAY=2B=>X+ YA+ B
FX+. Y2Y+ X
FMX +.Y) © M(X) A M(Y)

FX+ Y+ 2)=2X+.Y)+.Z
FX<Y=>X+.Z<Y+.Z

F X +. X=X x2 (Recall that 2 is {, 1}.)
FXY+eZ = XY x X?

Fxex+. 129+ xx2¥

5 ® -~ 0o & n T

-

4.3.1 Finite Sets

Remember that o is the set of all ordinals o and all smaller ordinals are
successor ordinals or @. The elements of w are called finite ordinals, and the
elements of On — » are called infinite ordinals. From an intuitive standpoint,
o consists of @, 1, 2, 3, ..., where each term in this sequence after @ is the
successor of the preceding term. Note that @ contains no members, 1 = {@}
and contains one member, 2 = {, 1} and contains two members, 3 = {7, 1, 2}
and contains three members, etc. Thus, it is reasonable to think that, for each
intuitive finite number 7, there is exactly one finite ordinal that contains
exactly n members. So, if a class has n members, it should be equinumerous
with a finite ordinal. Therefore, a class will be called finite if and only if it is
equinumerous with a finite ordinal.
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Definition
Fin(X) for (Ja)(a e oA X =z a) (X is finite)

Exercise

4.57 Prove:
a. F Fin(X) = M(X) (Every finite class is a set)
b. F (Vo)(a € ® = Fin(a)) (Every finite ordinal is finite.)
c. FFin(X)AX=2Y = Fin(Y)

Proposition 4.26

a. F (Voo g o=>axa).

b. F (Vo)(VB)(@ € @ A a # B = =(a = f)). (No finite ordinal is equinumer-
ous with any other ordinal.)

c. F (Va)(¥x)(x € @ A x C @ = —(a = x)). (No finite ordinal is equinumer-
ous with a proper subset of itself.)

Proof

a. Assume o ¢ o. Define a function f with domain o’ as follows: f'6 = &'
ifdewf6=08ifdea’ Ad¢wuUla;and fa=¢@. Thenao'=o.

b. Assume this is false, and let o be the least ordinal such that « € ®
and there is p # o such that a = . Hence, o <, p. (Otherwise, p would
be a smaller ordinal than o and p would also be in ®, and p would
be equinumerous with another ordinal, namely, a.) Leta=p. If a = @,
then f = @ and p = @, contradicting o # p. So, a # @. Since a € ®, =&’
for some & € . We may assume that p =y’ for some y. (If p € o, then
B # @; and if B ¢ o, then, by part (a), p = f’ and we can take p’ instead
of B.) Thus, &' = a%y’. Also, & # v, since o # p.

Case 1. f'6 = y. Then 86=v, where g = 8! f.

g
Case 2. f' # v. Then there is some p € § such that fp=1v. Let h = (8{f) —
i, 1) U {(p, £8)); that is, let k't = f't if © & {5, p}, and h'p = f'8.
Then ©3 7

In both cases, § is a finite ordinal smaller than a that is equinumer-
ous with a different ordinal vy, contradicting the minimality of a.

c. Assume € w A x C B AP = x holds for some B, and let a be the least
such B. Clearly, o # @; hence, a = ¥’ for some 7. But, as in the proof
of part (b), one can then show that vy is also equinumerous with a
proper subset of itself, contradicting the minimality of a.
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Exercises

4.58 Prove: - (Va)(Fin(a) © a € ).

4.59 Prove that the axiom of infinity (I) is equivalent to the following
sentence.

() E)(@u)uex)A(Vy)y ex=[E2)(zexny < 2))

Proposition 4.27

a. FFin(X) A Y C X = Fin(Y)
b. F Fin(X) = Fin(X U {y})
¢. F Fin(X) A Fin(Y) = Fin(X U Y)

Proof

a. Assume Fin(X) A Y € X. Then X =~ o, where a € 0. Let g = Y{f and
W=g"Y C a. Wis a set of ordinals, and so, E, is a well-ordering of
W. By Proposition 4.19, (E,;, W) is similar to (E;, f) for some ordinal
. Hence, W = B. In addition, p <, a. (If a <, B, then the similarity of
(Ey, B) to (Ey, W) contradicts Corollary 4.17) Since o € o, € . From
Y=W AW =B, it follows that Fin(Y).

3

b. If y € X, then X U {y} = X and the result is trivial. So, assume y ¢ X.
From Fin(X) it follows that there is a finite ordinal o and a func-
tion f such that a=X. Let g = f U {(o, ¥)}. Then o'=X U{y}. Hence,
Fin(X U {y}). ! §

c LetZ={u|uewon(Vx)(Vy)(Vf)(x % u A Fin(y) = Fin(x U y))}. We must

show that Z = @. Clearly, g € Z, forif x @ @, thenx =@ and x Uy =y.
Assume that a € Z. Let x=a' and Fin(y). Let w be such that fw = «
and let x; = x —{w}. Then x; = a. Since a € Z, Fin(x; Uy). Butxuy =
(x; U y) U {w}. Hence, by part (b), Fin(x U y). Thus, o’ € Z. Hence, by
Proposition 4.11(c), Z = o.

Definitions

DedFin(X) for M(X) A (¥Y)(Y c X = (X 2 Y))
(X is Dedekind-finite, that is, X is a set that is not equinumerous with any
proper subset of itself)

DedInf(X) for M(X) A ~DedFin(X)
(X is Dedekind-infinite, that is, X is a set that is equinumerous with a proper
subset of itself)
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Corollary 4.28

(Vx)(Fin(x) = DedFin(x)) (Every finite set is Dedekind-finite)*

Proof

This follows easily from Proposition 4.26(c) and the definition of “finite.”

Definitions

Inf(X) for ~Fin(X) (X is infinite)
Den(X) for X 2 o (X is denumerable)
Count(X) for Fin(X) v Den(X) (X is countable)
Exercise

4.60 Prove:

a. FInf(X) A X2 Y = Inf(Y)

b. - Den(X) A X2 Y = Den(Y)

¢. F Den(X) = M(X)

d. F Count(X) A X =2 Y = Count(Y)
e. - Count(X) = M(X)

Proposition 4.29

a. FInf(X) A X C Y = Inf(Y)
b. F Inf(X) < Inf(X U {y})

¢. F DedInf(X) = Inf(X)

d. F Inf(w)

Proof

a. This follows from Proposition 4.27(a).

b. F Inf(X) = Inf(X U {y}) by part (a), and F Inf(X U {y}) = Inf(X) by
Proposition 4.27(b)

¢. Use Corollary 4.28.

d. F o ¢ . If Fin(w), then » = o for some a in o, contradicting Proposition
4.26(b).

* The converse is not provable without additional assumptions, such as the axiom of choice.
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Proposition 4.30

F (Vo)(Vz)(Den(v) A z € v = Count(z)). (Every subset of a denumerable set is
countable.)

Proof

It suffices to prove that z C @ = Fin(z) v Den(z). Assume z C ® A —Fin(z). Since
—Fin(z), for any a in z, there is some p in z with a <, p. (Otherwise, z C o’ and,
since Fin(a'), Fin(z).), Let X be a function such that, for any o in o, X'« is the
least ordinal p in z with a <, f. Then, by Proposition 4.14(c) (with & = w), there
is a function Y with domain o such that Y’@ is the least ordinal in z and, for
any y in o, Y'(y’) is the least ordinal p in z with § >, Y'y. Clearly, Y is one—one,
7(Y) = o, and Y"® C z. To show that Den(z), it suffices to show that Yo = z.
Assume z — Yo # @. Let 8 be the least ordinal in z — Y"w, and let T be the least
ordinal in Y"® with t >, 8. Then t = Y'c for some ¢ in . Since 6 <, 1, 6 # @.
So, 6 = |’ for some p in ©. Then t = Y'c is the least ordinal in z that is greater
than Y'p. But 8 >, Y'p, since 7 is the least ordinal in Yo that is greater than &.
Hence, Tt <, 8, which contradicts 8 <, 7.

Exercises

4.61 Prove: F Count(X) A Y C X = Count(Y).
4.62 Prove:
a. F Fin(X) = Fin(7(X))
FFin(X) A (V y)(y € X = Fin(y)) = Fin(J X)
F X <Y A Fin(Y) = Fin(X)
F Fin(~(X)) = Fin(X)
FFin(J X)=Fin(X) A (¥ y)(y € X = Fin(y))
FFnX)=>X<YVvY<X)
FFnX) AInf(Y) > X <Y
FEnX)AYCX=>Y<X
F Fin(X) A Fin(Y) = Fin(X x Y)
j- F Fin(X) A Fin(Y) = Fin(X?Y)
k. FFEnX)Ay¢X=X<XU{yl

5 ® -~ 0 & n T

-

4.63 Define X to be a minimal (respectively, maximal) element of Y if and only
if X € Yand (Vy)(y € Y = —~(y C X)) (respectively, (Vy)(y € Y = ~(X Cy))).
Prove that a set Z is finite if and only if every nonempty set of subsets
of Z has a minimal (respectively, maximal) element (Tarski, 1925).
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4.64 Prove:
a. F Fin(X) A Den(Y) = Den(X U Y)
b. F Fin(X) A Den(Y) A X # @ = Den(X x Y)

c. F (Vx)[DedInf(x) © (Jy)(y € x A Den(y))]. (A set is Dedekind-infinite
if and only if it has a denumerable subset)

- (V@)Y € x A Den(y)) & o < 1]
F (Vo)(a € ® = DedInf(a)) A (Va)(Inf(a) = o & w)
F (Y)(Vy)(y ¢ x = [DedInf(x) © x = x U {y}])
FMWV)o<xeox+.1xx)

QR -~ 0o &

4.65 If NBG is consistent, then, by Proposition 2.17, NBG has a denumer-
able model. Explain why this does not contradict Cantor’s theorem,
which implies that there exist nondenumerable infinite sets (such as
7(0)). This apparent, but not genuine, contradiction is sometimes called
Skolem’s paradox.

4.4 Hartogs” Theorem: Initial Ordinals—Ordinal Arithmetic

An unjustly neglected proposition with many uses in set theory is Hartogs’
theorem.

Proposition 4.31 (Hartogs, 1915)

F (Y)@Ea)(Vy)(y € x = =(x = y)). (For any set x, there is an ordinal that is not
equinumerous with any subset of x.)

Proof

Assume that every ordinal a is equinumerous with some subset y of x.
Hence, y=a for some f. Define a relation r on y by stipulating that (u, v)

€ r if and only if f'u € f'v. Then r is a well-ordering of y such that (r, y)
is similar to (E,, «). Now define a function F with domain On such that,
for any a, F'a is the set w of all pairs (z, y) such that y C x, z is a well-
ordering of y, and (E,, ) is similar to (z, y). (w is a set, since w C ./(x x x) x
7 (x).) Since, F"(On) C .7 (7 (x x x) x .7 (x)), F"(On) is a set. F is one-one;
hence, On = F"(F"(On)) is a set by the replacement axiom, contradicting
Proposition 4.8(h).
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Definition

Let ~denote the function with domain V such that, for every x, » x is the
least ordinal a that is not equinumerous with any subset of x. (is called
Hartogs’ function.)

Corollary 4.32

(Vx)(7"'x < 2777(x))

Proof

With each f <, 7 'x, associate the set of relations r such that r C x x x, r is a
well-ordering of its field y, and (r, y) is similar to (E;, B). This defines a one—
one function from »’x into ./ (x x x). Hence, »'x < 27 (x x x). By Exercise
4.12(s), x x x C .2/(x). So, .77 (x x x) C .zz27(x), and therefore, 7'x X .7777(x).

Definition

Init(X)for X e On A(VB)(P <. X = —(B = X))
(X is an initial ordinal)

An initial ordinal is an ordinal that is not equinumerous with any smaller
ordinal.

Exercises

4.66 a. F (Va)(@ € o = Init(®)). (Every finite ordinal is an initial ordinal.)

b. F Init(w).
[Hint: Use Proposition 4.26(b) for both parts.]
4.67 Prove:

a. Forevery x, »'xis an initial ordinal.
b. For any ordinal a, #’a is the least initial ordinal greater than a.

c. For any setx, »'x = w if any only if x is infinite and x is Dedekind-
finite. [Hint: Exercise 4.64(c).]

Definition by transfinite induction (Proposition 4.14(b)) yields a function G
with domain On such that
G=o
G'(a')= 7'(Ga)forevery o
G'A =U(G"(L)) for every limit ordinal A
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Proposition 4.33

a. F (Vo)(Init(G'o) A @ <, G'a A (VP)(P <, « = G'B <, G'w))
b. F (Va)(o <, G'a)
c. F (V) <, B A Init(p) = Fa)(G'a = p))

Proof

a. Let X = {o|Init(G'o) A 0 <, G'a A (VB)(P <, @ = G'B <, G'an)}.

We must show that On C X. To do this, we use the second form of
transfinite induction (Proposition 4.13(a)). First, @ € X, since G'@ = .
Second, assume o € X. We must show that o’ € X. Since a € X, G'a
is an infinite initial ordinal such that (Vf)(f <, « = G'f <, G'a). By
definition, G'(a") = #'(G'n), the least initial ordinal >, G'(o). Assume
f<,o.Then p <, aVp=oalf p<,a then, sincea € X, G'f <, G'a <,
G'(). If p = a, then G'B = G'a <, G'(&'). In either case, G'B <, G"(@'),
Hence, o’ € X. Finally, assume Lim(x) A (VB)(p <o a = p € X). We
must show that a € X. By definition, G'a = U (G'()). Now consider
any f <, a. Since Lim(a), B’ <, a. By assumption, ' € X, that is, G'(f")
is an infinite initial ordinal such that, for any vy <, f, G'y <, G'(f"). It
follows that G"(®) is a nonempty set of ordinals without a maximum
and, therefore, by Proposition 4.12, G'a, which is U (G"(a)), is a limit
ordinal that is the least upper bound of G'(o). To conclude that G'a € X,
we must show that G'a is an initial ordinal. For the sake of contradic-
tion, assume that there exist 6 such that § <, G'(a) and 6 = G'a. Since
G'a is the least upper bound of G"(«), there must exist some p in G"(x)
such that 6 <, p. Say, p = G'p with p <, a. S0, 8 Cp =GB c G'(P) €
G'a 2 8. Since 8 € G'(p'), 6 € G'(p') and & < G'(f’). On the other hand,
since G'(f') € G'a = §, G'(') < . By Bernstein’s theorem, & = G'(f),
contradicting the fact that G'(f’) is an initial ordinal.

b. This follows from Corollary 4.16 and part (a).

c. Assume, for the sake of contradiction, that there is an infinite initial
ordinal that is not in the range of G, and let ¢ be the least such.
By part (b), 6 <, G'c and, by part (a), G'c is an initial ordinal. Since
o is not in the range of G, 6 <, G'c. Let p be the least ordinal such that
6 <, G'p. Clearly, p # @, since G'@ = ® <, 6. Assume first that p is a suc-
cessor ordinal y'. Then, by the minimality of p, G’y <, o. Since G'(y’) =
7'(G"y), G'(y") is the least initial ordinal greater than G"y. However,
this contradicts the fact that o is an initial ordinal greater than G’y
and ¢ <, G'(y"). So, p must be a limit ordinal. Since G'p = | (G"(w),
the least upper bound of G"(p), and ¢ <, G’p, there is some & <, p such
that o <, G'6 <, G'p, contradicting the minimality of p.

Thus, by Proposition 4.33, G is a one—one <,-preserving function from On
onto the class of all infinite initial ordinals.
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Notation

o, for G'a

Hence, (a) o, = o; (b) 0, is the least initial ordinal greater than w,; (c) for a
limit ordinal A, w, is the initial ordinal that is the least upper bound of the
set of all w, with y <, A. Moreover, o, >, a for all a. In addition, any infinite
ordinal a is equinumerous with a unique initial ordinal o, <, o, namely, with
the least ordinal equinumerous with a.

Let us return now to ordinal arithmetic. We already have defined ordi-
nal addition, multiplication and exponentiation (see Examples 1-2 on
pages 256-257 and Exercise 4.36).

Proposition 4.34

The following wfs are theorems.

P l=p

D+.p=p

* ®<OB:>(G<O(X+OBAﬁSO(X+Oﬁ)
By at Pty
a+,p=a+,0=>p=9

0P G+, 5=)
.@ingn:oﬁcﬁUB: U(a+.P)

Bex

@< aANl< P a<, ax, P
LB AAND < P2al ax, P
Y S PAD < a>ax,y <, ax, P
.ngn:axcﬁUB:BU(ocxoﬁ)

A T Q@ 0 2 T

Proof

a P+, 1=p+@)=P+ ) =p

b. Prove @ +, p = B by transfinite induction (Proposition 4.13(a)). Let
X = {B|@ +, p = p}. First, @ € X, since @ +, & = @. If @ +, y = ¥, then
D+, 7 =@ +,y) =7 If Lim(®) and @ +, T = 7 for all t <, a, then
D+, 00=Urwc o(@+,1)=Urcut=0, since Ui ut is the least upper
bound of the set of all T <, &, which is a.

cLlet X = {Bl@ <, B = a <, a+, p}. Prove X = On by transfinite
induction. Clearly, @ € X. If y € X, then a <, a +, y; hence a <,
A+, ¥ <@+, 7) =a+,y. If Lim() and t € X for all t <, A, then
o<, o' =0+,1< Uswe 2 (a+, 1) =+, A. The second partis left as an
exercise.

d. Let X = {y|(V)(VP)(B <, Y = a +, P <, & +, 7)} and use transfinite induc-
tion. Clearly, @ € X. Assumey € Xand <, y. Thenp <, yorp=y.If§
<,y then,sincey € X, o+, P <, o +, ¥ <,(0t +, ¥)' = o +, ¥’ If p =y, then
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A+, p=a+,y <, (@+,y) =a+, 7. Hence, y' € X. Assume Lim()\) and
T € X for all T <, A. Assume B <, A. Then p <, t for some 7 <, A, since
Lim()). Hence, since t € X, o +, P <, & +, T <, U (a4, 1) =+, A
Hence, A € X.

e. Assume a +, § = o +, 6. Now, either p <, 8 or & <, f or 8 = f. If p <, §, then
a+, B <, o+, 8 by part (d), and, if § <, f, then a +, 6 <, « +, p by part (d);
in either case, we get a contradiction with a +, f = o +, 8. Hence, 8 = .

f. The uniqueness follows from part (e). Prove the existence by induc-
tion on f. Let X = {fla <, p = (3, §)(@ +, & = P)). Clearly, & € X.
Assume y € X and a <, y. Hence, o = y or a <, v. If « = y, then (35)
(@ +, 8 =7"), namely, 8 = 1. If a <, v, then, since y € X, (3; 8)(o +, 6 = ).
Take an ordinal o such that « +, 6 = y. Then a +, ¢’ = (« +, ) =Y’
thus, (38)(a +, & = ¥’); hence, v € X. Assume now that Lim(}) and
t € X for all T <, .. Assume o <, A. Now define a function f such
that, for o <, p <, A, f 'p is the unique ordinal & such that o +, & = p.
But A= Ua<op<oxu = Ua<ou<ox(a +o f,ll) Let p= Ua<ou<ok(f'”)- Notice
that, if o <, p <, A, then f'p <. f(i'); hence, p is a limit ordinal. Then
A =Uqx, p<0x(a +5 f’H) = ch<0 p(a+, G) =+, p.

g Assume @ # x C On. By part (f), there is some & such that
o+, 8 =Uper(0 +5 B). We must show that 8 =Ug.B. If f € x, then a +,
B <.+ .0 Hence, p < .0 by part (d). Therefore, 6 is an upper bound
of the set of all B in x. So, Upe,P <, 8. On the other hand, if § € x, then
o+, B <, o+, UperB. Hence, o+, 8 = Uper (o +, B) <, o+, Uper f. Hence,
o+, 0 =Uper(0+: B) <o 00+ Upex and so, by part (d), 8<-Upe.P.
Therefore, 8 = Up..p.

(h)—(k) are left as exercises.

Proposition 4.35

The following wfs are theorems.

aPx,1=pAlx,p=p

b. @ X, [3 =0

C.(@+, )+ v =0+, (B +,7)

d' (a XOIE}) ><()/Y:(X><O(ﬁ XOY)

e X, (B+,7) = (@ x, B) +, (@ %,7)
fexp(B, )=PpAexp(,p) =1

g exp(exp(B, v), 8) = exp(B, v X, 0)

h. exp(B, v +, 8) = exp(B, v) %, exp(p, 8)*
La>1AB<, 7= exp f) <, exp(®, )

*In traditional notation, the results of (f)-(h) would be written as f! = p, 1 = 1,

(B")" =Br?, Bt =P x, B
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Proof

a.

b.

C.

Bx,1=PBx, @ =P x,2) +, =@ +, p =P, by Proposition 4.34(b).
Prove 1 x, f = p by transfinite induction.

Prove @ x, p = @ by transfinite induction.

Let X = {y[(Y o)(V B)((@ +, B) +o ¥ = & +,(B +, V)}. @ € X, since (« +,
B)+.2=(+,p)=a+,p+,2). Now assume y € X. Then (o + ,f) +
N = (@A P+ V) =@t B V) =t (B V) =+, (Bt V)
Hence, v’ € X. Assume now that Lim(y) and t € X for all T <, A. Then
(a+o B)"'o Y= Ur<ok((a+o B) +o T)z UT<0}"(Q‘ +o (B +0‘E))=OL+0 Ur<oX(B+0T)r

by Proposition 4.34(g), and this is equal to o +,(p +, A).

(d)-(@i) are left as exercises.

We would like to consider for a moment the properties of ordinal addition,

multiplication and exponentiation when restricted to o.

Proposition 4.36

Assume «, B, y are in ®. Then:

Q@ -0 N TP

.o+, pE®
.ox, pE®
. exp(a, p) €

Ao f=P+,
ax, f=px,a

(@ B) X0 v = (@ x,y) +o (B %0 )
- exp(a x, B, ) = exp(a, v) x,exp(p, v)

Proof

a.

Use induction up to o (Proposition 4.13(c)). Let X = {B|p € w A (Va)
(0 €= a+,p € ) Clearly, @ € X. Assume p € X. Consider any o €
o. Then a +, f € 0. Hence, o +, p’ = (« +, f)’ € ® by Proposition 4.11(a).
Thus, ' € X.

. and (c) are left as exercises.
.Lemma.FoaceoAPeEn=>o +,p=a+,p.Let Y ={B|B € A (Va)

(aew=>ao +,p=a+,p)} Clearly, @ € Y. Assume p € Y. Consider
any a € w. 5o, o +, =+, . Thena’ +,p' = (o' +, )" = (a +, p')" =
a+,(p'). Hence, p' €Y.

To prove (d), let X ={B|few A Vo)ar € =>a+,p=p+, ). Then@ € X
and it is easy to prove, using the lemma, thatpe X = p' € X.

(e)—(g) are left as exercises.

The reader will have noticed that we have not asserted for ordinals cer-
tain well-known laws, such as the commutative laws for addition and

275
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multiplication, that hold for other familiar number systems. In fact, these
laws fail for ordinals, as the following examples show.

Examples

L Q)@+, p # P +, )

ltoo=| Jwna=0

<o ®

O+, 1= >, ®
2. (30)(3P)ox xo P # P %, @)

2X, 0= U(Zxooc):co

®Xo 2=0%, (14, 1) = (0%, 1)+, (0%, 1) =0+, ® >, ®

3. @o)EREN(@ +, B) X, ¥ # (@ %, 7) +o(B X, V)

I+, Dx,0=2%X, 0=

(Ixy ®)+o (1%, ®) = 0O+, ® >, ®

4. (Fo)EFP)E)(expla x, B, v) # exp(, v) x,exp(p, v))

exp(2x, 2,0) =exp(4,0) = U exp(4,a)=w

<o ®

exp(2,m) = U exp(2,0) = o

<o ®

So, exp(2, ®) x,exp2, ®) = ® X, 0 >, o.

Given any wf .7 of formal number theory S (see Chapter 3), we can associ-
ate with 7a wf »* of NBG as follows: first, replace every “+” by “+,” every
by “x,,” and every “fi'(t)” by “t U {t}"%; then, if #is » = o or =/, respectively,
and we have already found ~* and 7% let * be «* = 7* or - +* respectively;
if .»is (Vx)~(x), replace it by (Vx)(x € ® = ~*(x)). This completes the definition
of % Now, if x,, ..., x, are the free variables (if any) of ., prefix (x; em A ... A
X, € ®) = to /% obtaining a wf .7# This amounts to restricting all variables

"

* In abbreviated notation for S, ”fﬂ(t)” is written as t/, and in abbreviated notation in NBG,
“t U {t}” is written as t'. So, no change will take place in these abbreviated notations.



Axiomatic Set Theory 277

to ® and interpreting addition, multiplication and the successor function on
natural numbers as the corresponding operations on ordinals. Then every
axiom .7 of S is transformed into a theorem .7# of NBG. (Axioms (S51)-(S3)
are obviously transformed into theorems, (54) # is a theorem by Proposition
4.10(c), and (S5)#—(S8)# are properties of ordinal addition and multiplica-
tion.) Now, for any wf ~of S, s# is predicative. Hence, by Proposition 4.4, all
instances of (S9)# are provable by Proposition 4.13(c). (In fact, assume . 7#(@) A
(Vx)(x € 0 = (7#(x) = ##(x"). Let X = {y|y € ® A 7#(y)}. Then, by Proposition
4.13(c), (¥x)(x € ® = .4#(x)).) Applications of modus ponens are easily seen to
be preserved under the transformation of .~ into ./#. As for the generaliza-
tion rule, consider a wf .s(x) and assume that .7#(x) is provable in NBG. But
7#(x)is of theformx e Ay, E@ A...A Y, € ® = *(x). Hence, y; €0 A...A Y,
€ o = (Vx)(x € @ = »*(x)) is provable in NBG. But this wf is just ((Vx). #(x))#.
Hence, application of Gen leads from theorems to theorems. Therefore, for
every theorem . of S, /# is a theorem of NBG, and we can translate into
NBG all the theorems of S proved in Chapter 3.

One can check that the number-theoretic function % such that, if x is the
Godel number of a wf 7 of S, then h(x) is the Godel number of ##, and if x is
not the Godel number of a wf of S, then h(x) = 0, is recursive (in fact, primi-
tive recursive). Let K be any consistent extension of NBG. As we saw above,
if x is the Godel number of a theorem of S, then h(x) is the Godel number of
a theorem of NBG and, hence, also a theorem of K. Let S(K) be the extension
of S obtained by taking as axioms all wfs v of the language of S such that »#
is a theorem of K. Since K is consistent, S(K) must be consistent. Therefore,
since S is essentially recursively undecidable (by Corollary 3.46), S(K) is
recursively undecidable. Now, assume K is recursively decidable; that is, the
set Ty of Godel numbers of theorems of K is recursive. But Cr ., (x) = Cg, (h(x))
for any x, where Cry,, and Cy; are the characteristic functions of T5(K) and Ty.
Hence, Ts, would be recursive, contradicting the recursive undecidability
of S(K). Therefore, K is recursively undecidable, and thus, if NBG is consis-
tent, NBG is essentially recursively undecidable. Recursive undecidability of
a recursively axiomatizable theory implies incompleteness (see Proposition
3.47). Hence, NBG is also essentially incomplete. Thus, we have the following
result: if NBG is consistent, then NBG is essentially recursively undecidable and
essentially incomplete. (It is possible to prove this result directly in the same
way that the corresponding result was proved for S in Chapter 3.)

Exercise

4.68 Prove that a predicate calculus with a single binary predicate letter is
recursively undecidable. [Hint: Use Proposition 3.49 and the fact that
NBG has a finite number of proper axioms.]

There are a few facts about the “cardinal arithmetic” of ordinal numbers
that we would like to deal with now. By “cardinal arithmetic” we mean
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properties connected with the operations of union (| J), Cartesian product
(%) and XY, as opposed to the properties of +,, x,, and exp. Observe that x is
distinct from x; also notice that ordinal exponentiation exp(, f) has nothing
to do with XY, the class of all functions from Y into X. From Example 4 on
page 276 we see that exp(2, ) is o, whereas, from Cantor’s theorem, o < 2¢,
where 2 is the set of functions from o into 2.

Proposition 4.37

akFoxozow
b.F2<XA2LY=2>XUY<XxY
¢. F Den(x) A Den(y) = Den(x U y)

Proof

a. Let fbe a function with domain o such that, if « € ®, then f'o = (o, @).
Then f is a one—one function from  into a subset of ® x ». Hence, ®
< o x o. Conversely, let ¢ be a function with domain w x @ such that,
for any (o, f) in ® x ®, g, B) = exp(2, ®) %, exp(3, f). We leave it as
an exercise to show that g is a one—one function from o x o into .
Hence, ® x ® < . So, by Bernstein’s theorem, ® x o = .

b. Assumea, € X, a,€ X, a,#a,, b, €Y, b, €Y, b, #b,. Define

(ay,b)) ifxeX
fx=3(m,x) ifxeY-Xandx=bh
(a,,b,) ifx=bandxeY-X

Then fis a one—-one function with domain X U Y and range a subset
of X x Y. Hence, XUY <X x Y.

c. Assume Den(x) and Den(y). Hence, each of x and y contains at least
two elements. Then, by part (b), x Uy <x xy. Butx 2 e and y = o.
Hence, x x y 2 o x 0. Therefore, x Uy < ® x o. By Proposition 4.30,
either Den(x U y) or Fin(x U y). But x C x U y and Den(x); hence,
—Fin(x U ).

For the further study of ordinal addition and multiplication, it is quite useful
to obtain concrete interpretations of these operations.

Proposition 4.38 (Addition)

Assume that (7, x) is similar to (E,, o), that (s, y) is similar to (E;, p), and that
x Ny = @. Let t be the relation on x U y consisting of all (1, v) such that
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(U, V) EXXYOTUEXAVEXA(U,V)ETOTUEYATVEY AU V) ES (e, tis
the same as r in the set x, the same as s in the set y, and every element of x
t-precedes every element of ). Then t is a well-ordering of x U y, and (, x U i)
is similar to (Eq.,p, 0+, B)-

Proof

First, it is simple to verify that ¢ is a well-ordering of x U y, since r is a well-
ordering of x and s is a well-ordering of y. To show that {f, x U y) is similar
to (Eqsop, @+, B), use transfinite induction on p. For p = @, y = @. Hence, t =1,
xUy=xand a +, p =a. So, (t, a U P) is similar to (E,. p, ot +, B). Assume the
proposition for y and let § = y'. Since (s, y) is similar to (E; p), we have a
function f with domain y and range f such that, for any u, vin y, (u, v) € s if
and only if fu € f'v. Let b=(f)y, lety, =y —{b} and let s; = s n (y, x y,). Since
b is the s-maximum of y, it follows easily that s; well-orders y,. Also, y,{f is
a similarity mapping of y, onto y. Let f; = £ N ((x U ;) x (x U y,)). By induc-
tive hypothesis, (t;, x U y,) is similar to (E.,,, o+, v), by means of some
similarity mapping g with domain x U y; and range a +, . Extend g to g, =
g U {(b, @ +, v)}, which is a similarity mapping of x U y onto (a +, y)’ = a +,
Y' =« +, p. Finally, if Lim(f) and our proposition holds for all t <, §, assume
that f is a similarity mapping of y onto p. Now, for each t <, B, let y. = (f)'t,
s;=sN Y. xy)and t, =t N ((x Uy) x (x Uy,). By inductive hypothesis
and Corollary 4.18(b), there is a unique similarity mapping g, of (¢, x U y.)
with (E,., ., o+, 1); also, if 7, <, T, <, B, then, since (x Uy, ) [, is a similar-
ity mapping of (t,,x Uy, ) with (E,. . ,0+, T1) and, by the uniqueness of
Gu, (XU Y4) LG, = go; that is, gv, is an extension of 9u. Hence, if g =U. p9:
and A =U.. p(a +, 1), then g is a similarity mapping of (t, U.<,p (x V¥-)) with
(E,A). But, U p(x Uy.) = x Uy and U.. g(a +, T) = o+, B. This completes the
transfinite induction.

Proposition 4.39 (Multiplication)

Assume that (7, x) is similar to (E, «) and that (s, y) is similar to (E, f). Let
the relation t on x x y consist of all pairs ((i, v), (w, z)) such that u and w are
in x and v and z are in y, and either (v,z) €sor @ =z A (u, w) €r). Thentisa
well-ordering of x x y and (t, x x y) is similar to (Eoxoppr %o B)

Proof

This is left as an exercise. Proceed as in the proof of Proposition 4.38.

* The ordering t is called an inverse lexicographical ordering because it orders pairs as follows:
first, according to the size of their second components and then, if their second components
are equal, according to the size of their first components.
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Examples

1. 2 x, ® = @. Let (r, x) = (E,, 2) and (s, y) = (E,, ). Then the Cartesian
product 2 x o is well-ordered as follows: (@, @), (1, @), (&, 1), (1, 1),
(@,2),(1,2), ..., (@, n), {1,n),{(g,n+1),{1,n+1),...

2. By Proposition 4.34(a), 2 = 1' = 1 +, 1. Then by Proposition 4.35(e,a),
0 %, 2=(0%,1) +,(@ %, 1) = +, . Let (1, x) = (E,, ) and (s, y) = (E,, 2).
Then the Cartesian product o x 2 is well-ordered as follows: (@, @),
1Lo),2),..1),1411,21),..

Proposition 4.40
For all a, o, x ®, = 0,

Proof

(Sierpinski, 1958) Assume this is false and let o be the least ordinal such that
o, X 0, = 0, is false. Then w; x 0y = o, for all f <, «. By Proposition 4.37(a),
o >, @. Now let P = o, x o, and, for p <, w,, let P, = {(y, 8)|y +, & = p}. First
we wish to show that P =Up., o, B Now, if v +, 8 = p <, 0, then y <, f <,
o, and 8 <, p <, o,; hence, (y, 8) € o, x o, = P. Thus, Up., ,, P < P. To show
that P ¢ Up<, o, P, it suffices to show that, if y <, o, and 8 <, @, then y +, &
<, 0,. This is clear when y or § is finite. Hence, we may assume that y and
8 are equinumerous with initial ordinals o, <, y and o, <, §, respectively.
Let { be the larger of ¢ and p. Since y <, o, and 8 <, ®,, then o, <, o,. Hence,
by the minimality of o, o, x o, = w,. Let x = y x {@} and y = & x {1}. Then, by
Proposition 4.38, x Uy =y +, 8. Since y = o, and 8 = »,, x 2 0, x {@} and y =
o, x {1}. Hence, since x Ny = @, x Uy = (o, x {@}) U (0, x {1}). But, by Proposition
4.37(b), (0, x {@}) U (0, x {1}) < (@, x {@}) x (@, x 1}) X 0, x 0, < 0, x 0 = o
Hence, y +, 8 < o, <, ®,. It follows that y +, 8 <, o,. (If o, <, ¥ +, §, then v, <
. Since o, <, o, ®; < ®,. So, by Bernstein’s theorem, w, = o, contradicting
the fact that o, is an initial ordinal)) Thus, P =Ug,«, B Consider P, for any
B <, @, By Proposition 4.34(f), for each y <, B, there is exactly one ordinal
8 such that y +, 8 = . Hence, there is a similarity mapping from f’ onto P,
where P; is ordered according to the size of the first component y of the pairs
(y, 8). Define the following relation R on P. For any y <, ®,, 8 <, @, P <, ®y, V
<, Oy (v, 8), (1, v)) € Rif and only if either y +,8 <, p+,vor (y +,d=p+, v A
Y <, W). Thus, if p; <, B, <y 0, then the pairs in B R-precede the pairs in B,
and, within each Py, the pairs are R-ordered according to the size of their
first components. One easily verifies that R well-orders P. Since P = o, x @,
it suffices now to show that (R, P) is similar to (E,, , ®,). By Proposition 4.19,
(R, P) is similar to some (E,, &), where £ is an ordinal. Hence, P = & Assume
that £ >, w,. There is a similarity mapping f between (E,, &) and (R, P). Let
b = f'(0,); then b is an ordered pair (y, 8) with y <, o, 8 <, ®,, and o, [ fis a
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similarity mapping between (E,, , ®,) and the R-segment Y = Seg(P, (y, 5)) of
P determined by (y, ). Then Y = o,. If we let p =y +, §, then, if (5, p) € Y, we
have s +,p <,y +, 6 = 3 hence, 6 <, p and p <, p. Therefore, Y C p’ x p. But
B’ <, o, Since B is obviously not finite, ' = w, with p <, a. By the minimality
of o, w, x 0, % 0,. S0, », = Y X 0, contradicting w, < w,. Thus, £ <, v, and,
therefore, P < o,. Let h be the function with domain o, such that h'p = (, @)
for every B <, ®,. Then / is a one—one correspondence between o, and the
subset 0, x {@} of P and, therefore, o, < P. By Bernstein’s theorem, o, = P,
contradicting the definition of a. Hence, o, x w; & o for all f.

Corollary 4.41

If x = 0, and y = oy, and if y is the maximum of « and B, then x x y ¥, and x
Uy & w,. In particular, o, x oy = o,

Proof

By Propositions 4.40 and 4.37(b), , K X Uy < X X Y X 0, X 03 < 0, X O, X .
Hence, by Bernstein’s theorem, x x y @0, and x Uy ~ w,.

Exercises

4.69 Prove that the following are theorems of NBG.
A X0, > XU, =0,
b. ®,+. 0,20,
C. DFXLKO,=> XX O, =0,
d g#x<eo=> (@)= 0,
4.70 Prove that the following are theorems of NBG
a. (o) x .7(0y) = .7(0)
b. x<7()=>xU 7(0) = .7 (0,
C P#Fx= (@)= xx.7(0,) =.7(®,)
d g#x<0,= (V@)= .7(0)
e. 1<x<wo,=x% (@)% 2 (7)) 2 .7 (®).

4.71 Assumey# @ Ay =y +.y. (This assumption holds for y = o, by Corollary
441 and for y = (o, by Exercise 4.70(b). It will turn out to hold for all
infinite sets y if the axiom of choice holds.) Prove the following proper-

ties of y.
a. Inf(y)
b. y=l+y

¢ AWENY=uUVvAUNV=@AUZYADZY)
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d {zlzCyArzzyl= /(y)
e. Zz]zCyAInf(z)} = /(y)
£ @Hyzyr(Vu)uey = fuzw)
4.72 Assumey =y x y A 1 <y. (This holds when y = w, by Proposition 4.40

and for y = .7(0,) by Exercise 4.70(a). It is true for all infinite sets y if the
axiom of choice holds.) Prove the following properties of v.

a y=y+.y
b.P Let Perm(y) denote {f | y% y}. Then Perm(y) = ().

4.5 The Axiom of Choice: The Axiom of Regularity

The axiom of choice is one of the most celebrated and contested statements
of the theory of sets. We shall state it in the next proposition and show its
equivalence to several other important assertions.

Proposition 4.42

The following wfs are equivalent.

a. Axiom of choice (AC). For any set x, there is a function f such that, for
any nonempty subset y of x, f'y € y. (fis called a choice function for x.)

b. Multiplicative axiom (Mult). If x is a set of pairwise disjoint nonempty
sets, then there is a set y (called a choice set for x) such that y contains
exactly one element of each set in x:

V) uex=uzBA(Vo)vexnvzu=ovnNnu=>7))=
GA)(Vu)(u e x = (o) (@ e uny))

c. Well-ordering principle (WO). Every set can be well-ordered: (Vx)(3y)
(y We x).

d. Trichotomy (Trich). (Yx)(Vy)(x <y vy < x)*

e. Zorn's Lemma (Zorn). Any nonempty partially ordered set x, in which
every chain (i.e,, every totally ordered subset) has an upper bound,
has a maximal element:

(Vx)(Yy)([(y Part x) A(Vu)(uc x Ay Totu =
F)wexA(Vw)(weu=w=vv{w,v)ey)))]=
(F)(vex A(Vw)(w e x = (v,w) & Y)))

* This is equivalent to (Vx)(Vy)(x <y V x 2y V y < x), which explains the name “trichotomy” for
this principle.
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Proof

1. F WO = Trich. Given sets x and y, then, by WO, x and y can be well-
ordered. Hence, by Proposition 4.19, x = a and y = § for some ordinals
a and . But, by Exercise 4.52, a < f or f < a. Therefore, x <yory <x.

2. I Trich = WO. Given a set x, Hartogs’ theorem yields an ordinal «
such that « is not equinumerous with any subset of x, thatis, « < x is
false. So, by Trich, x < a, that is, x is equinumerous with some subset
y of a. Hence, by translating the well-ordering E, of y to x, x can be
well-ordered.

3. F WO = Mult. Let x be a set of nonempty pairwise disjoint sets. By
WO, there is a well-ordering R of | J x. Hence, there is a function f
with domain x such that, for any u in x, f'u is the R-least element of u.
(Notice that u is a subset of | x.)

4.  Mult = AC. For any set x, we can define a one—one function g such
that, for each nonempty subset u of x, g'u = u x {u}. Let x, be the range
of g. Then x, is a set of nonempty pairwise disjoint sets. Hence, by
Mult, there is a choice set y for x,. Therefore, if u# is a nonempty subset
of x, then u x {u} is in x;, and so y contains exactly one element (v, u) in
u x {u}. Then the function f such that f'u = v is a choice function for x.

5. F AC = Zorn. Let y partially order a nonempty set x such that
every y-chain in x has an upper bound in x. By AC, there is a choice
function f for x. Let b be any element of x. By transfinite induction
(Proposition 4.14(a)), there is a function F such that F'@g = b and, for
any o >, @, F'a is f'u, where u is the set of y-upper bounds v in x of
F’a such that v ¢ F’a. Let p be the least ordinal such that the set of
y-upper bounds in x of F”B that are not in F”f is empty. (There must
be such an ordinal. Otherwise, F would be a one—one function with
domain On and range a subset of x, which, by the replacement axiom
R, would imply that On is a set)) Let g = f{F. Then it is easy to check
that g is one-one and, if @ <, y <, B, (g'®, g’y ) € y. Hence, g"f is a
y-chain in x; by hypothesis, there is a y-upper bound w of g”p. Since
the set of y-upper bounds of F’B(= g"p) that are not in g"p is empty,
w € g"p and w is the only y-upper bound of g’p (because a set can
contain at most one of its y-upper bounds). Hence, w is a y-maximal
element. (If (w, z) € y and z € x, then z is a y-upper bound of g"f,
which is impossible.)

6. = Zorn = WO. Given a set z, let X be the class of all one—one func-
tions with domain an ordinal and range a subset of z. By Hartogs’
theorem, X is a set. Clearly, @ € X. X is partially ordered by the
proper inclusion relation C. Given any chain of functions in X, of
any two, one is an extension of the other. Hence, the union of all the
functions in the chain is also a one-one function from an ordinal
into z, which is a Gupper bound of the chain. Hence, by Zorn, X has
a maximal element g, which is a one—one function from an ordinal
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ainto z. Assumez — g'a # @andletbez - g'a. Letf=g U {< o, f >}.
Then f € X and g C f, contradicting the maximality of g. So, g"a = z.
Thus, a.=z. By means of g, we can transfer the well-ordering E, of «

g
to a well-ordering of z.

Exercises

4.73 Show that each of the following is equivalent to the axiom of choice.
a. Any set x is equinumerous with some ordinal.

b. Special case of Zorn’s lemma. If x is a nonempty set and if the union
of each nonempty C-chain in x is also in x, then x has a C-maximal
element.

¢. Hausdorff maximal principle. If x is a set, then every C-chainin x is a
subset of some maximal C-chain in x.

d. Teichmiiller-Tukey Lemma. Any set of finite character has a c-maxi-
mal element. (A nonempty set x is said to be of finite character if and
only if: (i) every finite subset of an element of x is also an element of x;
and (ii) if every finite subset of a set y is a member of x, then y € x.)

e. (V)Rel(x) = @y)(Fnc(y) A ~(x) = #(y) Ay € )
For any nonempty sets x and y, either there is a function with

domain x and range y or there is a function with domain y and
range X.

4.74 Show that the following finite axiom of choice is provable in NBG: if x
is a finite set of nonempty disjoint sets, then there is a choice set y for x.
[Hint: Assume x = o where o € o. Use induction on a.]

Proposition 4.43

The following are consequences of the axiom of choice.

a. Any infinite set has a denumerable subset.

b. An infinite set is Dedekind-infinite.

c. If x is a denumberable set whose elements are denumerable sets,
then | J x is denumerable.

Proof
Assume AC.
a. Let x be an infinite set. By Exercise 4.73(a), x is equinumerous with

some ordinal a. Since x is infinite, so is a. Hence, ® <, o; therefore,
o is equinumerous with some subset of x.
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b. The proof is by part (a) and Exercise 4.64(c).

c. Assume x is a denumerable set of denumerable sets. Let f be a func-
tion assigning to each u in x the set of all one—one correspondences
between u and . Let z be the union of the range of f. Then, by AC
applied to z, there is a function g such that g'v € v for each non-
empty v C z. In particular, if u € X, then g'(f'u) is a one—one cor-
respondence between u and w. Let & be a one—one correspondence
between o and x. Define a function F on | x as follows: lety € | J x
and let n be the smallest element of o such that y € h'n. Now, h'n € x;
s0, g'(f'(h'n)) is a one—one correspondence between h'n and w. Define
F'y = (n, (9'(f('n)))'y). Then F is a one-one function with domain [ J x
and range a subset of ® x w. Hence, | J x < ® x . But ® x ® =~ 0 and,
therefore, | Jx < 0. If v € x, thenv C | x and v = ©. Hence, ® < |J x.
By Bernstein’s theorem, | J x = .

Exercises

4.75 If x is a set, the Cartesian product IT,.u is the set of functions f with
domain x such that fu € u for all u € x. Show that AC is equivalent to
the proposition that the Cartesian product of any set x of nonempty sets
is also nonempty.

4.76 Show that AC implies that any partial ordering of a set x is included in
a total ordering of x.

4.77 Prove that the following is a consequence of AC: for any ordinal o, if x is
a set such that x < o, and such that (Vu)(u € x = u < @), then |J x < o,
[Hint: The proof is like that of Proposition 4.43(c).]

4.78 a. Provey <x = (3f)(Fnc(f) Ao(f) =x AAf) =y).

b. Prove that AC implies the converse of part (a).

4.79Pa. Prove (u +. v = u?+. (2 x (u x ) +. 0%

b. Assume y is a well-ordered set such that x x y = x +.y and ~(y < x).
Prove that x < v.

c. Assume y =y x y for all infinite sets y. Prove that, if Inf(x) and z = ',
thenx x z>x +.z.

d. Prove that AC is equivalent to (Vy)(Inf(y) = y = y x y) (Tarski, 1923).

A stronger form of the axiom of choice is the following sentence: (3X)(Fnc(X)
A (Vu)u # @ = X'u € u)). (There is a universal choice function (UCF)—i.e, a
function that assigns to every nonempty set u an element of u.) UCF obvi-
ously implies AC, but W.B. Easton proved in 1964 that UCF is not provable
from AC if NBG is consistent. However, Felgner (1971b) proved that, for any
sentence ~in which all quantifiers are restricted to sets, if .7is provable from
NBG + (UCF), then .7 is provable in NBG + (AC). (See Felgner (1976) for a
thorough treatment of the relations between UCF and AC))
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The theory of cardinal numbers can be simplified if we assume AC; for AC
implies that every set is equinumerous with some ordinal and, therefore,
that every set x is equinumerous with a unique initial ordinal, which can
be designated as the cardinal number of x. Thus, the cardinal numbers would
be identified with the initial ordinals. To conform with the standard nota-
tion for ordinals, we let ¥, stand for w,. Proposition 4.40 and Corollary 4.41
establish some of the basic properties of addition and multiplication of
cardinal numbers.

The status of the axiom of choice has become less controversial in recent
years. To most mathematicians it seems quite plausible, and it has so many
important applications in practically all branches of mathematics that not to
accept it would seem to be a willful hobbling of the practicing mathemati-
cian. We shall discuss its consistency and independence later in this section.

Another hypothesis that has been proposed as a basic principle of set the-
ory is the so-called regularity axiom (Reg):

(VX)X 2D = @y)y e X aynX =D))

(Every nonempty class X contains a member that is disjoint from X.)

Proposition 4.44

a. The regularity axiom implies the Fundierungsaxiom:
—(3f)Fnc(f)A 7 (f)=or(Vu)(ueo= f'(u)e f’u))

that is, there is no infinitely descending e-sequence x, 3 x; 3 x, 3...
b. If we assume AC, then the Fundierungsaxiom implies the regularity
axiom.
c. The regularity axiom implies the nonexistence of finite e-cycles—
that is, of functions f on a nonzero finite ordinal « such that f'@ € f'1
€ ... efa ef@. In particular, it implies that there is no set i such that

yey.
Proof

a. Assume Fnc(f) A7(f) = o A (V) € ® = f'(u') € fu). Let z = f'o. By
(Reg), there is some element y in z such that y Nz = @. Since y € z,
there is a finite ordinal « such that y = fa. Then f'(«') € y N z, contra-
dictingynz=@.

b. First, we define the transitive closure TC(u) of a set u. Intuitively, we
want TC(u) to be the smallest transitive set that contains u. Define by
induction a function g on o such that ¢'@ = {u} and g'(@) = J (g'®)
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for each a in @. Thus, g'1 =u, g2=J 4, ¢'3=1J (J 1), and so on. Let
TC(u) = |J (9"w) be called the transitive closure of u. For any u, TC(u)
is transitive; that is, (Vo)(v € TC(u) = v C TC(1)). Now, assume AC and
the Fundierungsaxiom; also, assume X # @ but there is no y in X
such that y N X = @. Let b be some element of X; hence, b N X # @. Let
¢ =TC(b) n X. By AC, let i be a choice function for c. Define a func-
tion f on o such that f@ = b and, for any « in o, f(o') = I'(fo) N X).
It follows easily that, for each a in o, f(&') € f'o, contradicting the
Fundierungsaxiom. (The proof can be summarized as follows: we
start with an element b of X; then, using h, we pick an element f'1 in
b n X; since, by assumption, f'1 and X cannot be disjoint, we pick an
element f2 in f'1 N X, and so on.)

c. Assume given a finite e-cycle: f@ € f1 € ... € fn € f@. Let X be the
range of f{f'@, f'1, ..., fn}. By (Reg), there is some fj in X such that fj
N X = @. But each element of X has an element in common with X*

Exercises

4.80 If z is a transitive set such that u € z, prove that TC(u) C z.

4.81 By the principle of dependent choices (PDC) we mean the following: if
r is a nonempty relation whose range is a subset of its domain, then
there is a function f: ® — 7(r) such that (Vi)(u € @ = (fu, fW)) €r)
(Mostowski, 1948).

a. Provet AC = PDC.
b. Show that PDC implies the denumerable axiom of choice (DAC):

Den(x)A(Vu)(uex =2u=Q0)=Gf)(f : x> UxAa(Vu)(uex= f'ucu))

c. ProvetPDC = (Vx)(Inf(x) = o < x) (Hence, by Exercise 4.64(c), PDC
implies that a set is infinite if and only if it is Dedekind-infinite.)

d. Prove that the conjunction of PDC and the Fundierungsaxiom
implies (Reg).

Let us define by transfinite induction the following function ¥ with domain On:
Y=
Y(a)=7(Ya)

Lim(2)=¥2a= U ¥
B<o

* The use of AC in deriving (Reg) from the Fundierungsaxiom is necessary. Mendelson (1958)
proved that, if NBG is consistent and if we add the Fundierungsaxiom as an axiom, then
(Reg) is not provable in this enlarged theory.



288 Introduction to Mathematical Logic

Let H stand for U (¥”On), that is, H consists of all members of sets of the form
Wa. Let Hy stand for W'(§'). Thus, Hy = (V') and Hy = ./ (¥'(p)) = ./ (Hp). In
particular, H, = /(Y'@) = /(@) =}, H, = /(H2) = ({2} =@, {o}},and H, = .~
(Hy = (2, {2l =2, {2, {ol}, o, iah)

Define a function p on H such that, for any x in H, p’x is the least ordinal «
such that x € W'a. p’x is called the rank of x. Observe that p’x must be a suc-
cessor ordinal. (In fact, there are no sets of rank @, since V'@ = @. If A is a limit
ordinal, every set in ¥'A already was a member of ¥’'f for some p <, A.) As
examples, note that p'@ =1, p’{@} = 1, p'{@, {@}} = 2, and p'{{@}} = 2.

Exercise

4.82 Prove that the following are theorems of NBG.
a. (Vo) Trans (P'a)

Trans(H)

(Vo) (W' € P'(ox'))

(Vo)(VB)(@ <, p = ¥'ou C W'P)

OnCH

(Vo)(pla = )

Vi) Vo ue HAveEHAUE V= pu <, p'v)

(Vu)u CH = u € H)

5@ -~ 0o & n T

Proposition 4.45

The regularity axiom is equivalent to the assertion that V = H, that is, that
every set is a member of H.

Proof

a. Assume V = H. Let X # @. Let a be the least of the ranks of all the
members of X, and let b be an element of X such that p’b = a. Then b n
X = @; for, if u € b n X, then, by Exercise 4.82(g), p'u € p'b = o, contra-
dicting the minimality of .

b. Assume (Reg). Assume V # H. Then V — H # @. By (Reg), there is
some y in V — H such that y N (V - H) = @. Hence, y € H and so, by
Exercise 4.82(h), y € H, contradictingy € V - H.

Exercises

4.83 Show that (Reg) is equivalent to the special case: (Vx)(x # @ = Qy)(y €
XAYNX=0Q)).
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4.84 Show that, if we assume (Reg), then Ord(X) is equivalent to Trans(X) A
E ConX, that is, to the wf

V) ueX=ucX)ANVu)(Vo)ue X Ave XAUu# v =>uUcvVUEU)

Thus, with the regularity axiom, a much simpler definition of the notion of
ordinal class is available, a definition in which all quantifiers are restricted
to sets.

4.85 Show that (Reg) implies that every nonempty transitive class contains @

Proposition 4.45 certainly increases the attractiveness of adding (Reg) as
a new axiom to NBG. The proposition V = H asserts that every set can be
obtained by starting with @ and applying the power set and union oper-
ations any transfinite number of times. The assumption that this is so is
called the iterative conception of set. Many set theorists now regard this con-
ception as the best available formalization of our intuitive picture of the
universe of sets.*

By Exercise 4.84, the regularity axiom would also simplify the definition
of ordinal numbers. In addition, we can develop the theory of cardinal num-
bers on the basis of the regularity axiom; namely, just define the cardinal
number of a set x to be the set of all those y of lowest rank such that y = x.
This would satisfy the basic requirement of a theory of cardinal numbers,
the existence of a function Card whose domain is V and such that (vx)(Vy)
(Card’x = Card'y & x = y).

There is no unanimity among mathematicians about whether we have suffi-
cient grounds for adding (Reg) as a new axiom, for, although it has great sim-
plifying power, it does not have the immediate plausibility that even the axiom
of choice has, nor has it had any mathematical applications. Nevertheless, it is
now often taken without explicit mention to be one of the axioms.

The class H determines an inner model of NBG in the following sense. For any
wf . (written in unabbreviated notation), let Rel,( %) be the wf obtained from
7 by replacing every subformula (VX)~ (X) by (VX)(X € H = ~ (X)) (in mak-
ing the replacements we start with the innermost subformulas) and then, if .»
contains free variables. Y;, ..., Y,, prefixing Y, CHAY,CHA ... AY,CH)=>.

In other words, in forming Rel; (), we interpret “class” as “subclass of H.”
Since M(X) stands for (3Y)(X € Y), Rel,(M(X)) is FY)(Y C H A X € Y), which
is equivalent to X € H; thus, the “sets” of the model are the elements of H.
Hence, Rely; ((Vx).%) is equivalent to (Vx)(x € H = /), where // is Rel(%).
Note also thatF X CHA Y C H = [Rely(X = Y) © X = Y]. Then it turns out
that, for any theorem v of NBG, Rel;; () is also a theorem of NBG.

* The iterative conception seems to presuppose that we understand the power set and union
operations and that ordinal numbers (or something essentially equivalent to them) are avail-
able for carrying out the transfinite iteration of the power set and union operations.
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Exercises

4.86

4.87

4.88

4.89

4.90

Verify that, for each axiom . of NBG, Fypg Rely(#). If we adopt a
semantic approach, one need only show that, if . #is a model for NBG,
in the usual sense of “model,” then the objects X of . #that satisfy the wf
X C H also form a model for NBG. In addition, one can verify that (Reg)
holds in this model; this is essentially just part (a) of Proposition 4.45.
A direct consequence of this fact is that, if NBG is consistent, then so is
the theory obtained by adding (Reg) as a new axiom. That (Reg) is inde-
pendent of NBG (that is, cannot be proved in NBG) can be shown by
means of a model that is somewhat more complex than the one given
above for the consistency proof (see Bernays, 1937-1954, part VII). Thus,
we can consistently add either (Reg) or its negation to NBG, if NBG is
consistent. Practically the same arguments show the independence and
consistency of (Reg) with respect to NBG + (AC).

Consider the model whose domain is H, and whose interpretation of
€ is Ey,, the membership relation restricted to H,. Notice that the “sets”
of this model are the sets of rank <, a and the “proper classes” are the sets
of rank a’. Show that the model H, satisfies all axioms of NBG (except
possibly the axioms of infinity and replacement) if and only if Lim(a).
Prove also that H, satisfies the axiom of infinity if and only if a >, .

Show that the axiom of infinity is not provable from the other axioms
of NBG, if the latter form a consistent theory.

Show that the replacement axiom (R) is not provable from the other axi-
oms (T, P, N, (B1)~(B7), U, W, S) if these latter form a consistent theory.

An ordinal a such that H, is a model for NBG is called inaccessible. Since
NBG has only a finite number of proper axioms, the assertion that o is
inaccessible can be expressed by the conjunction of the relativization
to H, of the proper axioms of NBG. Show that the existence of inacces-
sible ordinals is not provable in NBG if NBG is consistent. (Compare
Shepherdson (1951-1953), Montague and Vaught (1959), and, for
related results, Bernays (1961) and Levy (1960).) Inaccessible ordinals
have been shown to have connections with problems in measure theory
and algebra (see Ulam, 1930; Zeeman, 1955; Erd6s and Tarski, 1961).*
The consistency of the theory obtained from NBG by adding an axiom
asserting the existence of an inaccessible ordinal is still an open ques-
tion. More about inaccessible ordinals may be found in Exercise 4.91.

The axiom of choice turns out to be consistent and independent with
respect to the theory NBG + (Reg). More precisely, if NBG is consistent, AC
is an undecidable sentence of the theory NBG + (Reg). In fact, Godel (1938,

* Inaccessible ordinals are involved also with attempts to provide a suitable set-theoretic founda-
tion for category theory (see MacLane, 1971; Gabriel, 1962; Sonner, 1962; Kruse, 1966; Isbell, 1966).
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1939, 1940) showed that, if NBG is consistent, then the theory NBG + (AC) +
(Reg) + (GCH) is also consistent, where (GCH) stands for the generalized con-
tinuum hypothesis:

(Vx)(Inf(x) =-(Fy)(x<yAry =<~ (x)))

(Our statement of Godel’s result is a bit redundant, since Fyps (GCH) =
(AC) has been proved by Sierpinski (1947) and Specker (1954). This result
will be proved below.) The unprovability of AC from NBG + (Reg), if NBG is
consistent, has been proved by PJ. Cohen (1963-1964), who also has shown
the independence of the special continuum hypothesis, 20 = w,, in the theory
NBG + (AC) + (Reg). Expositions of the work of Cohen and its further devel-
opment can be found in Cohen (1966) and Shoenfield (1971b), as well as in
Rosser (1969) and Felgner (1971a). For a thorough treatment of these results
and other independence proofs in set theory, Jech (1978) and Kunen (1980)
should be consulted.

We shall present here a modified form of the proof in Cohen (1966) of
Sierpinski’s theorem that GCH implies AC.

Definition

For any set v, let /%(v) = v, /'(v) = 7(v), 74V) = #(AV)), ..., 75+ (V) = 7 (@)
for all k in ®.

Lemma 4.46

If ® < v, then ./*(v) +. ./*(v) = ./*(v) for all k >, 1.

Proof

Remember that ./(x) = 2* (see Exercise 4.40). From o < v we obtain @ < ./%(v)
for all k in w. Hence, /() +.1 = /(v) for all k in o, by Exercise 4.64(g). Now,
forany k >, 1,

K@)+ K@) = H0)x2= (S )x222" O %2

=2/ @ ol = /MWl 2 O & (R ) = K (p)

Lemma 4.47

Ify+.x= 7(x+.x), then /(x) <y.
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Proof

Notice that ./(x + x) & 28+ ¥ 2 2¥ x 2¥ = /(x) x ./(x). Let y* = y x {@} and x* =
x x {1}. Since y +. x = ~(x +. %) = (x) x (%), there is a function f such that
y* Ux™ ?./ (x)x.7(x). Let h be the function that takes each u in x* into the first

component of the pair fu. Thus, h: x* = /(x). By Proposition 4.25(a), there
must exist ¢ in .~ (x) — h"(x*). Then, for all z in .»/(x), there exists a unique v in
y* such that f'v = (¢, z). This determines a one—one function from .»/(x) into y.
Hence, »(x) < y.

Proposition 4.48

Assume GCH.

a. If u cannot be well-ordered and u +. u = u and f is an ordinal such
that p <24 then < u.
b. The axiom of choice holds.

Proof

a. Notice that u + u =~ uimplies 1 +_u = u, by Exercise 4.71(b). Therefore,
by Exercise 4.55(@1), 2" +. u = 2*. Now, u < p +. u = 2. By GCH, either
@) u=p+.uor(ii)p +. u =2« If (i) holds, p +. u = 2"+ u = Pu +. u).
Hence, by Lemma 4.47, P(u) < B and, therefore, u < . Then, since
u would be equinumerous with a subset of an ordinal, u could be
well-ordered, contradicting our assumption. Hence, (i) must hold.
But then, <P +.u = u.

b. We shall prove AC by proving the equivalent sentence asserting that
every set can be well-ordered (WO). To that end, consider any set
x and assume, for the sake of contradiction, that x cannot be well-
ordered. Let v = 2*Uw. Then ® < x U © < v. Hence, by Lemma 4.46,
@) +. 7*w) = K@) for all k >, 1. Also, since x XxU o v < ./(v) <
A V) <..., and x cannot be well-ordered, each ./*(v) cannot be well-
ordered, for k >, 0. Let p = » 'v. We know that p < . 4(v) by Corollary
4.32. Hence, by part (a), with u = .~ 3(v), we obtain p < .~ 3(). Using
part (a) twice more (successively with u = -~ %(v) and u = (v)), we
obtain #'v = f < v. But this contradicts the definition of »'v as the
least ordinal not equinumerous with a subset of v.

Exercise

4.91 An o-sequence is defined to be a function f whose domain is «. If the
range of f consists of ordinals, then fis called an ordinal a-sequence and,
if, in addition, p <, y <, a implies f'B <, fy, then f is called an increasing
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ordinal a-sequence. By Proposition 4.12, if f is an increasing ordinal
a-sequence, then | J (f"a) is the least upper bound of the range of f. An
ordinal 6 is said to be regular if, for any increasing ordinal a-sequence
such that a <, 8 and the ordinals in the range of fare all <, 6, U (f"o) + ,1<,8.
Nonregular ordinals are called singular ordinals.

®n T

[eaY

Which finite ordinals are regular?

Show that o, is regular and o, is singular

Prove that every regular ordinal is an initial ordinal.

Assuming the AC, prove that every ordinal of the form ®,, ;is regular.
If w, is regular and Lim(x), prove that o, = a. (A regular ordinal o,
such that Lim(o) is called a weakly inaccessible ordinal.)

Show that, if @, has the property that y <, o, implies .«(y) < o,, then
Lim(x). The converse is implied by the generalized continuum
hypothesis. A regular ordinal o, such that a >, @ and such that
Y <, @, implies ./(y) < w,, is called strongly inaccessible. Thus, every
strongly inaccessible ordinal is weakly inaccessible and, if (GCH)
holds, the strongly inaccessible ordinals coincide with the weakly
inaccessible ordinals.

(i) If y is inaccessible (i.e, if H, is a model of NBG), prove that y is
weakly inaccessible. (ii)P In the theory NBG + (AC), show that vy is
inaccessible if and only if y is strongly inaccessible (Sheperdson,
1951-1953; Montague and Vaught, 1959).

If NBG is consistent, then in the theory NBG + (AC) + (GCH), show
that it is impossible to prove the existence of weakly inaccessible
ordinals.

4.6 Other Axiomatizations of Set Theory

We have chosen to develop set theory on the basis of NBG because it is rela-
tively simple and convenient for the practicing mathematician. There are, of
course, many other varieties of axiomatic set theory, of which we will now
make a brief survey.

4.6.1 Morse—Kelley (MK)

Strengthening NBG, we can replace axioms (B1)—(B7) by the axiom schema:

where

(O) AY)Vx)(xeY < 4(x))s

#(x) is any wf (not necessarily predicative) of NBG
Y is not free in . #(x)
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The new theory MK, called Morse—Kelley set theory, became well-known
through its appearance as an appendix in a book on general topology by
Kelley (1955). The basic idea was proposed independently by Mostowski,
Quine, and Morse (whose rather unorthodox system may be found in Morse
(1965)). Axioms (B1)—(B7) follow easily from ([J) and, therefore, NBG is a
subtheory of MK. Mostowski (1951a) showed that, if NBG is consistent, then
MK is really stronger than NBG. He did this by constructing a “truth defi-
nition” in MK on the basis of which he proved by “.\pg, Where 7.\ is a
standard arithmetic sentence asserting the consistency of NBG. On the other
hand, by Godel’s second theorem, .\ is not provable in NBG if the latter
is consistent.

The simplicity and power of schema ([J) make MK very suitable for use
by mathematicians who are not interested in the subtleties of axiomatic set
theory. But this very strength makes the consistency of MK a riskier gamble.
However, if we add to NBG + (AC) the axiom (In) asserting the existence
of a strongly inaccessible ordinal 6, then Hy is a model of MK. Hence, MK
involves no more risk than NBG + (AC) + (In).

There are several textbooks that develop axiomatic set theory on the basis
of MK (Rubin, 1967; Monk, 1980; Chuquai, 1981). Some of Cohen’s indepen-
dence results have been extended to MK by Chuquai (1972).

Exercises

4.92 Prove that axioms (B1)—(B7) are theorems of MK.

4.93 Verify that, if 0 is a strongly inaccessible ordinal, then H, is a model
of MK.

4.6.2 Zermelo-Fraenkel (ZF)

The earliest axiom system for set theory was devised by Zermelo (1908). The
objects of the theory are thought of intuitively as sets, not the classes of NBG
or MK. Zermelo’s theory Z can be formulated in a language that contains
only one predicate letter €. Equality is defined extensionally: x = y stands for
(V2)(z € x © z € y). The proper axioms are:

Tx=y=>@xezeoyey (substitutivity of =)
P:(@)Vu)u €z u=xvu=y) (pairing)
N: @x)(Yy)(y & x) (null set)
U: @Ay)(Vu)u ey (Fv)u € v Av €X)) (sum set)
W: @y)(Vu)u €y & u Cx) (power set)
St Ay ey o (u € x A W), (selection)
where (i) is any wf not containing y free
L@@ exA(V2)(zex=>2zU{z} €x) (infinity)

Here we have assumed the same definitions of C, @, U and {u} as in NBG.
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Zermelo’s intention was to build up mathematics by starting with a few
simple sets (@ and w) and then constructing further sets by various well-
defined operations (such as formation of pairs, unions and power sets). In
fact, a good deal of mathematics can be built up within Z. However, Fraenkel
(1922a) observed that Z was too weak for a full development of mathemat-
ics. For example, for each finite ordinal n, the ordinal o +, n can be shown to
exist, but the set A of all such ordinals cannot be proved to exist, and, there-
fore, w +, o, the least upper bound of A, cannot be shown to exist. Fraenkel
proposed a way of overcoming such difficulties, but his idea could not be
clearly expressed in the language of Z. However, Skolem (1923) was able to
recast Fraenkel’s idea in the following way: for any wf #(x, v), let Fun(»)
stand for (Vx)(Vu)(Vo)(#(x, u) A .#(x, v) = u = v). Thus, Fun () asserts that .
determines a function. Skolem’s axiom schema of replacement can then be for-
mulated as follows:

(R*) Fun(»)= (Vw)(3z)(Vo)(v € z < (Fu)(u € w A 7 (1,v)))
for any wf #(x,y)

This is the best approximation that can be found for the replacement axiom
R of NBG.

The system Z + (R¥) is denoted ZF and is called Zermelo—Fraenkel set the-
ory. In recent years, ZF is often assumed to contain a set-theoretic regularity
axiom (Reg*): x # @ = (y)(y € x Ay N x = @). The reader should always check
to see whether (Reg*) is included within ZF. ZF is now the most popular
form of axiomatic set theory; most of the modern research in set theory on
independence and consistency proofs has been carried out with respect to
ZF. For expositions of ZF, see Krivine (1971), Suppes (1960), Zuckerman (1974),
Lévy (1978), and Hrbacek and Jech (1978).

ZF and NBG yield essentially equivalent developments of set theory. Every
sentence of ZF is an abbreviation of a sentence of NBG since, in NBG, lower-
case variables x, y, z, ... serve as restricted set variables. Thus axiom N is an
abbreviation of (AX)(M(x) A (Vy)M(y) = y € x)) in NBG. It is a simple mat-
ter to verify that all axioms of ZF are theorems in NBG. Indeed, NBG was
originally constructed so that this would be the case. We can conclude that,
if NBG is consistent, then so is ZF. In fact, if a contradiction could be derived
in ZF, the same proof would yield a contradiction in NBG.

The presence of class variables in NBG seems to make it much more pow-
erful than ZF. At any rate, it is possible to express propositions in NBG that
either are impossible to formulate in ZF (such as the universal choice axiom)
or are much more unwieldy in ZF (such as transfinite induction theorems).
Nevertheless, it is a surprising fact that NBG is no riskier than ZF. An even
stronger result can be proved: NBG is a conservative extension of ZF in the
sense that, for any sentence .7 of the language of ZF, if ¢ ., then -5 .7 (see
Novak (Gal) 1951; Rosser and Wang, 1950; Shoenfield, 1954). This implies that,
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if ZF is consistent, then NBG is consistent. Thus, NBG is consistent if and only
if ZF is consistent, and NBG seems to be no stronger than ZF. However, NBG
and ZF do differ with respect to the existence of certain kinds of models (see
Montague and Vaught, 1959). Moreover, another important difference is that
NBG is finitely axiomatizable, whereas Montague (1961a) showed that ZF (as
well as Z) is not finitely axiomatizable. Montague (1961b) proved the stronger
result that ZF cannot be obtained by adding a finite number of axioms to Z.

Exercise

4.94 Let H, =UH, (see page 288).
a. Verify that H;, consists of all sets of rank less than a.
b. If ais a limit ordinal >, ®, show that H,, is a model for Z.

c.P Find an instance of the axiom schema of replacement (R¥) that is
false in H,,, ,. [Hint: Let 4(x, y) be x € ® Ay = ® +, x. Observe that
o+, o¢H,,., and o +,0 = | {v|Eu) € o A B, )]

d. Show that, if ZF is consistent, then ZF is a proper extension of Z.

4.6.3 The Theory of Types (ST)

Russell’s paradox is based on the set K of all those sets that are not members
of themselves: K = {x|x ¢ x}. Clearly, K € K if and only if K ¢ K. In NBG this
argument simply shows that K is a proper class, not a set. In ZF the conclu-
sion is just that there is no such set K.

Russell himself chose to find the source of his paradox elsewhere. He
maintained that x € x and x ¢ x should be considered “illegitimate” and
“ungrammatical” formulas and, therefore, that the definition of K makes no
sense. However, this alone is not adequate because paradoxes analogous to
Russell’s can be obtained from slightly more complicated circular properties,
likexeyAyex.

Exercise

4.95 a. Derive a Russell-style paradox by using x ey Ay € x.

b. Usex€y, Ay, €EY, A ... AY,4 €Y, AY, € x to obtain a paradox,
where n > 1.

Thus, to avoid paradoxes, one must forbid any kind of indirect circularity.
For this purpose, we can think of the universe divided up into types in the
following way. Start with a collection W of nonsets or individuals. The ele-
ments of W are said to have type 0. Sets whose members are of type 0 are
the objects of type 1. Sets whose members are of typel will be the objects of
type 2, and so on.



Axiomatic Set Theory 297

Our language will have variables of different types. The superscript of a
variable will indicate its type. Thus, x° is a variable of type 0, ! is a variable
of type 1, and so on. There are no variables other than type variables. The
atomic wfs are of the form x" € y"*1, where n is one of the natural numbers
0,1,2,.... The rest of the wfs are built up from the atomic wfs by means of
logical connectives and quantifiers. Observe that ~(x € x) and ~-(x e y Ay € %)
are not wfs.

The equality relation must be defined piecemeal, one definition for each type.

Definition

xn — yn fOI‘ (vzn+1)(xn c ZrH—l = yn c Zn+1)

Notice that two objects are defined to be equal if they belong to the same
sets of the next higher type. The basic property of equality is provided by the
following axiom scheme.

4.6.3.1 ST1 (Extensionality Axiom)

n+l _ _n+l

n+1) z

(Va")(x" ey o x" ez =y

This asserts that two sets that have the same members must be equal. On the
other hand, observe that the property of having the same members could
not be taken as a general definition of equality because it is not suitable for
objects of type 0.

Given any wf #(x"), we wish to be able to define a set {x"

).

4.6.3.2 ST2 (Comprehension Axiom Scheme)

For any wf (x"), the following wf is an axiom:
(Elyrﬁ—l)(vxn )(xn c yn+1 o (xn ))

Here, y"*! is any variable not free in .#(x"). If we use the extensionality axiom,
then the set iy"*! asserted to exist by axiom ST2 is unique and can be denoted
by {x"| #(x")}.

Within this system, we can define the usual set-theoretic notions and
operations, as well as the natural numbers, ordinal numbers, cardinal num-
bers and so on. However, these concepts are not unique but are repeated
for each type (or, in some cases, for all but the first few types). For example,
the comprehension scheme provides a null set A" = {x"|x" # x"} for each
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nonzero type. But there is no null set per se. The same thing happens for
natural numbers. In type theory, the natural numbers are not defined as they
are in NBG. Here they are the finite cardinal numbers. For example, the set
of natural numbers of type 2 is the intersection of all sets containing {A!} and
closed under the following successor operation: the successor S(y?) of a set
y2is {01 |Qu)(E)W € y? A 2° ¢ u' A v! = ul U {z%)}. Then, among the natural
numbers of type 2, we have 0 = {Al}, 1 = 5(0), 2 = S5(1), and so on. Here, the
numerals 0, 1, 2, ... should really have a superscript “2” to indicate their type,
but the superscripts were omitted for the sake of legibility. Note that 0 is the
set of all sets of type 1 that contain no elements, 1 is the set of all sets of type 1
that contain one element, 2 is the set of all sets of type 1 that contain two ele-
ments, and so on.

This repetition of the same notion in different types makes it somewhat
inconvenient for mathematicians to work within a type theory. Moreover,
it is easy to show that the existence of an infinite set cannot be proved from
the extensionality and comprehension schemas* To see this, consider the
“model” in which each variable of type n ranges over the sets of rank less
than or equal to n +, 1. (There is nothing wrong about assigning overlapping
ranges to variables of different types.)

We shall assume an axiom that guarantees the existence of an infinite
set. As a preliminary, we shall adopt the usual definition {{x"}, {x", y"}} of the
ordered pair: (x", y"), where {x", y"} stands for {u"|u" = x" v u" = y"}. Notice
that (x", y") is of type n + 2. Hence, a binary relation on a set A, being a set of
ordered pairs of elements of A, will have type 2 greater than the type of A. In
particular, a binary relation on the universe V' = {x°|x° = x°} of all objects of
type 0 will be a set of type 3.

4.6.3.3 ST3 (Axiom of Infinity)

@A) ([Eu”)(FO)(u°,0") e °)] A
(Vu) (Vo) (V) (U, u®) & x* A[(u°,0°) e x* A (0", 0"y e x* =
W, w’) e *IA[U",0°) e ¥° = (32°)((2°, 2°) € x7)]))

This asserts that there is a nonempty irreflexive, transitive binary relation x*
on V! such that every member of the range of x3 also belongs to the domain
of x3. Since no such relation exists on a finite set, V! must be infinite.

The system based on ST1-ST3 is called the simple theory of types and is
denoted ST. Because of its somewhat complex notation and the repetition
of concepts at all (or, in some cases, almost all) type levels, ST is not gen-
erally used as a foundation of mathematics and is not the subject of much

* This fact seemed to undermine Russell’s doctrine of logicism, according to which all of math-
ematics could be reduced to basic axioms that were of an essentially logical character. An
axiom of infinity could not be thought of as a logical truth.
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contemporary research. Suggestions by Turing (1948) to make type theory
more usable have been largely ignored.

With ST we can associate a first-order theory ST*. The nonlogical constants
of ST* are € and monadic predicates T, for each natural number n. We then
translate any wf 7 of ST into ST* by replacing subformulas (Vx")~ (x") by (Vx)
(T, (x) = ~ (x)) and, finally, if '}, ..., y’** are the free variables of , prefixing
to the result T (1) A...A Tj, (yx) = and changing each y’! into ;. In a rigor-
ous presentation, we would have to specify clearly that the replacements are
made by proceeding from smaller to larger subformulas and that the vari-
ables x, y,, ..., y; are new variables. The axioms of ST* are the translations of
the axioms of ST. Any theorem of ST translates into a theorem of ST*.

Exercise

4.96 Exhibit a model of ST* within NBG.

By virtue of Exercise 4.96, NBG (or ZF) is stronger than ST: (1) any theorem
of ST can be translated into a corresponding theorem of NBG, and (2) if NBG
is consistent, so is ST*

To provide a type theory that is easier to work with, one can add axi-
oms that impose additional structure on the set V! of objects of type 0. For
example, Peano’s axioms for the natural numbers were adopted at level 0 in
Godel’s system P, for which he originally proved his famous incompleteness
theorem (see Go6del, 1931).

In Principia Mathematica (1910-1913), the three-volume work by Alfred
North Whitehead and Bertrand Russell, there is a theory of types that is
further complicated by an additional hierarchy of orders. This hierarchy was
introduced so that the comprehension scheme could be suitably restricted
in order not to generate an impredicatively defined set, that is, a set A defined
by a formula in which some quantified variable ranges over a set that turns
out to contain the set A itself. Along with the mathematician Henri Poincaré,
Whitehead and Russell believed impredicatively defined sets to be the root
of all evil. However, such concepts are required in analysis (e.g., in the proof
that any nonempty set of real numbers that is bounded above has a least
upper bound). Principia Mathematica had to add the so-called axiom of reduc-
ibility to overcome the order restrictions imposed on the comprehension
scheme. The Whitehead—Russell system without the axiom of reducibility is
called ramified type theory; it is mathematically weak but is of interest to those
who wish an extreme constructivist approach to mathematics. The axiom
of reducibility vitiates the effect of the order hierarchy; therefore, it is much
simpler to drop the notion of order and the axiom of reducibility. The result
is the simple theory of types ST, which we have described above.

* A stronger result was proved by John Kemeny (1949) by means of a truth definition within Z:
if Z is consistent, so is ST.
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In ST, the types are natural numbers. For a smoother presentation, some
logicians allow a larger set of types, including types for relations and/or
functions defined on objects taken from previously defined types. Such a
system may be found in Church (1940).

Principia Mathematica must be read critically; for example, it often overlooks
the distinction between a formal theory and its metalanguage. The idea of
a simple theory of types goes back to Ramsey (1925) and, independently,
to Chwistek (1924-1925). Discussions of type theory are found in Andrews
(1986), Hatcher (1982) and Quine (1963).

4.6.4 Quine’s Theories NF and ML

Quine (1937) invented a type theory that was designed to do away with some
of the unpleasant aspects of type theory while keeping the essential idea of the
comprehension axiom ST2. Quine’s theory NF (New Foundations) uses only one
kind of variable x, y, z, ... and one binary predicate letter €. Equality is defined
as in type theory: x = y stands for (Vz)(x € z & y € 2). The first axiom is familiar:

4.6.4.1 NF1 (Extensionality)
(Vz2)(zexozey)=>x=y

In order to formulate the comprehension axiom, we introduce the notion
of stratification. A wf . is said to be stratified if one can assign integers to
the variables of # so that: (1) all occurrences of the same free variable are
assigned the same integer, (2) all bound occurrences of a variable that are
bound by the same quantifier must be assigned the same integer, and (3) for
every subformula x € y of ., the integer assigned to y is 1 greater than the
integer assigned to x.

Examples
1. Ayx € y Ay € 2) V u € x is stratified by virtue of the assignment
indicated below by superscripts:
A (' ey* Ayt e’)vulex!
2. (Ay(x € ¥) A AY)(y € x) is stratified as follows:
(@) ey ) AGY )Y’ ex)

Notice that the ys in the second conjunct do not have to have the
same integers assigned to them as the ys in the first conjunct.
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3. x €y V y € x is not stratified. If x is assigned an integer 1, then the
first y must be assigned n + 1 and the second y must be assigned
n — 1, contradicting requirement (1).

4.6.4.2 NF2 (Comprehension)

For any stratified wf (x),
(3y)(vx)(x ey = »(x))

is an axiom. (Here, y is assumed to be the first variable not free in .(x).)
Although NF2 is an axiom scheme, it turns out that NF is finitely axiomat-
izable (Hailperin, 1944).

Exercise

4.97 Prove that equality could have been defined as follows: x = i for (Vz)(x
€ z = y € 2). (More precisely, in the presence of NF2, this definition is
equivalent to the original one.)

The theory of natural numbers, ordinal numbers and cardinal numbers
is developed in much the same way as in type theory, except that there is
no longer a multiplicity of similar concepts. There is a unique empty set A =
{x|x # x} and a unique universal set V = {x|x = x}. We can easily prove V €V,
which immediately distinguishes NF from type theory (and from NBG, MK
and ZF).

The usual argument for Russell’s paradox does not hold in NEF, since
x ¢ x is not stratified. Almost all of standard set theory and mathematics
is derivable in NF; this is done in full detail in Rosser (1953). However, NF
has some very strange properties. First of all, the usual proof of Cantor’s
theorem, A < (A), does not go through in NF; at a key step in the proof,
a set that is needed is not available because its defining condition is not
stratified. The apparent unavailability of Cantor’s theorem has the desir-
able effect of undermining the usual proof of Cantor’s paradox. If we could
prove A < .~ (A), then, since .~ (V) = V, we could obtain a contradiction
from V < (V). In NEF the standard proof of Cantor’s theorem does yield
USC(A) < ./ (A), where USC(A) stands for {x|(Qu)(u € A A x = {u})}. If we let
A =V, we conclude that USC(V) < V. Thus, V has the peculiar property that
it is not equinumerous with the set of all unit sets of its elements. In NBG,
the function f, defined by f(i) = {u} for all u in A, establishes a one—one cor-
respondence between A and USC(A) for any set A. However, the defining
condition for fis not stratified, so that f may not exist in NF. If f does exist,
A is said to be strongly Cantorian.
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Other surprising properties of NF are the following.

1. The axiom of choice is disprovable in NF (Specker, 1953).

2. Any model for NF must be nonstandard in the sense that a well-
ordering of the finite cardinals or of the ordinals of the model is not
possible in the metalanguage (Rosser and Wang, 1950).

3. The axiom of infinity is provable in NF (Specker, 1953).

Although property 3 would ordinarily be thought of as a great advantage,
the fact of the provability of an axiom of infinity appeared to many logicians
to be too strong a result. If that can be proved, then probably anything can be
proved, that is, NF is likely to be inconsistent. In addition, the disprovability
of the axiom of choice seems to make NF a poor choice for practicing math-
ematicians. However, if we restrict attention to so-called Cantorian sets, sets
A for which A and USC(A) are equinumerous, then it might be consistent to
assume the axiom of choice for Cantorian sets and to do mathematics within
the universe of Cantorian sets.

NF has another attractive feature. A substantial part of category theory (see
MacLane, 1971) can be developed in a straightforward way in NE, whereas
this is not possible in ZF, NBG, or MK. Since category theory has become an
important branch of mathematics, this is a distinct advantage for NF.

If the system obtained from NF by assuming the existence of an inac-
cessible ordinal is consistent, then ZF is consistent (see Collins, 1955; Orey,
1956a). If we add to NF the assumption of the existence of an infinite strongly
Cantorian set, then Zermelo’s set theory Z is consistent (see Rosser, 1954). The
question of whether the consistency of ZF implies the consistency of NF is
still open (as is the question of the reverse implication).

Let ST- be the simple theory of types ST without the axiom of infinity.
Given any closed wf .7 of ST, let .+ denote the result of adding 1 to the types
of all variables in 2. Let SP denote the theory obtained from ST- by adding as
axioms the wfs v & . for all closed wfs .. Specker (1958, 1962) proved that
NF is consistent if and only if SP is consistent.

Let NFU denote the theory obtained from NF by restricting the extension-
ality axiom to nonempty sets:

NF1* @Quuex)A(Vz)(zex o zey)=>x=y

Jensen (1968-1969) proved that NFU is consistent if and only if ST~ is con-
sistent, and the equiconsistency continues to hold when both theories are
supplemented by the axiom of infinity or by axioms of infinity and choice.
Discussions of NF may be found in Hatcher (1982) and Quine (1963). Forster
(1983) gives a survey of more recent results.
Quine also proposed a system ML that is formally related to NF in much
the same way that MK is related to ZF. The variables are capital italic letters
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X, Y, Z, ...; these variables are called class variables. We define M(X), X is a
set* by (AY)(X € Y), and we introduce lower-case italic letters x, y, z, ... as
variables restricted to sets. Equality is defined as in NBG: X =Y for (VZ)(Z €
X & Z €Y). Then we introduce an axiom of equality:

ML1l: X=YAXeZ=YeZ
There is an unrestricted comprehension axiom scheme:
ML2: @AY)(Vx)(xeY < z(x))

where #(x) is any wf of ML. Finally, we wish to introduce an axiom that has
the same effect as the comprehension axiom scheme NF2:

ML3: (Yy1)...(Vy,)(32)(Vx)(x € z & 2 (x))

where #(x) is any stratified wf whose free variables are x, y,, ..., y,(n > 0) and
whose quantifiers are set quantifiers.

All theorems of NF are provable in ML. Hence, if ML is consistent, so is NF.
The converse has been proved by Wang (1950). In fact, any closed wf of NF
provable in ML is already provable in NF.

ML has the same advantages over NF that MK and NBG have over ZF: a
greater ease and power of expression. Moreover, the natural numbers of ML
behave much better than those of NF; the principle of mathematical induc-
tion can be proved in full generality in ML.

The prime source for ML is Quine (1951) Consult also Quine (1963) and
Fraenkel et al. (1973).

4.6.5 Set Theory with Urelements

The theories NBG, MK, ZF, NE, and ML do not allow for objects that are
not sets or classes. This is all well and good for mathematicians, since only
sets or classes seem to be needed for dealing with mathematical concepts
and problems. However, if set theory is to be a part of a more inclusive
theory having to do with the natural or social sciences, we must permit
reference to things like electrons, molecules, people, companies, etc., and to
sets and classes that contain such things. Things that are not sets or classes
are sometimes called urelementst We shall sketch a theory UR similar to

* Quine uses the word “element” instead of “set.”

* Quine’s earlier version of ML, published in 1940, was proved inconsistent by Rosser (1942).
The present version is due to Wang (1950).

+ “Ur” is a German prefix meaning primitive, original or earliest. The words “individual” and
“atom” are sometimes used as synonyms for “urelement.”
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NBG that allows for the existence of urelements.* Like NBG, UR will have a
finite number of axioms.

The variables of UR will be the lower-case Latin boldface letters x;, x,, ... .
(As usual, let us use x, y, z, ... to refer to arbitrary variables.) In addition to
the binary predicate letter A3 there will be a monadic predicate letter A{. We
abbreviate A3(x,y) by x e y,—A3(x,y) by x € y, and A{(x) by Cls (x). (Read
“Cls(x)” as “x is a class.”) To bring our notation into line with that of NBG,
we shall use capital Latin letters as restricted variables for classes. Thus,
(VX).#(X) stands for (Vx)(Cls(x) = #(x)), and (3X). #(X) stands for (Ix)(Cls(x) A
#(x)). Let M(x) stand for Cls(x) A (Jy (x € y), and read “M(x)” as “x is a set.”
As in NBG, use lower-case Latin letters as restricted variables for sets. Thus,
(Vx).#(x) stands for (Vx)(M(x) = .#(x)), and (3x).2#(x) stands for (Ix)(M(x) A .#(x)).
Let Pr(x) stand for Cls(x) A “M(x), and read “Pr(x)” as “x is a proper class.”
Introduce Ur(x) as an abbreviation for —Cls(x), and read “Ur(x)” as “x is an
urelement.” Thus, the domain of any model for UR will be divided into two
disjoint parts consisting of the classes and the urelements, and the classes
are divided into sets and proper classes. Let El(x) stand for M(x) v Ur(x), and
read “El(x)” as “x is an element.” In our intended interpretation, sets and ure-
lements are the objects that are elements (i.e., members) of classes.

Exercise
4.98 Prove: Fyr (VX)(El(x) © —Pr(x)).

We shall define equality in a different way for classes and urelements.
Definition
x =y is an abbreviation for:

[Cls(x) ACls(y)A(VZz)(zex = zey)]v[Ur(x) AUr(y) A(Vz)(x ez & y € Z)]
Exercise
4.99 Prove: Fyr(VX)(x = x).
Axiom UR1

(¥)(Ur(x) = (Vy)(y € x)]

Thus, urelements have no members.

* Zermelo’s 1908 axiomatization permitted urelements. Fraenkel was among the first to draw
attention to the fact that urelements are not necessary for mathematical purposes (see
Fraenkel, 1928, pp. 355f). Von Neumann’s (1925, 1928) axiom systems excluded urelements.
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Exercise

4.100 Prove: Fr(¥x)(Vy)(x € y = Cls(y) A El(x)).

Axiom UR2
VX)(VY(VZ)(X=YAXeZ=>YeZ)

Exercise

4.101 Show:
a. Fir(M™)(Vy)x=y = (Vz)(z €Ex & z €y))
b. ()Y x=y=> (Vz)(x €z &y € 2))
¢ Fur()(Vy)x =y = [Cls(x)  Cls(y)] A [Ur(x) < Ur(y)] A [M(X) < M(y)])
d

. Fur (W)(YY)x =y = (4(x, X) = 4(x, y))], where #(x, y) arises from
#(x, X) by replacing some, but not necessarily all, free occurrences
of x by y, with the proviso that y is free for x in .(x, x).

e. UR is a first-order theory with equality (with respect to the given
definition of equality).

Axiom UR3 (Null Set)

B0 (vy)(y & x)

This tell us that there is a set that has no members. Of course, all urelements
also have no elements.

Exercise

4.102 Show: Fyr (F;X)(Vy)(y € x). On the basis of this exercise we can introduce
anew individual constant @ satisfying the condition M(@) A (Vy)(y € @).

Axiom UR4 (Pairing)

(vVx)(Vy)(EI(x) AEl(y) = (Fz)(Vu)(uez & [u=xvu=y])

Exercise

4.103 Prove: Fyr (YX)(Vy)3F2)([ElX) A El(y) A Vu)uezeo [u=xVvu=y])Vv
[El(x) v =El(y)) A z = @]) On the basis of this exercise we can intro-
duce the unordered pair notation {x, y]. When x and y are elements,
{x, y} is the set that has x and y as its only members; when x or y is
a proper class, {x, y} is arbitrarily chosen to be the empty set @. As
usual, the singleton notation {x} stands for {x, x}.
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Definition (Ordered Pair)

Let (x, y) stand for {{x}, {x, y}}. As in the proof of Proposition 4.3, one can
show that, for any elements x, y, u, v, (x, y) = (u, V) © [x =u A y = v]. Ordered
n-tuples can be defined as in NBG.

The class existence axioms B1-B7 of NBG have to be altered slightly by
sometimes replacing universal quantification with respect to sets by univer-
sal quantification with respect to elements.

Axioms of Class Existence

(UR5) AX)(Vu)(Vv)(Elu) A El(v) = [(u, v) € X © u e V])
(UR®6) VX)VY)EZ) Vu ueZoue X AueyY)

(UR?7) (VX)AZ)(Vu)(El(u) > [ue Z < u ¢ X])

(URS) (VX)AZ)(Vu)(El(u) = (u € Z & (Av)({u, v) € X))
(UR9) (VX)@AZ)(Vu)(VV)(El(u) A El(v) = ((u, v) € Z & u € X))

(UR10) (VX)AZ)(Vu)(Vv)(YW)(El(u) A El(v) A Elw) = [(u, v, w) € Z &
(v, w,u) € X])

(UR11) (VX)(AZ)(Vu)(Vv)(VW)(El(u) A El(v) A Elw) = [(u, v, w) € Z &
{u, w, v) € X])

As in NBG, we can prove the existence of the intersection, complement and
union of any classes, and the existence of the class V of all elements. But in
UR we also need an axiom to ensure the existence of the class V), of all sets,
or, equivalently, of the class V,, of all urelements.

Axiom UR12

@AX)(Vu)(u € X < Ur(u))

This yields the existence of V,, and implies the existence of V), that is, (3X)
(Vu)(u € X © M(u)). The class V; of all elements is then the union V. U V.
Note that this axiom also yields (3X)(Vu)(El(u) = [u € X © Cls(u)]), since V),
can be taken as the required class X.

As in NBG, we can prove a general class existence theorem.

Exercise

4.104 Let @(xy, ..., X,, Y1, ... ¥ be a formula in which quantification takes
place only with respect to elements, that is, any subformula (Vu).~has
the form (Vu)(El(u) = ). Then

|_UR (ElZ)(Vxl) (VXH)(EI(Xl)/\ /\EI(X,/,) =
[(xl, o Xn) €Z S (X1, ey X Y1, s ym)J
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The sum set, power set, replacement and infinity axioms can be translated
into UR.

Axiom UR13

(Vx)Ay)(Vu)(uey < (Iv)(uevAavex))

Axiom UR14
(V2)EY)(Vu)(u ey = ucx)
where u C x stands for M(u) A M(x) A (¥W)(v € u = v € x).
Axiom UR15
(VY)(Vx)(Un(Y) = @y)(Vu)lue y < @v)(v,u) e Y AV ex)))
where Un(z) stands for
(Vx1)(¥x2) (¥%3)[EL(x1) A E1(x2) A El(x3) = (X1, X2) € ZA (X1, X3) € Z = X3 = X3)]
Axiom UR16

@)D ex A(Vu)(u e x = uuiu} e x))

From this point on, the standard development of set theory including the
theory of ordinal numbers, can be imitated in UR.

Proposition 4.49

NBG is a subtheory of UR.

Proof

It is easy to verify that every axiom of NBG is provable in UR, provided that
we take the variables of NBG as restricted variables for “classes” in UR. The
restricted variables for sets in NBG become restricted variables for “sets”
in URX

* In fact, a formula (Vx) #(x) in NBG is an abbreviation in NBG for (VX)(3Y)(X € Y) = #(X)). The
latter formula is equivalent in UR to (Vx)(M(x) = #(x)), which is abbreviated as (Vx) »(x) in UR.
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Proposition 4.50
UR is consistent if and only if NBG is consistent.

Proof

By Proposition 4.49, if UR is consistent, NBG is consistent. For the converse,
note that any model of NBG yields a model of UR in which there are no ure-
lements. In fact, if we replace “Cls(x)” by the NBG formula “x = x,” then the
axioms of UR become theorems of NBG. Hence, a proof of a contradiction in
UR would produce a proof of a contradiction in NBG.

The axiom of regularity (Reg) takes the following form in UR.

(Regur) (VX)X =D = (Bu)(ue X A—(3v)(ve XAV eu)))

It is clear that an analogue of Proposition 4.49 holds: UR + (Reggg) is an
extension of NBG + (Reg). Likewise, the argument of Proposition 4.50 shows
the equiconsistency of NBG + (Reg) and UR + (Regyp).

Since definition by transfinite induction (Proposition 4.14(b)) holds in UR,
the cumulative hierarchy can be defined

V' =
‘P'(oc') = /'(‘P’oc)
Lim(k) =S>Pi= U ¥YB

B<oh

and the union H = |J (¥"On) is the class of “pure” sets in UR and forms a
model of NBG + (Reg). In NBG, by Proposition 4.45, (Reg) is equivalent to
V = H, where V is the class of all sets.

If the class V,, of urelements is a set, then we can define the following by
transfinite induction:

The union H,, = U (E"On) is a model of UR + (Regyy), and (Regyg) holds in UR
if and only if H,, is the class Vy, of all elements.

If the class V. of urelements is a proper class, it is possible to obtain an
analogue of H, in the following way. For any set x whose members are
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urelements and any ordinal y, we can define a function =} by transfinite
induction up to y:

BV =x
EI'(O{'):/ (El(x) if a'<,y

Lim(A) =% = U BB if A<,y

B<o

Let Hzr be the class of all elements v such that, for some x and vy, v is in
the range of Z1. Then H:r determines a model of UR + (Regyg), and, in UR,
(Regyg) holds if and only if H,, is the class Vy, of all elements.

The equiconsistency of NBG and UR can be strengthened to show the fol-
lowing result.

Proposition 4.51
If NBG is consistent, then so is the theory UR + (Reg,,) + “V,, is denumerable.”

Proof

Within NBG one can define a model with domain o that is a model of NBG
without the axiom of infinity. The idea is due to Ackermann (1937). For any
n and m in o, define m € n to mean that 2" occurs as a term in the expansion
of n as a sum of different powers of 2* If we take “A-sets” to be members
of ® and “proper A-classes” to be infinite subsets of w, it is easy to verify
all axioms of NBG + (Reg) except the axiom of infinity! (See Bernays 1954,
pp. 81-82 for a sketch of the argument.) Then we change the “membership”
relation on by defining m €, n to mean that 2”& n. Now we define a “set”
to be either 0 or a member 1 of o for which there is some m in ® such that
m €;n. We take the “urelements” to be the members of o that are not “sets.”
For example, 8 is an “urelement,” since 8 = 2° and 3 is not a power of 2.
Other small “urelements” are 1, 9, 32, 33, and 40. In general, the “urele-
ments” are sums of one or more distinct powers 2¥, where k is not a power
of 2. The “proper classes” are to be the infinite subsets of w. Essentially the
same argument as for Ackermann’s model shows that this yields a model

~of all axioms of UR + (Regyg) except the axiom of infinity. Now we want
to extend . 7to a model of UR. First, let  stand for the set of all finite subsets

* This is equivalent to the statement that the greatest integer k such that k - 2" < n is odd.
* For distinct natural numbers n, ..., n, the role of the finite set {n,, ..., n;} is played by the
natural number 27 + -+ + 2%
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of o that are not members of », and then define by transfinite induction the
following function ®.

OJ=wn
©'(o)=(0a)-r
Lim(?») =0Lr= U OB

B<or

Let Hy = U (©@”0On). Note that H; contains no members of . Let us define a
membership relation €* on Hg. For any members x and y of Hy, define x €* y
to mean that either x and y are in ® and x €, or y ¢ w and x € y. The “urele-
ments” will be those members of  that are the “urelements” of . . The “sets”
will be the ordinary sets of Hy that are not “urelements,” and the “proper
classes” will be the proper classes of NBG that are subclasses of Hg. It now
requires a long careful argument to show that we have a model of UR +
(Regyp) in which the class of urelements is a denumerable set.

A uniform method for constructing a model of UR + (Regyyg) in which the
class of urelements is a set of arbitrary size may be found in Brunner (1990,
p- 65).* If AC holds in the underlying theory, it holds in the model as well.

The most important application of axiomatic set theories with urelements
used to be the construction of independence proofs. The first independence
proof for the axiom of choice, given by Fraenkel (1922b), depended essen-
tially on the existence of a denumerable set of urelements. More precise
formulations and further developments may be found in Lindenbaum and
Mostowski (1938) and Mostowski (1939) Translations of these proofs into
set theories without urelements were found by Shoenfield (1955), Mendelson
(1956b) and Specker (1957), but only at the expense of weakening the axiom of
regularity. This shortcoming was overcome by the forcing method of Cohen
(1966), which applies to theories with (Reg) and without urelements.

* Brunner attributes the idea behind the construction to J. Truss.
* For more information about these methods, see Levy (1965), Pincus (1972), Howard (1973),
and Brunner (1990).
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Computability

5.1 Algorithms: Turing Machines

An algorithm is a computational method for solving each and every problem
from a large class of problems. The computation has to be precisely specified
so that it requires no ingenuity for its performance. The familiar technique
for adding integers is an algorithm, as are the techniques for computing the
other arithmetic operations of subtraction, multiplication and division. The
truth table procedure to determine whether a statement form is a tautology
is an algorithm within logic itself.

It is often easy to see that a specified procedure yields a desired algorithm.
In recent years, however, many classes of problems have been proved not to
have an algorithmic solution. Examples are:

1. Is a given wf of quantification theory logically valid?

2.Is a given wf of formal number theory S true (in the standard
interpretation)?

3. Is a given wf of S provable in S?

4. Does a given polynomial f(x,, ..., x,) with integral coefficients have
integral roots (Hilbert’s 10th problem)?

In order to prove rigorously that there does not exist an algorithm for answer-
ing such questions, it is necessary to supply a precise definition of the notion
of algorithm.

Various proposals for such a definition were independently offered in 1936
by Church (1936b), Turing (1936-1937), and Post (1936). All of these defini-
tions, as well as others proposed later, have been shown to be equivalent.
Moreover, it is intuitively clear that every procedure given by these defini-
tions is an algorithm. On the other hand, every known algorithm falls under
these definitions. Our exposition will use Turing’s ideas.

First of all, the objects with which an algorithm deals may be assumed to
be the symbols of a finite alphabet A = {a,, a,, ..., a,}. Nonsymbolic objects can

311
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A a5 4

FIGURE 5.1

be represented by symbols, and languages actually used for computation
require only finitely many symbols.*

A finite sequence of symbols of a language A is called a word of A. It is con-
venient to admit an empty word A consisting of no symbols at all. If P and Q
are words, then PQ denotes the word obtained by writing Q to the right of P.
For any positive integer k, P¥ shall stand for the word made up of k consecu-
tive occurrences of P.

The work space of an algorithm often consists of a piece of paper or a
blackboard. However, we shall make the simplifying assumption that all
calculations take place on a tape that is divided into squares (see Figure 5.1).
The tape is potentially infinite in both directions in the sense that, although
at any moment it is finite, more squares always can be added to the right-
and left-hand ends of the tape. Each square contains at most one symbol of
the alphabet A. At any one time, only a finite number of squares contain
symbols, while the rest are blank. The symbol a, will be reserved for the
content of a blank square. (In ordinary language, a space is sometimes used
for the same purpose.) Thus, the condition of the tape at a given moment
can be represented by a word of A; the tape in Figure 5.1 is a,ajasa;. Our
use of a one-dimensional tape does not limit the algorithms that can be
handled; the information in a two-dimensional array can be encoded as a
finite sequence

Our computing device, which we shall refer to as a Turing machine, works
in the following way. The machine operates at discrete moments of time, not
continuously. It has a reading head which, at any moment, will be scanning
one square of the tape. (Observation of a larger domain could be reduced to
consecutive observations of individual squares.) The device then reacts in
any of four different ways:

1. It prints a symbol in the square, erasing the previous symbol.
2. It moves to the next square to the right.

3. It moves to the next square to the left.

4. Tt stops.

* If a language has a denumerable alphabet {a,, a;, ...}, then we can replace it by the alphabet
{b, *}. Each symbol a, of the old alphabet can be replaced by the expression b* --* , consisting
of b followed by 7 occurrences of*.

* This follows from the fact that there is an effective one—one correspondence between the set
of pairs of natural numbers and the set of natural numbers. For the details, see pages 184-185.
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What the machine does depends not only on the observed symbol but also on
the internal state of the machine at that moment (which, in turn, depends on
the previous steps of the computation and on the structure of the machine).
We shall make the plausible assumption that a machine has only a finite
number of internal states {q, qy, ..., q,}- The machine will always begin its
operation in the initial state qp,.

A step in a computation corresponds to a quadruple of one of the following
three forms: (1) qaa,q, (2) qaRq, 3) qalq, In each case, q; is the present
internal state, a; is the symbol being observed, and q, is the internal state
after the step. In form (1), the machine erases a; and prints a,. In form (2), the
reading head of the machine moves one square to the right, and, in form (3),
it moves one square to the left. We shall indicate later how the machine is
told to stop.

Now we can give a precise definition. A Turing machine with an alphabet A
of tape symbols {ay, a,, ..., a,} and with internal states {q,, q, ..., q,,} is a finite set

s~ of quadruples of the forms (1) ga;a,9,, (2) q;aRq,, and (3) g;a;,Lq, such that
no two quadruples of ~~ have the same first two symbols.

Thus, for fixed gja;, no two quadruples of types (1), (2), and (3) are in -
This condition ensures that there is never a situation in which the machine is
instructed to perform two contradictory operations.

The Turing machine .~ operates in accordance with its list of quadruples.
This can be made precise in the following manner.

By a tape description of - we mean a word such that: (1) all symbols in the
word but one are tape symbols; (2) the only symbol that is not a tape symbol
is an internal state q;; and (3) g, is not the last symbol of the word.

A tape description describes the condition of the machine and the tape at a
given moment. When read from left to right, the tape symbols in the descrip-
tion represent the symbols on the tape at that moment, and the tape symbol
that occurs immediately to the right of q; in the tape description represents
the symbol being scanned by the reading head at that moment. If the internal
state q; is the initial state q, then the tape description is called an initial tape
description.

Example

The tape description a,a;q;a,a,a; indicates that the machine is in the internal
state q;, the tape is as shown in Figure 5.2, and the reading head is scanning
the square indicated by the arrow.

a £ £ 2 4

FIGURE 5.2
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We say that ~~ moves one tape description a into another one f (abbreviated
a— B) if and only if one of the following is true.

1. ais of the form Pq;a,Q, B is of the form Pq,a,Q, and q;a,a,q, is one of
the quadruples of /.*

2. ais of the form Pa,q;a,Q, p is of the form Pg,a,a,Q, and g;aLq, is one
of the quadruples of /-

3. ais of the form q;a,Q, B is of the form q,a,2,Q, and g;a,Lq, is one of the
quadruples of /.

4. o is of the form Pqja;a,Q, f is of the form Pa,q,a,Q, and q;a;Rq, is one
of the quadruples of ./-

5. ais of the form Pq;a;, B is of the form Pa,q,a,, and q;a;Rq, is one of the
quadruples of /.

According to our intuitive picture, “,~ moves a into p” means that, if the con-
dition at a time ¢ of the Turing machine and tape is described by «, then the
condition at time ¢ + 1 is described by f. Notice that, by clause 3, whenever
the machine reaches the left-hand end of the tape and is ordered to move
left, a blank square is attached to the tape on the left; similarly, by clause 5,
a blank square is added on the right when the machine reaches the right-
hand end and has to move right.

We say that . stops at tape description a if and only if there is no tape
description f such that a— . This happens when q;a; occurs in a but gja; is
not the beginning of any quadruple of /.

A computation of  is a finite sequence of tape descriptions a, ..., o (k > 0)
such that the following conditions hold.

1. o, is an initial tape description, that is, the internal state occurring in
a is qp.
2.0,—»0iqfor0<i<k

3. s stops at o.

This computation is said to begin at o, and end at o;. If there is a computation
beginning at o, we say that .~ is applicable to o,
The algorithm Alg , determined by -~ is defined as follows:

For any words P and Q of the alphabet A of ./, Alg (P) = Q if and only if
there is a computation of ./~ that begins with the tape description q,P and
ends with a tape description of the form R,q,R,, where Q = R;R,.

This means that, when ./ begins at the left-hand end of P and there is nothing
else on the tape, ./~ eventually stops with Q as the entire content of the tape.

* Here and below, P and Q are arbitrary (possibly empty) words of the alphabet of -
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Notice that Alg - need not be defined for certain words P. An algorithm Alg
determined by a Turing machine "~ is said to be a Turing algorithm.

Example
In any computation of the Turing machine .~ given by

qoaoRqo, qoa12091, qoazaoqs, - .., qoandoq

s~ locates the first nonblank symbol (if any) at or to the right of the square

scanned at the beginning of the computation, erases that symbol, and then
stops. If there are only blank squares at or to the right of the initial square,
s~ keeps on moving right forever.

Let us now consider computations of number-theoretic functions. For con-
venience, we sometimes will write | instead of a, and B instead of a,. (Think
of B as standing for “blank.”) For any natural number k, its tape representation
k will stand for the word |*, that is, the word consisting of k + 1 occurrences
of |. Thus, 0=|,1=||,2=]|, and so on. The reason why we represent k by
k + 1 occurrences of | instead of k occurrences is that we wish 0 to be a non-
empty word, so that we will be aware of its presence. The tape representation
(k1,kz, ..., k,) of an n-tuple of natural numbers (k,, k,, ..., k,) is defined to be
the word k;Bk,B---Bk,. For example, (3,1,0,5)is ||||B||B|B||]]]].

A Turing machine - will be thought of as computing the following partial
function f ; of one variable* _

f 1(k)=m if and only if the following condition holds: Alg - (k) is defined
and Alg , (k) =E;mE,, where E, and E, are certain (possibly empty) words
consisting of only Bs (blanks).

The function f , is said to be Turing-computable. Thus, a one-place partial
function f is Turing-computable if and only if there is a Turing machine such
thatf=f ;.

For each n > 1, a Turing machine  also computes a partial function f, of
n variables. For any natural numbers k;, ..., k,:

f,uky, ..., k,) = mif and only if the following condition holds:

Alg , ((ky, ky, ..., k;)) is defined and Alg , ((ky, k,, ..., k,)) = EsmE,, where
E, and E, are certain (possibly empty) words consisting of only Bs (blanks).

The partial function f, , is said to be Turing-computable. Thus, an n-place
partial function f is Turing-computable if and only if there is a Turing
machine s suchthatf=f,,.

Notice that, at the end of a computation of a value of a Turing-computable
function, only the value appears on the tape, aside from blank squares at
either or both ends, and the location of the reading head does not matter.
Also observe that, whenever the function is not defined, either the Turing

* Remember that a partial function may fail to be defined for some values of its argument.
Thus, a total function is considered to be a special case of a partial function.



316 Introduction to Mathematical Logic

machine will never stop or, if it does stop, the resulting tape is not of the
appropriate form E;in E,.

Examples
1. Consider the Turing machine  with alphabet {B, |}, defined
by qo|Lq;, q,B|q. ~ computes the successor function N(x),
since qok @Bk —q.k+1, and stops at q.k+1. Hence N(x) is

Turing-computable.
2. The Turing machine ., defined by

9o | Bq1, 1BRqo, 9B | q2

computes the zero function Z(x). Given k on the tape, ~ moves right,
erasing all |s until it reaches a blank, which it changes to a |. So, 0 is
the final result. Thus, Z(x) is Turing-computable.

3. The addition function is computed by the Turing machine  defined
by the following seven quadruples:

Qo | Bqo, qoBRq1, q1 |Rq1, 4iB|q2, 42 |Rq2, q2BL [ q3, 95 [ Bqs
In fact, for any natural numbers m and #,
qO(mr Tl) — q() |m+1 B |n+1 A»qOB |m B |n+1 ﬁ*BCh |m B |n+1

_»_»B|m q1B|n+1_)?B|m q2| |71+1_>?“.

—B|"""? qB—B """ g5 | B—B["""*! q:BB = B + nq;BB

and .~ stops at Bm + nq;BB.

Exercises
5.1 Show that the function U5 such that U3(x;, x;) = x, is Turing-computable.

5.2 a. What function f(x;, x, x;) is computed by the following Turing
machine?

qo| | qi, Q1 | qu, qoBRCh/ qlBqu,
q2 | Rq», 92BRqs3, qs | Bqs, q4BRq;

b. What function f(x) is computed by the following Turing machine?

Qo | Bqi, 1BRq2, 4:B | q»
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5.3 a. State in plain language the operation of the Turing machine,
described in Example 3, for computing the addition function.

b. Starting with the tape description q,|||B|||, write the sequence of
tape descriptions that make up the computation by the addition
machine of Example 3.

5.4 What function f(x) is computed by the following Turing machine?

Qo|Rqi  g4|Rqs  qeB|qo
q1Bq2  qiBlgs  qiBlqy
q2BRqs  gqs|Lqs  q7[Lqy
9s|Rqs  qsBLge  q7BRgs
q:BRqs  qs|Lqs  gs|Bgs

5.5 Find a Turing machine that computes the function sg(x). (Recall that
sg(0) = 0 and sg(x) = 1 for x > 0.

5.6 Find Turing machines that compute the following functions.
a. x=y (Remember thatx+y=x-yifx>y andx-y=0ifx<y.)

b. [x/2] (Recall that [x/2] is the greatest integer less than or equal to
x/2. Thus, [x/2] = x/2 if x is even, and [x/2] = (x — 1)/2 if x is odd.)

c. x-y, the product of x and v.

5.7 If a function is Turing-computable, show that it is computable by infi-
nitely many different Turing machines.

5.2 Diagrams

Many Turing machines that compute even relatively simple functions (like
multiplication) require a large number of quadruples. It is difficult and
tedious to construct such machines, and even more difficult to check that
they do the desired job. We shall introduce a pictorial technique for con-
structing Turing machines so that their operation is easier to comprehend.
The basic ideas and notation are due to Hermes (1965).

1. Let 4, ..., 4 be any Turing machines with alphabet A = {a,, a;, ..., a;}.

2. Select a finite set of points in a plane. These points will be called
vertices.

3. To each vertex attach the name of one of the machines 4, ..., ;. Copies
of the same machine may be assigned to more than one vertex.
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FIGURE 5.3

4. Connect some vertices to others by arrows. An arrow may go from
a vertex to itself. Each arrow is labeled with one of the numbers
0,1, ..., k. No two arrows that emanate from the same vertex are
allowed to have the same label.

5. One vertex is enclosed in a circle and is called the initial vertex.

The resulting graph is called a diagram.

Example
See Figure 5.3.

We shall show that every diagram determines a Turing machine whose
operation can be described in the following manner. Given a tape and a spe-
cific square on the tape, the Turing machine of the initial vertex V of the dia-
gram begins to operate, with its reading head scanning the specified square
of the tape. If this machine finally stops and the square being scanned at the
end of the computation contains the symbol a; then we look for an arrow
with label i emanating from the vertex V. If there is no such arrow, the com-
putation stops. If there is such an arrow, it leads to a vertex to which another
Turing machine has been assigned. Start that machine on the tape produced
by the previous computation, at the square that was being scanned at the end
of the computation. Repeat the same procedure that was just performed, and
keep on doing this until the machine stops. The resulting tape is the output
of the machine determined by the diagram. If the machine never stops, then
it is not applicable to the initial tape description.

The quadruples for this Turing machine can be specified in the following
way.

1. For each occurrence in the diagram of a machine ., write its qua-
druples, changing internal states so that no two machine occur-
rences have an internal state in common. The initial vertex machine
is not to be changed. This retains q, as the initial internal state of
the machine assigned to the initial vertex. For every other machine
occurrence, the original initial state g, has been changed to a new
internal state.
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2. If an occurrence of some .; is connected by an arrow % to some
s then, for every (new) internal state q, of that occurrence of .
such that no (new) quadruple of .; begins with q,a,, add the qua-
druple q.,a,a,q, where q; is the (new) initial state for . (Step 2
ensures that, whenever ; stops while scanning a,, ; will begin
operating.)

The following abbreviations are used in diagrams:

1. If one vertex is connected to another vertex by all arrows ﬂ>,—1>, ety —k>,
we replace the arrows by one unlabelled arrow.

2. If one vertex is connected to another by all arrows except %, we
replace all the arrows by Z§.

3. Let .44 stand for .4 — ., let . 444 stand for .y —» .5 = .54, and so on.
Let s2be 7 let /3be 77 and so forth.

4. If no vertex is circled, then the leftmost vertex is to be initial.

To construct diagrams, we need a few simple Turing machines as building
blocks.

1. r (right machine). Let {a, a;, ..., a;} be the alphabet. r consists of the
quadruples qyaRq, for all a;. This machine, which has k + 1 qua-
druples, moves one square to the right and then stops.

2.1 (left machine). Let {a,, a,, ..., a;} be the alphabet. 1 consists of the
quadruples qqa;Lq, for all a;. This machine, which has k + 1 quadru-
ples, moves one square to the left and then stops.

3. a; (constant machine) for the alphabet {a,, a;, ..., aj}. a; consists of
the quadruples qa,aq, for all a;. This machine replaces the initial
scanned symbol by a; and then stops. In particular, a, erases the
scanned symbol, and a, prints |.

Examples of Turing Machines Defined by Diagrams

1. P (Figure 54) finds the first blank to the right of the initially scanned
square. In an alphabet {a,, a,, ..., a;}, the quadruples for the machine
P are qoa;Rq, for all a;, and q,a;a,q, for all a; # a,.

=0

FIGURE 5.4
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0

FIGURE 5.5

2. A (Figure 5.5) finds the first blank to the left of the initially scanned
square.

Exercises
5.8 Describe the operations of the Turing machines p (Figure 5.6) and A
(Figure 5.7) and write the list of quadruples for each machine.

5.9 Show that machine S in Figure 5.8 searches the tape for a nonblank
square. If there are such squares, S finds one and stops. Otherwise,
S never stops.

FIGURE 5.6

0

— 1
FIGURE 5.7

0 0
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FIGURE 5.8
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0

FIGURE 5.9

To describe some aspects of the operation of a Turing machine on part of a
tape, we introduce the following notation:

1

arbitrary symbol
.. B sequence of blanks
.. everything blank to the right
... B everything blank to the left
\4 nonempty word consisting of nonblanks
X WBW,B ... W, (1 > 1), a sequence of nonempty words of nonblanks,
separated by blanks

W W

Underlining will indicate the scanned symbol.
More Examples of Turing Machines Defined by Diagrams

3. . (right-end machine). See Figure 5.9.

~ XBB = ~ XBB

Squares on the rest of the tape are not affected. The same assump-
tion is made in similar places below. When the machine  begins
on a square preceding a sequence of one or more nonempty words,
followed by at least two blank squares, it moves right to the first of
those blank squares and stops.

4. v (left-end machine). See Figure 5.10.
BBX ~= BBX ~

5. T (left-translation machine). See Figure 5.11.%
~BWB = ~WBB

This machine shifts the whole word W one square to the left.

* There is a separate arrow from r? to each of the groups on the right and a separate arrow from
each of these, except la,, back to r2
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6. o (shift machine). See Figure 5.12.

In the indicated situation, W; is erased and W, is shifted leftward so
that it begins where W, originally began.

7. C (clean-up machine). See Figure 5.13.

~BBXBWB = ~WB...B

8. K (word-copier). See Figure 5.14.

BWB...—BWBWB...
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9. K, (n-shift copier). See Figure 5.15.

BW,BW, B ... W,B ... = BW,BW,,B ... W,BW, B ...

Exercises
5.10 Find the number-theoretic function f(x) computed by each of the fol-
lowing Turing machines.
a. la;
b. Figure 5.16
c. PKAa;A(ray)?

5.11 Verify that the given functions are computed by the indicated Turing
machines.

a. |x-y| (Figure5.17)
b. x+y Pa,A(ray)?
c. x-y (Figure 5.18)

5.12 Draw diagrams for Turing machines that will compute the following
functions: (a) max(x, ) (b) min(x, y) (c) x -y (d) [x/2].
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5.13 Prove that, for any Turing machine ..~ with alphabet {a, ..., a;}, there is
a diagram using the Turing machinesr, 1, a,, ..., a, that defines a Turing
machine such that »-and .~ have the same effect on all tapes. (In fact,

» can be defined so that, except for two additional trivial initial moves
left and right, it carries out the same computations as .7)

5.3 Partial Recursive Functions: Unsolvable Problems

Recall, from Section 3.3, that the recursive functions are obtained from the
initial functions (the zero function Z(x), the successor function N(x), and the
projection functions U/ (xy, ..., x,)) by means of substitution, recursion, and
the restricted p-operator. Instead of the restricted p-operator, let us introduce
the unrestricted p-operator:

If f(xll ey xn):l’ly(g(xlr veey Xy }/):0)
=the least y such that g(xy, ..., x,, y)=0
then f is said to arise from g by means of the unrestricted p-operator.

Notice that, for some x, ..., x,, the value f(x,, ..., x,) need not be defined; this
happens when there is no y such that g(x,, ..., x,, y) = 0.

If we replace the restricted p-operator by the unrestricted p-operator in
the definition of the recursive functions, we obtain a definition of the par-
tial recursive functions. In other words, the partial recursive functions are
those functions obtained from the initial functions by means of substitution,
recursion and the unrestricted p-operator.

Whereas all recursive functions are total functions, some partial recursive
functions will not be total functions. For example, py(x + y = 0) is defined
only when x = 0.

Since partial recursive functions may not be defined for certain arguments,
the definition of the unrestricted p-operator should be made more precise:

wy(g(x1, ..., x,,¥)=0)=k means that, for 0<u<k,
9(xy, ..., x,,u) is defined and g¢(x;, ..., x,,u) =0, and
g(x1, ..., x,,k)=0

Observe that, if R(x,, ..., x,, y) is a recursive relation, then py(R(x,, ..., x,, ¥))
can be considered an admissible application of the unrestricted p-operator.
In fact, py(R(xy, ..., x,, ¥)) = py(Cr(xy, ..., x,, y) = 0), where Cy is the characteristic
function of R. Since R is a recursive relation, C; is, by definition, a recursive
function.



326 Introduction to Mathematical Logic

Exercises

5.14 Describe the following partial recursive functions.
a. pyx+y+1=0)
b. py(y >x)
c pyly+x=1x)
5.15 Show that all recursive functions are partial recursive.

5.16 Show that every partial function whose domain is a finite set of natural
numbers is a partial recursive function.

It is easy to convince ourselves that every partial recursive function
flxy, ..., x,) is computable, in the sense that there is an algorithm that computes
flxy, ..., x,) when f(x,, ..., x,) is defined and gives no result when f(x,, ..., x,
is undefined. This property is clear for the initial functions and is inher-
ited under the operations of substitution, recursion and the unrestricted
p-operator.

It turns out that the partial recursive functions are identical with the
Turing-computable functions. To show this, it is convenient to introduce a
different kind of Turing-computablility.

A partial number-theoretic function f(x,, ..., x,)) is said to be standard Turing-
computable if there is a Turing machine .~ such that, for any natural numbers
ki, ..., k,, the following holds.

Let BkiBk,B ... Bk, be called the arqument strip* Notice that the argument
strip is B(k, ..., k,). Take any tape containing the argument strip but with-
out any symbols to the right of it. (It may contain symbols to the left.) The
machine -~ is begun on this tape with its reading head scanning the first |
of k;. Then

1. stops if and only if f(k,, ..., k,) is defined.

2. If s stops, the tape contains the same argument strip as before,
followed by Bf(k;, ..., k,). Thus, the final tape contains

Bk,BK,B ... Bk,Bf(ky, ..., ky)

Moreover:
3. The reading head is scanning the first | of f(ky, ..., k).
4. There is no nonblank symbol on the tape to the right of f(ki, ..., k).

5. During the entire computation, the reading head never scans any
square to the left of the argument strip.

* For a function of one variable, the argument strip is taken to be BE.
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For the sake of brevity, we shall say that the machine .~ described above
ST-computes the function f(x,, ..., x,).

Thus, the additional requirement of standard Turing computability is that
the original arguments are preserved, the machine stops if and only if the
function is defined for the given arguments, and the machine operates on
or to the right of the argument strip. In particular, anything to the left of the
argument strip remains unchanged.

Proposition 5.1

Every standard Turing-computable function is Turing-computable.

Proof

Let o~ be a Turing machine that ST-computes a partial function f(x,, ..., x,).
Then f is Turing-computable by the Turing machine / PC. In fact, after -
operates, we obtain Bx;B... Bx,Bf(xy, ..., x,), with the reading head at the
leftmost | of f(x1, ..., x,). P then moves the reading head to the right of
f(x1, ..., x,), and then C removes the original argument strip.

Proposition 5.2
Every partial recursive function is standard Turing-computable.

Proof

a. Pra; ST-computes the zero function Z(x).
b. The successor function N(x) is ST-computed by PKa, Ar.
¢. The projection function U;'(x;, ..., x,,) = x;is ST-computed by ~/K,_;,Ar.

d. (Substitution)) Let f(x,, ..., x,) = g(hy(xy, ..., x,), ..., h,(xy, ..., x,)) and
assume that /- ST-computes ¢ and .; ST-computes ; for 1 < j < m. Let
/; be the machine ; Po"(K,,)"A"r. The reader should verify that f is
ST-computed by

" P(Kn+1)"A"r /2.3 e 1 /,’,,PG”A"'I‘ 7 Po™Ar

We take advantage of the ST-computability when, storing xi, ..., X,
h(x1, ..., x4),..., hi(x1, ..., x,) on the tape, we place (x;, ..., x,)on the tape
to the right and compute h;.1(x1 ..., x,) without disturbing what we have
stored on the left.
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ra;rK, (K, )" A" 1agr Pr #PK,,, , 1agl
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1
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1(K,,,.)" rar K, 3 A2 7 PK,,,, lagl —— (K, )"
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FIGURE 5.19
e. (Recursion.) Let

fla, oo x,0)=g(x1, ..., X,)
f(xll ceey x;1/y+1):h(x1/ LRy xn/y/f(xll cey xn/y))

Assume that s~ ST-computes g and ~~ ST-computes h. Then the reader

should verify that the machine in Figure 5.19 ST-computes f.

f. Unrestricted p-operator. Let f(x,, ... x,) = py(g(xy, -.., x,, y) = 0) and assume
that o~ ST-computes g. Then the machine in Figure 5.20 ST-computes f.

Exercise

5.17 For a recursion of the form

f0)=k
fly+1)=hy, f(y))

show how the diagram in Figure 5.19 must be modified.

Corollary 5.3

Every partial recursive function is Turing-computable.

' |

1
Fra A" lrgr ——» Prajrolagl
0

laolAr

FIGURE 5.20
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Exercise

5.18 Prove that every partial recursive function is Turing-computable by a
Turing machine with alphabet {a,, a;}.

In order to prove the converse of Corollary 5.3, we must arithmetize
the language of Turing computability by assigning numbers, called Gddel
numbers, to the expressions arising in our study of Turing machines. “R”
and “L” are assigned the Godel numbers 3 and 5, respectively. The tape
symbols a; are assigned the numbers 7 + 4i, while the internal state sym-
bols g; are given the numbers 9 + 4i. For example, the blank B, which is a,,
receives the number 7; the stroke |, which is a,, has the number 11; and the
initial internal state symbol g, has the number 9. Notice that all symbols
have odd Go6del numbers, and different symbols have different numbers
assigned to them.

As in Section 34, a finite sequence u,, u,, ..., u, of symbols is assigned the
Godel number p§“ps™) . ps™), where py, p1, P ... are the prime numbers
2,3,5, ... in ascending order and g(u,) is the Godel number assigned to u;. For
example, the quadruple qjaja;q, receives the Godel number 2°375'17°.

By an expression we mean a finite sequence of symbols. We have just shown
how to assign Godel numbers to expressions. In a similar manner, to any finite
sequence Ey, E,, ..., E,, of expressions we assign the number p§®pi ™) ... psFm.
For example, this assigns Godel numbers to finite sequences of Turing
machine quadruples and to finite sequences of tape descriptions. Observe
that the Godel number of an expression is even and, therefore, different from
the Godel number of a symbol, which is odd. Moreover, the Godel number
of a sequence of expressions has an even number as an exponent of p, and is,
therefore, different from the Godel number of an expression, which has an
odd number as an exponent of p,,.

The reader should review Sections 3.3 and 3.4, especially the functions #(x),
(x);, and x * y. Assume that x is the Godel number of a finite sequence w,,
Wy, ..., Wy that is, x = pg“”“pf(wﬂ... pf(wk), where g(w)) is the Gédel number
of w;. Recall that #(x) = k + 1, the length of the sequence, and (x); = g(w)), the
Godel number of the jth term of the sequence. If in addition, y is the Godel
number of a finite sequence v, vy, ..., v, then x * i is the Godel number of the
juxtaposition wy, wy, ..., Wy, v, vy, ..., v,, of the two sequences.

Proposition 5.4

The following number-theoretic relations and functions are primitive recur-
sive. In each case, we write first the notation for the relation or function, then,
the intuitive interpretation in terms of Turing machines, and, finally, the
exact definition. (For the proofs of primitive recursiveness, use Proposition
3.18 and various primitive relations and functions defined in Section 3.3.
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At a first reading, it may be advisable to concentrate on just the intuitive
meanings and postpone the technical verification until later.)
IS(x): x is the Godel number of an internal state symbol q,;:

(Fu)yer(x =9+ 4u)
Sym(x): x is the Godel number of an alphabet symbol a,:
(F)ucr(x =7 + 4u)
Quad(x): x is the Godel number of a Turing machine quadruple:
#(x) = 4 AIS((x)0) A Sym((x)1) AIS((x)3) A[Sym((x)2) v (x)2 =3 v (x), = 5]

TM(x): x is the Godel number of a Turing machine (in the form of a finite
sequence of appropriate quadruples):

(V1) yer () Quad((x),) A X > LA (V1) e, () (VO) ey (U #
= [((x)u)o * ((x)v)O v ((x)u)l * ((x)v)1]

TD(x): x is the Godel number of a tape description:

X > 1 N (vu)u<//(x)[ls((x)u) \4 Sym((x)u)] A (Ellu)u<//(x)ls((x)u)
A (VW) ey AS((X)) = 1 +1 < #(x))

Cons(x, y, z): x and y are Godel numbers of tape descriptions a and f, and z
is the Godel number of a Turing machine quadruple that transforms o into f:

TD(x) ATD(y) A Quad(z) A (FW)e. (x)-1[1S((x).)
/\(x)w = (Z)O N (x)w+1 = (Z)l N
I (ISym((2)2) A (¥)wi1 = (2)2 A(Y)w = (2)3 A #(x) = #(y)
AV e U= WAUZW+1= (x), =()u)] v
[(Z)Z =3A (y)w = (x)w+1 N (y)w+l = (Z)B N
(V) e, U #zwAUZW+1=(Y), = (X)) A
([w+2<2(x) A2 (y) = #(x)]v[w+2=#(x) A
//(y)://(x)+1/\(y)zu+2 :7])]\/
[(2)2 =5 A {[w # 0 A (Y)wo1 = (2)3 AY)w = (X)w1
A(Y) = #(X)AVU)ye, (U2 W TAUZ W=
(W =@))IVIw=0AY) =(2)s A(Yh =7 A
//(]/) = //(X) +1A (vu)0<u<//(x)(y)u+1 = (x)u]}])]

III
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I corresponds to a quadruple g;aa,q, II to a quadruple g;a,Rq,, and III to a
quadruple g;a,Lq,.

NTD(x): x is the Godel number of a numerical tape description—that is, a
tape description in which the tape has the form E;kE,, where each of E, and
E, is empty or consists entirely of blanks, and the location of the reading
head is arbitrary:

TD(x) A (Vit)ue, (v(Sym((x),) = (x)u =7 v (x), =11)
/\(vu)uw(x)(VU)U<//(X)(vw)w<//(x)(u <OAND<WA (x)u =11
(x)w =11= (x)v * 7) A (au)uqx(x)((x)u = 11)

Stop (x, 2): z is the Godel number of a Turing machine .»~and x is the Godel
number of a tape description o such that .. stops at a:

TM(Z) A TD(X) N _‘(Elu)u<//(x)[IS((x)u) A (Elv)v<//(z)(((z)v)0
= @) A (2o )1 = (X)ua1)]

Comp(y, 2): z is the Godel number of a Turing machine »~and y is the Godel
number of a computation of

y > 1TATM(2) A (YU)ue,(in TD(()u) A Stop((Y)..y)-1,2) A
(VM)LK//(},);l (Elw)w<//(z)cons((y)u ’ (y)u+1/ (Z)w) A
(V0)oer (o) AS(((Y)0)o) = (¥)0)o = 9)

Num(x): The Godel number of the word x—that is, of |¥:

Num(x) = [ [

TR(x, ..., x,): The Godel number of the tape representation (x4, ..., x,) of the
n-tuple (x,, ..., x,):

TR(x1,...,x,) = Num(x;) * 27 * Num(x,)*2” #...# 27 * Num(x,)

U(y): If y is the Godel number of a computation that results in a numerical
tape description, then U(y) is the number represented on that final tape.*

uw=| D, ss(l@wa)i-110) =1

u<z((Y)eh(y)=1)

* If y is not the Godel number of a computation that yields a numerical tape description, U(y)
is defined, but its value in such cases will be of no significance.
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[Let w be the number, represented by |“+, on the final tape. The calculation
of U(y) tallies a 1 for every stroke | that appears on the final tape. This yields
a sum of w + 1, and then 1 is subtracted to obtain w.]

Tz, xy, ..., X, Y): y is the Godel number of a computation of a Turing
machine with Gédel number z such that the computation begins on the tape
(x1, ..., x,), with the reading head scanning the first | in ¥1, and ends with a
numerical tape description:

Comp(y,z) A(y)o =2° *TR(x1, ..., X,) ANTD(().()-1)

Whenn =1, replace TR(x;, ..., x,) by Num(x,). (Observe that, if T, (z, x,, ..., X, Y1)
and T,(z, xy, ..., x,, ¥»), then y; = ,, since there is at most one computation of a
Turing machine starting with a given initial tape.)

Proposition 5.5

If 7isa Turing machine that computes a number-theoretic function f(x;, ..., x,)
and e is a Godel number of /, then*

f(xl, veey xn)=U(uyTn(€,x1, EERy’ xn/y))

Proof

Let k,, ..., k, be any natural numbers. Then f{k,, ..., k,) is defined if and only
if there is a computation of /~ beginning with (ky, ..., k,) and ending with
a numerical tape description—that is, if and only if (3y)T, (e, ki, ..., x,, ). So,
flky, ..., k,) is defined if and only if wT,(e, ki, ..., k,, y) is defined. Moreover,
when f(k,, ..., k,) is defined, pyT,(e, k,, ..., k,, y) is the Godel number of a
computation of .»~ beginning with (k, ..., k,) and U(pyT,(e, ki, ..., k,, y)) is the
value yielded by the computation, namely, f(k,, ..., k,).

Corollary 5.6

Every Turing-computable function is partial recursive.

Proof

Assume f(x,, ..., x,) is Turing-computable by a Turing machine with Godel
number e. Then f(x,, ..., x,) = U(pyT,(e, x,, ..., X,, y)). Since T, is primitive

* Remember that an equality between two partial functions means that, whenever one of them
is defined, the other is also defined and the two functions have the same value.
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recursive, pyT,(e, xy, ..., X,,, y) is partial recursive. Hence, U(pyT, (e, x4, ..., X,,, Y))
is partial recursive.

Corollary 5.7

The Turing-computable functions are identical with the partial recursive
functions.

Proof
Use Corollaries 5.6 and 5.3.

Corollary 5.8
Every total partial recursive function is recursive.

Proof

Assume that the total partial recursive function f(x,, ..., x,) is Turing-
computable by the Turing machine with Godel number e. Then, for all x,, ...,
x,, @y xy, ..., x,, ). Hence, pyT, (e, x, ..., X, i) is produced by an application
of the restricted p-operator and is, therefore, recursive. So, U(pyT, (e, x4, -..,
x,, 1)) is also recursive. Now use Proposition 5.5.

Corollary 5.9

For any total number-theoretic function f, f is recursive if and only if f is
Turing-computable.

Proof

Use Corollaries 5.7-5.8 and Exercise 5.15.

Church’s thesis amounts to the assertion that the recursive functions
are the same as the computable total functions. By Corollary 5.9, this is
equivalent to the identity, for total functions, of computability and Turing
computability. This strengthens the case for Church’s thesis because of the
plausibility of the identification of Turing computability with computabil-
ity. Let us now widen Church’s thesis to assert that the computable func-
tions (partial or total) are the same as the Turing-computable functions. By
Corollary 5.7, this implies that a function is computable if and only if it is
partial recursive.
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Corollary 5.10

Any number-theoretic function is Turing-computable if and only if it is stan-
dard Turing-computable.

Proof
Use Proposition 5.1, Corollary 5.6, and Proposition 5.2.

Corollary 5.11 (Kleene’s Normal Form Theorem)

As z varies over all natural numbers, U(uyT,(z, x,, ..., x,, ¥)) enumerates with
repetitions all partial recursive functions of n variables.

Proof

Use Corollary 5.3 and Proposition 5.5. The fact that every partial recur-
sive function of n variables reappears for infinitely many z follows from
Exercise 5.7. (Notice that, when z is not the Gddel number of a Turing
machine, there is no y such that T,(z, x,, ..., x,, y), and, therefore, the corre-
sponding partial recursive function is the empty function.*)

Corollary 5.12

For any recursive relation R(x,, ..., x,, ¥), there exist natural numbers z, and v,

such that, for all natural numbers x;, ..., x,;:
a. AyR(xy, ..., x,, y) if and only if AY)T,(zy X1, ..., X, Y)
b. (Vy)R(xy, ..., x,, v) if and only if (Vy)-T, @y, x, ..., X, V)

Proof

a. The function f(x,, ..., x,) = pyR(xy, ..., X,, y) is partial recursive. Let z,
be a Godel number of a Turing machine that computes f. Hence, f(x,,
..., x,) is defined if and only if (3y)T,,(zy, Xy, ..., X,, y). But fix,, ..., x,) is
defined if and only if (Jy)R(xy, ..., x,, V).

b. Applying part (a) to the recursive relation =R(x,, ..., x,, ), we obtain
a number v, such that:

(Jy)—=R(x4, ..., x,,y) if and only if (3y)T,(vo, X1, ..., X4, Y)

Now take the negations of both sides of this equivalence.

* The empty function is the empty set @. It has the empty set as its domain.
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Exercise

5.19 Extend Corollary 5.12 to two or more quantifiers. For example, if R(x,, ...,
X, Y, 2) is a recursive relation, show that there are natural numbers z,
and v, such that, for all x,, ..., x,;

a. (V2@yR(xy, ..., x,, Y, 2) if and only if (V2)(AY)T,.1(zo, X1, - X Z, Y).
b. (3)(Vy)R(xy, ..., x,, Y, 2) if and only if (32)(Vy)-T,.1(©y x4, --., X,, Z, Y).

Corollary 5.13

a. AT, (xy, x4, Xy, ..., X,,, Y) is NOt recursive.
b. @Y7, (z xy, ..., x,, ) is not recursive.
Proof

a. Assume ()T, (xy, xy, Xy, ..., X, ) is recursive. Then the relation —~(3y)
T (xy, X1, Xy, ..., X,, Y) A 2 =z is recursive. So, by Corollary 5.12(a), there
exists z, such that

(3z2)(—(3y)T.(x1, %1, %2, ..., X4, y) Az =2z) if and only if

(32)T(zo, %1, %2, -y Xn,2)
Hence, since z obviously can be omitted on the left,
—(Ay)T(x1,x1, %2, ..., x4, y) if and only if (32)T,(zo, X1, X2, ..., X4, 2)
Let x; = x, = --- = x,, = z,. Then we obtain the contradiction
—(3y)T. (20,20, 20, ---, 20,y) if and only if (3z)T,(zy, 2o, Zo, --., Z0,2)

b. If AT, (z, x, x5, ..., X, y) Were recursive, so would be, by substitu-
tion, (AY)T,(xy, x4, X, ..., X,, y), contradicting part (a).

Exercises

5.20 Prove that there is a partial recursive function g(z, x) such that, for
any partial recursive function f(x), there is a number z, for which f(x) =
9(z, x) holds for all x. Then show that there must exist a number v, such
that g(v,, v,) is not defined.

5.21 Let hy(xy, ..., x,), ..., (x4, ..., x,,) be partial recursive functions, and let
Ry(xy, .., x,), o Ry, ..., x,,) be recursive relations that are exhaustive
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5.22

5.23

5.24

5.25
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(i.e, for any xy, ..., x,, at least one of the relations holds) and pairwise
mutually exclusive (i.e., for any x;, ..., x,, no two of the relations hold).
Define

h(xy, ..., xy) if Ri(xy, ..., x,)
g3 e x"):{hk(xl, X)) R e, X0)
Prove that g is partial recursive.
A partial function f(x) is said to be recursively completable if there is a
recursive function h(x) such that, for every x in the domain of £, hi(x) = f(x).
a. Prove that py Ti(x, x, ) is not recursively completable.
b. Prove that a partial recursive function f(x) is recursively complet-

able if the domain D of fis a recursive set—that is, if the property
“x € D” is recursive.

c. Find a partial recursive function f(x) that is recursively completable
but whose domain is not recursive.

If R(x, y) is a recursive relation, prove that there are natural numbers z,
and v, such that

a. -[@y)R@zy y) < (Vy) "Ti(zy, 2o Y)]

b' “[(V]/)R(Uo/ y) o (ay)Tl(UOI z)0/ ]/)]

If 5(x) is a recursive property, show that there are natural numbers z,
and v, such that

a. ~IS(zy) & (Vy) "Ti(z 2o Y)I

b. =[5(@vo) & EYTi(©e vo Y]

Show that there is no recursive function B(z, x;, ..., x,) such that, if zis a
Godel number of a Turing number .. and k,, ..., k, are natural numbers

for which f , (k;, ..., k,) is defined, then the number of steps in the com-
putation of f (k,, ..., k,) is less than B(z, k;, ..., k,).

Let ./ be a Turing machine. The halting problem for ..~ is the problem of
determining, for each tape description f, whether ./~ is applicable to f, that
is, whether there is a computation of ~~that begins with p.

We say that the halting problem for ./~ is algorithmically solvable if there is
an algorithm that, given a tape description f, determines whether ./ is appli-
cable to f. Instead of a tape description p, we may assume that the algorithm
is given the Godel number of f. Then the desired algorithm will be a comput-
able function H  such that

0 if xis the Godel number of a tape description 3
H, (x)= towhich ./~ isapplicable

1 otherwise
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If we accept Turing algorithms as exact counterparts of algorithms (that is,
the extended Church’s thesis), then the halting problem for ~~is algorithmi-
cally solvable if and only if the function H , is Turing-computable, or equiva-
lently, by Corollary 5.9, recursive. When the function H ,- is recursive, we say
that the halting problem for ./~ is recursively solvable. If H , is not recursive, we
say that the halting problem for  is recursively unsolvable.

Proposition 5.14

There is a Turing machine with a recursively unsolvable halting problem.

Proof

By Proposition 5.2, let ..~ be a Turing machine that ST-computes the partial
recursive function pyT,(x, x, y). Remember that, by the definition of standard
Turing computability, if ./~ is begun on the tape consisting of only X with its
reading head scanning the leftmost |, then . stops if and only if pyT;(x, x, y)
is defined. Assume that .. has a recursively solvable halting problem, that is,
that the function H | is recursive. Recall that the Godel number of the tape
description goX is 2° * Num(x). Now,

(3y)Li(x,x,y) ifandonlyif pyTi(x,x,y)isdefined
ifandonlyif 7, begun ongox, performs a computation
ifandonlyif H  (2°*Num(x))=0

Since H ,, Num, and = are recursive, (3y)I;(x, x, y) is recursive, contradicting
Corollary 5.13(a) (When n = 1).

Exercises

5.26 Give an example of a Turing machine with a recursively solvable halt-
ing problem.

5.27 Show that the following special halting problem is recursively unsolvable:
given a Godel number z of a Turing machine .~ and a natural number
x, determine whether .-~ is applicable to gox.

5.28 Show that the following self-halting problem is recursively unsolvable:
given a Godel number z of a Turing machine ./, determine whether ./~ is
applicable to goz.

5.29 The printing problem for a Turing machine - and a symbol a, is the
problem of determining, for any given tape description a, whether
begun on o, ever prints the symbol a,. Find a Turing machine ~ and a
symbol a; for which the printing problem is recursively unsolvable.
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5.30 Show that the following decision problem is recursively unsolvable:
given any Turing machine  if / is begun on an empty tape, deter-
mine whether s stops (that is, whether .~ is applicable to q,B).

5.31P°Show that the problem of deciding, for any given Turing machine,
whether it has a recursively unsolvable halting problem is itself recur-
sively unsolvable.

To deal with more intricate decision problems and other aspects of the
theory of computability, we need more powerful tools. First of all, let us
introduce the notation

(P;l(xl/ ceey xn):u(”’yTn(Zr X1, ooy xn/y))

Thus, by Corollary 5.11, 5, 91,93, ... is an enumeration of all partial recur-
sive functions of n variables. The subscript j is called an index of the func-
tion ¢j. Each partial recursive function of n variables has infinitely many
indices.

Proposition 5.15 (Iteration Theorem or s-m-n Theorem)

For any positive integers m and #n, there is a primitive recursive function
m
sy (2, Y1, ..., Ym) such that

m+n n
(0 (xlr (KR4 xn/ylr (KR4 ym)=(p5;;‘(zry1’m,ym)(x1/ (KR4 xn)

Thus, not only does assigning particular values to z, ¥y, ..., vy, in
@z (X1, ..., Xu, Y1, ..., Ym) yield a new partial recursive function of n vari-
ables, but also the index of the resulting function is a primitive recursive
function of the old index z and of y,, ..., y,,.

Proof
If - is a Turing machine with Godel number z, let ./, ..., ,, be a Turing
machine that, when begun on (xy, ..., x,), produces (X1, ..., Xu, Y1, ..., Ym),

moves back to the leftmost | of x,, and then behaves like /. Such a machine
is defined by the diagram

Rr(a.;r)"'r(ar)?'r ... r(ar)’" or

The Godel number s;'(z, 1, ..., Yu) of this Turing machine can be effectively
computed and, by Church’s thesis, would be partial recursive. In fact, s;' can
be computed by a primitive recursive function g(z, v, ..., ¥,,) defined in the
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following manner. Let f = y; + -+ + y,, + 2m + 1. Also, let u(f) = 29+4375179+4
and v(i) = 2%+43115%713+4, Notice that u(i) is the Godel number of the quadru-
ple g:B|g; and v(i) is the Godel number of the quadruple 4;|Rg;,;. Then take

g(Z/ ]/1/ ceey ym) to be

93115359 _ 593753013 _ 5133115359 _ 513475717
[2235732357 5235772357 ]*

Y +2
u(i) o(i) 29+4(y1+3)375379+4(y1+4)

| | Ppi-aPpios *2 *
i=2

Yy ty2+4

u(i) o(i)
I | Pji(y, +ayPli-(y, +a)41

i=y, +4

229+4(y1 +3/Z+5)375379+4(y1 +y2+6) " "
229+4(3/1 +otYm-1 +2ﬂ/171)375379+4(y1 +otYym—1+2m) .

W+t Ym+2m

u(i) o(i) %
| | pz\i—(yl e Y1 +2m)|pz\i—(y1 ot Ym-1+2m)+1
=Yy et Ym-1+2m

229+4t3115579+4[329+4t375579+4(t+1)529+4(t+1)3115579+4t
9+4(1+1)a7 £379+4(1+2) _ _ 59+4(1+2)a7 =39-+4(1+3)
72 3757 112 3757 %

3(A2))
| I 2((2)i)0+4(1+3)3((2)i 11 5((2)i )2 7((2)i )3 +4(1+3)
i

i=0

g is primitive recursive by the results of Section 3.3. When z is not a Godel

number of a Turing machine, 97" is the empty function and, therefore,

sw (2,41, ..., Yn) must be an index of the empty function and can be taken to
be 0. Thus, we define

g(Z, y1/ ey ym) lf TM(Z)

Sy (Z, Yiy ooy }/m) = 0 otherwise

Hence, s)}' is primitive recursive.

Corollary 5.16

For any partial recursive function f(x,, ..., x,, ¥y, ..., ,,), there is a recursive
function g(yy, ..., v,,) such that

f(xl/ ey xn/yl/ ey ym):(\og(yp.,./ym)(xlr ceey xn)
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Proof

Let e be an index of f. By Proposition 5.15,

+
(P;n n(xlr corr XnsY1, 000y ym):@s;{'(g/yll__l ym)(xlr cees xn)

Let g(yll ceey ]/;1:):5:7;’(3/]/1/ sy ]/m)

Examples

1. Let G(x) be a fixed partial recursive function with nonempty

domain. Consider the following decision problem: for any u, deter-
mine whether ¢, =G. Let us show that this problem is recursively
unsolvable, that is, that the property R(u), defined by ¢, =G, is not
recursive. Assume, for the sake of contradiction, that R is recursive.
Consider the function f(x, u) = G(x) - N(Z(pyT (4, u, v))). (Recall that
N(Z@®) =1 for all t). Applying Corollary 5.16 to f(x, u), we obtain a
recursive function g(u) such that f(x,u)= (péw)(x). For any fixed
u,(p;{(”) =G if and only if 3Y)T,(u, u, y). (Here, we use the fact that G
has nonempty domain.) Hence, (3y)T;(1, u, y) if and only if R(g(u)).
Since R(g(n)) is recursive, (3y)Ty(u, u, y) would be recursive, contra-
dicting Corollary 5.13(a).

. A universal Turing machine. Let the partial recursive function

U(pyT(z, x, v)) be computed by a Turing machine 7~ with Gédel num-
ber e. Thus, U(uyT,(z, x, y)) = U(uyTy(e, z, x, y)). 7 is universal in the
following sense. First, it can compute every partial recursive func-
tion f(x) of one variable. If z is a Gédel number of a Turing machine
that computes f, then, if 7 begins on the tape (z,x), it will compute
U(pyTi(z, x, y)) = f(x). Further, 7~ can be used to compute any partial
recursive function h(xy, ..., x,). Let v, be a Gédel number of a Turing
machine that computes h, and let f(x) = h((x)y, (x);, ..., (¥),_1). Then
h(xy, ..., x,) = f(p(’)‘1 p,fll). By applying Corollary 5.16 to the partial
recursive function U(uyT,(@, (x),, (X);, .., (¥),1, ¥)), we obtain a recur-
sive function g(v) such that U(uyT,(v,(x)o, ()1, ..., (X)u-1,Y)) = Qg (%)
Hence, f(x) = @g)(x). So h(xy, ..., x,) is computed by applying / to the

tape ((vo), pi* - P ).

Exercises

5.32 Find a superuniversal Turing machine »* such that, for any Turing

machine 7, if z is a Godel number of / and x is the Godel number of
an initial tape description a of ., then » * is applicable to gy(z, x) if and
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only if ~~is applicable to a; moreover, if ./, when applied to «, ends
with a tape description that has Gédel number w, then  *, when applied to
4o(z, x), produces w.

5.33 Show that the following decision problem is recursively unsolvable: for
any u and v, determine whether o, = ¢).

5.34 Show that the following decision problem is recursively unsolv-
able: for any u, determine whether ¢, has empty domain. (Hence,
the condition in Example 1 above, that G(x) has nonempty domain is
unnecessary).

5.35 a. Prove that there is a recursive function g(u, v) such that
1 1 1
(Pg(u,v)(x) = (Pu(x)'(PU(x)
b. Prove that there is a recursive function C(u, v) such that

PC(u0)(X) = @u(@o(x))

5.4 The Kleene-Mostowski Hierarchy:
Recursively Enumerable Sets

Consider the following array, where R(x, ..., x,, Y1, ..., ¥,,) iS a recursive
relation:

R(xl, ey xn)
(Elyl)R(xlr sy xn/yl) (Vyl)R(xl, ey xn,yl)
Fy)(Vy2)R(xy, ..., X0, Y1, Y2) (Vy1)Fy2)R(x1, -, Xu, Y1, Y2)

(Hyl)(vyz)(ﬁys)R(xl, v X, Y1, Y2, Y3) (Vyl)(ﬂyz)(vys)R(xl, ceor X, Y1, Y2, Y3)

Let >3 =TI1Ij = the set of all n-place recursive relations. For k > 0, let > be the
set of all n-place relations expressible in the prenex form (3y,)(Vy,) ... (Q v
R(xy, ..., X, Yy, ..., Yp), consisting of k alternating quantifiers beginning with an
existential quantifier and followed by a recursive relation R. (Here, “(Q v;)”
denotes (Jy,) or (Vy,), depending on whether k is odd or even.) Let IT; be the
set of all n-place relations expressible in the prenex form (Vy;)(3y,) ... (Qyp
R(xy, ..., X, Yy, ..., Yo, consisting of k alternating quantifiers beginning with
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a universal quantifier and followed by a recursive relation R. Then the array
above can be written

Ll
X

This array of classes of relations is called the Kleene—Mostowski hierarchy, or
the arithmetical hierarchy.

Proposition 5.17

a. Every relation expressible in any form listed above is expressible in all
the forms in lower rows; that is, for all j > k,

Yeye] wa []=XA]
i T

k j

b. There is a relation of each form, except Y, that is not expressible in the
other form in the same row and, hence, by part (a), not in any of the
rows above; that is, for k > 0,

Z—H # and H—Zk: #J

c. Every arithmetical relation is expressible in at least one of these forms.

d. (Post) For any relation Q(x,, ..., x,), Q is recursive if and only if both Q
and —(Q are expressible in the form (3y,)R(xy, ..., x,, ¥;), where R is recur-
sive; that is, 27 NIT} =25.
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e. IfQ eXfand Q, € 2}, then Q; v Q,and Q; A Q,arein 2} If Q; eIT} and
Q, eI}, then Q, v Q, and Q; A Q, are in IT}.
f. In contradistinction to part (d), if k > 0, then

PRI

Proof

a. (321)(Vy1) oo (sz)(vyk)R(xll “oor Xy 21, ]/1/ % yk) <

Vu)(3z)(Yy1) ... Fz) (VY )(R(X, o) X, 21, Y1, -0 Zio Yk) AU=U) S
(Fz)(Yy1) ... Gz )(Vy ) Fu)R(xX1, -ovp Xy 21, Y1, -oes Zi,Yi) AU = 1)

Hence, any relation expressible in one of the forms in the array is
expressible in both forms in any lower row.

b. Let us consider a typical case, say 4. Take the relation (3v)(Vz)(Iy)
T,.0(x1, X4, Xy, ..., X, U, 2, ), which is in > 5. Assume that this is in ITj3,
that is, it is expressible in the form (Yv)(3z)(Vy)R(x,, ..., X,, 0, 2, V),
where R is recursive. By Exercise 5.19, this relation is equivalent to (Vo)
(3z2)(Vy) - T,..(e, x4, ..., x,, U, 2, y) for some e. When x, = ¢, this yields a
contradiction.

c. Every wf of the first-order theory S can be put into prenex normal form.
Then, it suffices to note that (3u)(3v)R(u, v) is equivalent to (3z)R((z),,
(2)1), and (Vu)(Yo)R(u, v) is equivalent to (Vz)R((z), (z),). Hence, suc-
cessive quantifiers of the same kind can be condensed into one such
quantifier.

d. If Q is recursive, so is =Q, and, if P(x, ..., x,) is recursive, then P(x;,, ...,
x,) © @YPly, ..., x,) Ay =1). Conversely, assume Q is expressible as
AR (xy, ..., x,, y) and ~Q as AY)R,(xy, ..., x,, y), where the relations R,
and R, are recursive. Hence, (Vx;) ... (Vx,) @WR(xy, .., x,, ) V Ry(xy,
e X W) SO, Xy, . X)) = py (Ry(xy, -0 X ) V Ry(xy, ., X, ) is Tecur-
sive. Then, Q(xy, ..., x,) © Ry(x,, ..., x,, w(x;, ..., x,)) and, therefore, Q is
recursive.

e. Use the following facts. If x is not free in ..

FAx) (v va)e (s v(@x)z), FAx)(s A2)s (o A(@x)2),
F(VX)(r v z)e (v VX)), FX)(s Az)e (v A(Vx)z)
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f. We shall suggest a proof in the case n = 1; the other cases are then
easy consequences. Let Q(x) e X4 —[Ti. Define P(x) as (3z) [(x = 2z A
Q@) V (x =2z + 1 A ~Q(@2))]. It is easy to prove that P ¢ >} UTI} and that
P € Y},1. Observe that P(x) holds if and only if

(F2)(x =2z AQ12)) v ((F2),cx(x =22+ DA (VZ)(x =2z +1 = —=Q(2)))

Hence, P eT1},, (Rogers, 1959).

Exercises

5.36 For any relation W of n variables, prove that W e 2} if and only if
W eIk, where W is the complement of W with respect to the set of all
n-tuples of natural numbers.

5.37 For each k > 0, find a universal relation V, in 3 {*'; that is, for any rela-
tion W of n variables: (a) if W € 2}, then there exists z, such that, for all
Xy, oo X, Wixy, ..., x,) if and only if V(z,, xy, ..., x,); and (b) if W €I,
there exists vy such that, for all x,, ..., x,, W(x,, ..., x,) if and only if =V (v,,
Xy, ., X,). [Hint: Use Exercise 5.19]

The s-m-n theorem (Proposition 5.15) enables us to prove the following
basic result of recursion theory.

Proposition 5.18 (Recursion Theorem)

If n >1and f(x,, ..., x,) is a partial recursive function, then there exists a
natural number e such that

O, oy X, €)= @ (X, ey Xa)

Proof

Let d be an index of f(x, ..., X,1,8y1(x,,%,)). Then

Fa, ooy Xn1, 801 (X0, X)) = QR(X1, +ov) X1, %)

B{l the s-m-n theorem, @jj(xy, ..., x,) = (p;’}:(d/x")(xl, ceey Xp1). Let e =s5_4(d, d).
Then

f(xlr Yy xn—lre):f(xll ceey xn—llslt—l(d/d)):q)g(xlr ceey xn—lrd)

= (P;E,j(d,d)(xl’ eey xn—l) = (le_l(xlr ceey xn—l)
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Corollary 5.19 (Fixed-Point Theorem)
If h(x) is recursive, then there exists e such that @; = @i,

Proof

Applying the recursion theorem to f(x,u)= @i (x), we obtain a number e
such that f(x,e) = @s(x). But f(x,€) = Qj)(x).

Corollary 5.20 (Rice’s Theorem) (Rice, 1953)

Let .~ be a set consisting of at least one, but not all, partial recursive func-
tions of one variable. Then the set A = {u| ¢, €./} is not recursive.

Proof

By hypothesis, there exist numbers u, and u, such that u; € A and u, ¢ A.
Now assume that A is recursive. Define

h(x) uw ifxegA
X)=
u, ifxeA

Clearly, h(x) € A if and only if x & A. h is recursive, by Proposition 3.19. By the
fixed-point theorem, there is a number e such that o = (p}I(g). Then we obtain
a contradiction as follows:

eeA if and only if @, €./
if and only if Q) €./
if and only if h(e)e A
if and only if egA

Rice’s theorem can be used to show the recursive unsolvability of various
decision problems.

Example

Consider the following decision problem: for any u, determine whether ¢,
has an infinite domain. Let ./ be the set of all partial recursive functions of
one variable that have infinite domain. By Rice’s theorem, {u | oy € F} is not
recursive. Hence, the problem is recursively undecidable.

Notice that Example 1 on page 340 and Exercise 5.34 can be handled in the
same way.
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Exercises

5.38 Show that the following decision problems are recursively unsolvable.
a. For any u, determine whether ¢, has infinite range.
b. For any u, determine whether @, is a constant function.
c. For any u, determine whether o is recursive.
5.39 a. Show that there is a number e such that the domain of o is {e}.
b. Show that there is a number e such that the domain of ¢: is w —{e}.

5.40 This exercise will show the existence of a recursive function that is not
primitive recursive.

a. Let [\/; J be the largest integer less than or equal to Jx. Show that
[\/; J is defined by the recursion

«(0)=0
K(x +1) = k(x) +sg | (x +1) = (i(x) + 1)? |

Hence, [\/; J is primitive recursive.

b. The function Quadrem(x):x;[\/;]2 is primitive recursive and
represents the difference between x and the largest square less than
or equal to x.

c. Let plx, v) = (x + ¥? + ¥? + x, p(® = Quadrem(z), and
pz(z):Quadrem([\/g]). These functions are primitive recursive.
Prove the following:

Lop(p(xy)=xandp,(p(v,y) =y.
ii. pisa one-one function from ®? into w.
iii. p;(0) = p,(0) =0 and

pr(x+1)=pi(x)+1

pa(x +1)= pa() }‘fpl(“l)”

iv. Let p? denote p, and, for n > 3, define p*(x;, ..., x,) = p(p"™*
(xy, ... X,.1), x,). Then each p" is primitive recursive. Define
pi(x) =pi (pi(x)) for 1 <i < n -1, and pji(x) = p2(x). Then each
pi,1<i<n, is primitive recursive, and p;(p"(x1, ..., X)) =x;.
Hence, p” is a one—one function of ®" into . The p”s and the p}'s
are obtained from p, p,, and p, by substitution.

d. The recursion rule (V) (page 174) can be limited to the form
F(xlr ceey xn+1/0):xn+1 (7’120)

P(xll ceey xn+l/y+1):G(X1/ ceey xn+l/yrp(x1/ ey er—lry))
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[Hint: Given

fla, oo, x,,0)=g(x1, ..., X,)
f(xll ceey x;i/y+1):h(x1/ sy xn/y/f(xll ceey xn/y))

define F as above, letting G(xy, ..., X,.1, ¥, 2) = h(xy, ..., x,, , 2). Then
fley o X y) = Flxy, .o, x,, gy, -0 x,), 1)

e. Taking x +y, x -y, and [\/; ] as additional initial functions, we can
limit the recursion rule to the one-parameter form:

F(x,0) = G(x)
F(x,y+1)=H(x,y,F(x,y))

[Hint: Let n > 2. Given

f(xlr ceey xnro):g(xll vy xn)
f(xll LRy xn1y+1):h(x1/ XXV xnry/f(xll LRy Xn/]/))

let F(u,y) = f(pi (1), ..., pn(u),y). Define F by a permissible recursion.
(Note that 8(x),x=y,p", and p; are available) flx;, ..., x,, y) =
F(p"(xy, ..., x,), )]

f. Taking x +y, x - y, and [\/; ] as additional initial functions, we can
use h(y, F(x, y)) instead of H(x, y, F(x, y)) in part (e).

[Hint: Given

F(x,0) = G(x)
F(x,y+1)=H(x,y,F(x,y))

1et Fl(x/ ]/) = p(x/ F(x/ y)) Then X = pl(Fl(x/ y)) and F(x/ y) = pZ(Fl(x/ y))
Define F,(x, y) by a permissible recursion.]

g. Taking x + , x - y, and [Jx] as additional initial functions, we can
limit uses of the recursion rule to the form

f(x,0)=x
fx,y+1)=hy, f(x,v))
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Hint: Given
F(x,0)=G(x)
F(x/y+1) = h(y/F(x/y))

define f as above. Then f(x, y) = AG(x), y).

h. Taking x+y,x -y,[\/g] and x+y as additional initial functions, we
can limit uses of the recursion rule to those of the form

9(0)=0
9(y+1)=H(y,9(y))

[Hint: First note that| x — v |= (x = 1) + (y = x) and that [\/x ]is definable
by a suitable recursion. Now, given

f(x,0)=x
floy+1) =My, f(x,y))

let g(x) = f(p(x), p1(x))- Then

g(0) = f(p2(0),p:1(0))= f(0,0)=0
gx+1) = flpax+1),pi(x+1))
p2(x+1) if pi(x+1)=0
{h(pl(x +1)=1, f(pa(x +1),pi(x+1)=1))  if py(x+1)=0
pa(x+1) if pi(x+1)=0
- {h(pl(x)/ fp1(x), p2(x))) if pi(x+1)=0
pa(x+1) if pi(x+1)=0
{h(Pl (x), 9(x)) if p(x+1)=0
= pa(x+1)-sg(pr(x + 1))+ h(pa(x), g(x)) - sg(p1(x +1)
= H(x, g(x))

Then f(x, y) = g(p (v, x)). (Note that sg is obtainable by a recursion of
the appropriate form and sg(x) =1+ x.)

i. Inpart (h), H(y, g(v)) can be replaced by H(g(y)).
[Hint: Given

g(0)=0
gy+1)=H(y, g(y))
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let f(u) = p (1, 9w)) and @) = p (py(w) + 1, H(py(w), p,(w)))- Then

f(0)=0
fly+1D)=0o(f(y))

and g(u) = p,(f(1)). (Note that sg(x) is given by a recursion of the
specified form.)

j-  Show that the equations

y(x,0)=x+1
v(0,y+1) =w(l,y)
y(x+1,y+1)=y(y(x,y+1),y)

define a number-theoretic function. In addition, prove:

L wx, y)>x
II. w(x, y) is monotonic in x, that is, if x < z, then y(x, y) < y(z, V).

IOl wx+1,v) <wylx,y+1).
IV. w(x, y) is monotonic in y, that is, if ¥ < z, then y(x, v) < y(x, 2).
V.P Use the recursion theorem to show that v is recursive. [Hint:

Use Exercise 5.21 to show that there is a partial recursive
function g such that g(x,0,u) = x+1,¢(0,y +1,u) = 02(1,y), and
g(x+1,y+1,u)=-(pa(x,y +1),y). Then use the recursion the-
orem to find e such that g(x, y,e) = ¢2(x, y). By induction, show
that g(x, y, ) = w(x, y)]

VI. For every primitive recursive function f(x;, ..., x,), there is
some fixed m such that

flx1, ..., %) <y(max(xy, ..., x,),m)

for all xy, ..., x,. [Hint: Prove this first for the initial functions
Z,N,U}’,x+y,xxy,[\/;] and x -y, and then show that it is
preserved by substitution and the recursion of part (i).] Hence,
for every primitive recursive function f(x), there is some m
such that f(x) < y(x, m) for all x.

VII. Prove that y(x, x) + 1 is recursive but not primitive recursive.
For other proofs of the existence of recursive functions that
are not primitive recursive, see Ackermann (1928), Péter (1935,
1967), and R.M. Robinson (1948).

A set of natural numbers is said to be recursively enumerable (r.e.) if and
only if it is either empty or the range of a recursive function. If we accept
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Church’s Thesis, a collection of natural numbers is recursively enumerable
if and only if it is empty or it is generated by some mechanical process or
effective procedure.

Proposition 5.21

a. A set Bis r.e. if and only if x € B is expressible in the form (3y)R(x, v),
where R is recursive. (We even can allow R here to be primitive
recursive.)

b. Bisr.e. if and only if B is either empty or the range of a partial recursive
function.*

c. Bisre. if and only if B is the domain of a partial recursive function.

d. Bis recursive if and only if B and its complement B are r.e!

e. The set K = {x|(3y) T,(x, X, y)} is r.e. but not recursive.

Proof
a. Assume Bisr.e. If Bis empty, thenx € B < (Fy)(x #x Ay # ). If Bisnon-
empty, then B is the range of a recursive function g. Then x € B < (3y)
(9(y) = x). Conversely, assume x € B < (3y)R(x, y), where R is recursive.
If B is empty, then B is r.e. If B is nonempty, then let k be a fixed element
of B. Define

0(z) = {k if —=R((2)o,(2)1)
@0 i R(2)0,(2))

0 is recursive by Proposition 3.19. Clearly, B is the range of 6. (We
can take R to be primitive recursive, since, if R is recursive, then, by
Corollary 5.12(a), @y)R(x, v) © Qy)Ti(e, x, y) for some e, and Ti(e, x, y) is
primitive recursive.)

b. Assume B is the range of a partial recursive function g. If B is empty,
then B is r.e. If B is nonempty, then let k be a fixed element of B. By
Corollary 5.11, there is a number e such that g(x) = U(py Ti(e, x, y)). Let

Hz) = U((z)) if Ti(e,(2)o,(z))
B k if—|T1(€,(Z)O,(Z)1)

By Proposition 3.19, & is primitive recursive. Clearly, B is the range of /.
Hence, Bisr.e.

* Since the empty function is partial recursive and has the empty set as its range, the condition
that B is empty can be omitted.
* B=wm—B, where o is the set of natural numbers.
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C.

e.

Assume B is r.e. If B is empty, then B is the domain of the partial recur-
sive function py(x + v + 1 = 0). If B is nonempty, then B is the range of a
recursive function g. Let G be the partial recursive function such that
G(y) = px(g(x) = y). Then B is the domain of G. Conversely, assume B is
the domain of a partial recursive function H. Then there is a number ¢
such that H(x) = U(py Ty(e, x, y)). Hence, x € B if and only if (3y)T}(e, x, v).
Since Ti(e, x, y) is recursive, B is r.e. by part (a).

. Use part (a) and Proposition 5.17(d). (The intuitive meaning of part (d) is

the following: if there are mechanical procedures for generating B and
B, then to determine whether any number 7 is in B we need only wait
until 7 is generated by one of the procedures and then observe which
procedure produced it.)

Use parts (a) and (d) and Corollary 5.13(a).

Remember that the functions ¢ (x) = U(uyT;(n, x,y)) form an enumeration
of all partial recursive functions of one variable. If we designate the domain
of ¢, by W,, then Proposition 5.21(c) tells us that W,, W;, W,, ... is an enu-
meration (with repetitions) of all r.e. sets. The number # is called the index of
the set W,

Exercises

5.41

5.42

5.43

5.44

5.45
5.46

Prove that a set B is r.e. if and only if it is either empty or the range of a

primitive recursive function. [Hint: See the proof of Proposition 5.21(b) ]

a. Prove that the inverse image of a r.e. set B under a partial recursive
function fis r.e. (that is, {x| f(x) € B} is r.e.).

b. Prove that the inverse image of a recursive set under a recursive
function is recursive.

c. Prove that the image of a r.e. set under a partial recursive function
isre.

d. Using Church’s thesis, give intuitive arguments for the results in
parts (a)—(c).

e. Show that the image of a recursive set under a recursive function
need not be recursive.

Prove that an infinite set is recursive if and only if it is the range of

a strictly increasing recursive function. (g is strictly increasing if x <y

implies g(x) < g(v).)

Prove that an infinite set is r.e. if and only if it is the range of a one—one

recursive function.

Prove that every infinite r.e. set contains an infinite recursive subset.

Assume that A and B are r.e. sets.

a. Provethat A U Bisr.e. [In fact, show that there is a recursive function
g(u, v) such that W, , = W, U W, ]
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b. Provethat A n Bisr.e. [In fact, show that there is a recursive function
h(u, v) such that W, , = W, n W,

c. Show that A need not be r.e.
d. Prove thatU,..W,isr.e.
5.47 Show that the assertion

(V) A set Bisr.e. if and only if B is effectively enumerable (that is, there
is a mechanical procedure for generating the numbers in B) is equiva-
lent to Church’s thesis.

5.48 Prove that the set A = {u|W, = o} is not r.e.

5.49 A set Bis called creative if and only if Bis r.e. and there is a partial recur-
sive function h such that, for any #, if W, < B, then h(n) € B—W,,.

a. Prove that {x|3y)T\(x, x, y)} is creative.
b. Show that every creative set is nonrecursive.

5.50P A set B is called simple if Bis r.e., B is infinite, and B contains no infinite
r.e. set. Clearly, every simple set is nonrecursive. Show that a simple set
exists.

5.51 A recursive permutation is a one—one recursive function from ® onto .
Sets A and B are called isomorphic (written A ~ B) if there is a recursive
permutation that maps A onto B.

a. Prove that the recursive permutations form a group under the oper-
ation of composition.

b. Prove that ~ is an equivalence relation.

c. Prove that, if A is recursive (r.e., creative, simple) and A ~ B, then
B is recursive (r.e., creative, simple).

Myhill (1955) proved that any two creative sets are isomorphic. (See
also Bernays, 1957.)

5.52 A is many—one reducible to B (written AR B) if there is a recursive
function f such that u € A if and only if f(u) € B. (Many-one reduc-
ibility of A to B implies that, if the decision problem for membership
in B is recursively solvable, so is the decision problem for member-
ship in A.) A and B are called many—one equivalent (written A = B)
if AR,,B and BR_A. A is one—one reducible to B (written AR;B) if there
is a one—one recursive function f such that u € A if and only if f(u) €
B. A and B are called one-one equivalent (written A =, B) if AR,B
and BR,A.

a. Prove that = and =, are equivalence relations.

b. Prove that, if A is creative, B is r.e., and AR B, then B is creative.
[Myhill (1955) showed that, if A is creative and B is r.e., then
BR,A.]
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5.53

5.54

¢ (Myhill, 1955) Prove that, if AR, B then AR B,and if A= ,Bthen A= B.
However, many-one reducibility does not imply one—one reducibil-
ity, and many—one equivalence does not imply one—one equivalence.
[Hint: Let A be a simple set, C an infinite recursive subset of A, and
B=A - C.Then AR;B and BR,A but not-(BR; A).] It can be shown that
A= Bifandonlyif A ~B.

(Dekker, 1955) A is said to be productive if there is a partial recur-
sive function f such that, if W, C A, then f(n) € A — W,. Prove the
following.

a. If Aisproductive, then A is not r.e,; hence, both A and A are infinite.

b.P If A is productive, then A has an infinite r.e. subset. Hence, if A is
productive, A is not simple.

c. If Aisre, then A is creative if and only if A is productive.
d.P There exist 2% productive sets.

(Dekker and Myhill, 1960) A is recursively equivalent to B (written A ~ B)
if there is a one—one partial recursive function that maps A onto B.

a. Prove that ~ is an equivalence relation.

A is said to be immune if A is infinite and A has no infinite r.e.
subset. A is said to be isolated if A is not recursively equivalent
to a proper subset of A. (The isolated sets may be considered the
counterparts of the Dedekind-finite sets.) Prove that an infinite set
is isolated if and only if it is immune.

cP  Prove that there exist 2™ immune sets.
Recursively enumerable sets play an important role in logic
because, if we assume Church’s thesis, the set Ty of G6del num-
bers of the theorems of any axiomatizable first-order theory K is
r.e. (The same holds true of arbitrary formal axiomatic systems.) In
fact, the relation (see page 200)

Pfc(y,x): yistheG delnumber of a proof in K of a wf with
Godel number x

is recursive if the set of Godel numbers of the axioms is recursive,
thatis, if there is a decision procedure for axiomhood and Church’s
thesis holds. Now, x € Ty if and only if (3y)Pf(y, x) and, therefore,
Tx is r.e. Thus, if we accept Church’s thesis, K is decidable if and
only if the r.e. set Ty is recursive. It was shown in Corollary 3.46
that every consistent extension K of the theory RR is recursively
undecidable, that is, Ty is not recursive.
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Much more general results along these lines can be proved (see
Smullyan, 1961; Feferman, 1957; Putnam, 1957; Ehrenfeucht and
Feferman, 1960; and Myhill, 1955). For example, if K is a first-order
theory with equality in the language v, of arithmetic: (1) if every
recursive set is expressible in K, then K is essentially recursively
undecidable, that is, for every consistent extension K’ of K, Ty’ is
not recursive (see Exercise 5.58); (2) if every recursive function is
representable in K and K satisfies conditions 4 and 5 on page 210,
then the set Ty is creative. For further study of r.e. sets, see Post
(1944) and Rogers (1967); for the relationship between logic and
recursion theory, see Yasuhara (1971) and Monk (1976, part III).

Exercises

5.55 Let K be a first-order theory with equality in the language +, of arith-
metic. A number-theoretic relation B(x,, ..., x,) is said to be weakly
expressible in K if there is a wf (x,, ..., x,) of K such that, for any natural
numbers k,, ..., k,, Bk, ..., k,) if and only if b s (ky, ..., k).

a.

b.

5.56 a.

Show that, if K is consistent, then every relation expressible in K is
weakly expressible in K.

Prove that, if every recursive relation is expressible in K and K is
w-consistent, every r.e. set is weakly expressible in K. (Recall that, when
we refer here to ar.e. set B, we mean the corresponding relation “x € B.”)
If K has a recursive vocabulary and a recursive axiom set, prove
that any set that is weakly expressible in K is r.e.

If formal number theory S is m-consistent, prove that a set B is r.e. if
and only if B is weakly expressible in S.

(Craig, 1953) Let K be a first-order theory such that the set Ty of
Godel numbers of theorems of K is r.e. Show that, if K has a recur-
sive vocabulary, K is recursively axiomatizable.

For any wf .»of formal number theory S, let. s # represent its translation
into axiomatic set theory NBG (see page 276). Prove that the set of wfs
such that kg .7 # is a (proper) recursively axiomatizable extension
of S. (However, no “natural” set of axioms for this theory is known.)

5.57 Given a set A of natural numbers, let u € A* if and only if u is a Godel
number of a wf . #(x,) and the Gédel number of .77(u). is in A. Prove that,
if A is recursive, then A* is recursive.

5.58 Let K be a consistent theory in the language v, of arithmetic.

a.
b.

Prove that (Ti )* is not weakly expressible in K.
If every recursive set is weakly expressible in K, show that K is
recursively undecidable.

If every recursive set is expressible in K, prove that K is essentially
recursively undecidable.
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5.5 Other Notions of Computability

Computability has been treated here in terms of Turing machines because
Turing’s definition is probably the one that makes clearest the equivalence
between the precise mathematical concept and the intuitive notion* We
already have encountered other equivalent notions: standard Turing com-
putability and partial recursiveness. One of the strongest arguments for the
rightness of Turing’s definition is that all of the many definitions that have
been proposed have turned out to be equivalent. We shall present several of
these other definitions.

5.5.1 Herbrand-Godel Computability

The idea of defining computable functions in terms of fairly simple systems
of equations was proposed by Herbrand, given a more precise form by Godel
(1934), and developed in detail by Kleene (1936a). The exposition given here
is a version of the presentation in Kleene (1952, Chapter XL)

First let us define the terms.

1. All variables are terms.
2. 0is aterm.
3. If t is a term, then (¢)’ is a term.

4.1ft,, ..., t,are terms and f;'is a function letter, then f/'(t,, ..., t,)is a term.

For every natural number n, we define the corresponding numeral n as
follows: (1) 0 is 0 and (2) n+11is (1). Thus, every numeral is a term.

An equation is a formula ¥ = s where r and s are terms. A system E of equa-
tions is a finite sequence r; =5, ¥, = 5,, ..., 1}, = 5; of equations such that 7, is
of the form f'(t,, ..., t,). The function letter f;" is called the principal letter of
the system E. Those function letters (if any) that appear only on the right-
hand side of equations of E are called the initial letters of E; any function
letter other than the principal letter that appears on the left-hand side of
some equations and also on the right-hand side of some equations is called
an auxiliary letter of E.

We have two rules of inference:

R;: An equation e, is a consequence of an equation e; by R, if and only
if e, arises from e, by substituting any numeral 7 for all occurrences of a
variable.

* For further justification of this equivalence, see Turing (1936-1937), Kleene (1952, pp. 317-323,
376-381), Mendelson (1990), Dershowitz and Gurevich (2008), and the papers in the collection
Olszewski (2006). The work of Dershowitz and Gurevich, based on a finer analysis of the
notion of computation, provides much stronger support for Church’s Thesis.
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R,: An equation e is a consequence by R, of equations f;" (71, ..., ) =p

and r = s if and only if e arises from r = s by replacing one occurrence of
fi'(m, ..., n,)ins by p, and r = s contains no variables.

A proof of an equation e from a set B of equations is a sequence e, ..., e, of
equations such that e, is e and, if 0 < i < n, then: (1) ¢; is an equation of B, or
(2) ¢; is a consequence by R, of a preceding equation e(j < i), or (3) ¢; is a con-
sequence by R, of two preceding equations ¢; and e,,(j < i, m <i). We use the
notation B |- e to state that there is a proof from B of e (or, in other words, that
e is derivable from B).

Example
Let E be the system

f11(x1)=(x1);
flz(xll-xZ) = fls(zrxzrfll(xl))

The principal letter of E is f7, fi' is an auxiliary letter, and f7’ f is an initial
letter. The sequence of equations

fR(x,x2) = (2,5, fil(x1))
fi(2,x) = f(2,%2, f1(2)
f22,1)= (2,1, fl(2)
fla) = (x)
fl(2)=(2J (e, fi(2)=3)
ff2,1)=£(2,1,3)
is a proof of f2(2,1)= f*(2,1,3) from E.
A number-theoretic partial function ¢(x,, ..., x,) is said to be computed by a

system E of equations if and only if the principal letter of E is a letter f;" and,
for any natural numbers k, ..., k,, p,

Er f/'(ki, ..., k,)=p ifand onlyif[ o(ky, ..., k,)is defined and @(ky, ..., k,)=p ]

The function ¢ is called Herbrand—Gdodel-computable (for short, HG-computable)
if and only if there is a system E of equations by which ¢ is computed.

Examples

1. Let E be the system f{'(x;)=0. Then E computes the zero function Z.
Hence, Z is HG-computable.
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2. Let E be the system f'(x;) = (x;). Then E computes the successor func-
tion N. Hence, N is HG-computable.

3. Let E be the system f"(x1, ..., x,) = x;. Then E computes the projection
function U;". Hence, U;' is HG-computable.

4. Let E be the system

flz(xl,O) =X
f12(x1/(x2),)= (flz(xl/XZ)),

Then E computes the addition function.
5. Let E be the system

fll(xl) =0
fll(xl) =X

The function @(x;) computed by E is the partial function with domain {0}
such that ¢(0) = 0. For every k = 0,El- fi'(k)=0and E+ f;(k) = k. Hence, ¢(x;)
is not defined for x; # 0.

Exercises

5.59 a.

5.60 a.

What functions are HG-computable by the following systems of
equations ?

L fl0)=0, fl((x))=x
i fR0,0)=x1, f0,%:)=0, f((x), (x2))= fE(x1,%,)
iii. fll(xl) =0, fll(xl) =0
iv. flz(xllo) = X1, flz(xlz(xz)') = (flz(xllxz) ), fll(xl) = flz(xllxl)

Show that the following functions are HG-computable.

Lo -x

.o x0x,

0 if xiseven
iii. o0 = {1 if x is odd

Find a system E of equations that computes the n-place function that
is nowhere defined.

Let f be an n-place function defined on a finite domain. Find a sys-
tem of equations that computes f.

If f(x) is an HG-computable total function and g(x) is a partial func-
tion that coincides with f(x) except on a finite set A, where g is unde-
fined, find a system of equations that computes g.
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Proposition 5.22

Every partial recursive function is HG-computable.

Proof

a.

b.

Examples 1-3 above show that the initial functions Z, N, and U/ are
HG-computable.

(Substitution rule (IV).) Let o@(xy, ..., x,) = nly(xy, ..., x,), ...,
v, (xy, ..., x,)) where 1, y;, ..., y, have been shown to be
HG-computable. Let E, be a system of equations computing y,, with
principal letter £, and let E,,; be a system of equations computing
n, with principal letter f,;.;. By changing indices we may assume
that no two of E,, ..., E,,; have any function letters in common.
Construct a system E for ¢ by listing E,, ..., E,,,; and then adding
the equation fuo(X1, ..., X4) = far (A" (X1, o) X0)s ooy fur(Xa, ooy X))
(We may assume that f,,, does not occur in E;, ..., E,,;.) It is clear
that, if @(k;, ..., k,) = p, then EF f (ki ... k,)=p. Conversely,
if EF fuolk,...,k)=p, then EF f'(ki,...,k.)=p1,...,E-fu
(ki, ..., ky)=pn and EF fila(py, ..., pu)=p. Hence, it readily
follows that E;F fi"(ki, ..., k,)=p1, ..., En & fulks, ..., k) =pn and
E,atfua(pr, -, pw)=p.Consequently,yi(ki, ..., k.)=p1, ..., Wulks, ..., ky) =P
and n(py, ..., p) = p- So, ¢(k,, ..., k,) = p. [Hints as to the details of
the proof may be found in Kleene (1952, Chapter XI, especially, pp.
262-270).] Hence, ¢ is HG-computable.

. (Recursion rule (V).) Let

(P(xll vy xn,0)=\|/(x1r (KR xn)

QX1 ooy X, X1 1) =821, o, X1, 9(X1, -y X))

where y and § are HG-computable. Assume that E, is a system of equa-
tions computing y with principal letter fi" and that E, is a system of
equations computing § with principal letter f;**>. Then form a system
for computing ¢ by adding to E, and E,

AN, e, %0,0)= A (2, oo, X)

f1n+1(x1, s X, (X)) = f1n+2(x1/ sy xn+1,f1n+1(x1/ veer Xni1))

(We assume that E; and E, have no function letters in common.) Clearly,
if o(ky, ..., k,, k) =p, then EF- " (ky, ..., k,, k) = p. Conversely, one can
prove easily by induction on k that, if El- fl"”(kl, e, ku,k)=p, then
¢o(ky, ..., k,, k) = p. Therefore, ¢ is HG-computable. (The case when the
recursion has no parameters is even easier to handle.)
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d. (p-operator rule (VI).) Let ¢(xy, ..., x,) = py(w(x, ..., x,, ) = 0) and assume
that y is HG-computable by a system E, of equations with principal
letter f;""". By parts (a)—(c), we know that every primitive recursive func-
tion is HG-computable. In particular, multiplication is HG-computable;
hence, there is a system E, of equations having no function letters in
common with E, and with principal letter fzz such thatE, + fzz(kl, k)=p
if and only if k; - k, = p. We form a system E; by adding to E, and E, the
equations

f374+](x1, sy xnlo) = 1

f3”+1(x]/ ey (xn-#l)’) = f22(f3n+1(x1/ cois Xy xn+1)/ fl’Hl(xl/ cery xnxn+l))

One can prove by induction that E; computes the function [T, w(xy, ..., x,,¥);
that is, Es - £ (ki, ..., k., k) =p if and only if [1,. y(ki, ..., k., y) = p. Now
construct the system E by adding to E; the equations

f43((x1)'/0/ x3) =X3
f3n(x1/ ceey xn) = f43( 3n+1(x1, ceey xn/xn+1)/ f3”+1(x1/ ceey xnl(xn+1)')1xn+1)

Then E computes the function @(x;, ..., x,) = py(w(xy, ..., x,, ) = 0). If py(y (ky, ...,
k,y)=0)=g,thenE; + £ (ki, ..., ko, 9) =P, where p+1=TI1,, w(ky, ..., k., y),
and B3+ fi"'(ki, ..., ks, 7)=0. Hence, EFfi(ki, ..., k.)=fi(p,0,q). But,
EFf2(7,0,9)=4, and so, E-f3'(ki, ..., k,)=g. Conversely, if E-ff'(k,, ..., k.)=1,
then  ERf7(,0,7)=7, where Esk-fi(ky, ..., ka, )=(m) and
E3|—f3””(k1,...,kn,ﬁ’)zo. Hence, [l w(ki,..., k., y)=m+1#0  and
[y<gw(ki, ..., ki, y)=0.50, w(ky, ..., k, y) #0 fory < g, and y(k,, ..., k,, ) = 0.
Thus, py(y(k,, ..., k,, y) = 0) = g. Therefore, ¢ is HG-computable.

We now shall proceed to show that every HG-computable function is par-
tial recursive by means of an arithmetization of the apparatus of Herbrand-
Godel computability. We shall employ the arithmetization used for first-order
theories in Section 3.4, except for the following changes. The Gédel number
g(’) is taken to be 17. The only individual constant 0 is assigned the Godel
number 19, that is, g(0) = 19. The only predicate letter “=" is identified with
“A7” and is assigned the Gédel number 99 (as in Section 3.4). Thus, an equa-
tion “r = s” is an abbreviation for “AZ(r, s)". The following relations and func-
tions are primitive recursive (compare Propositions 3.26-3.27).

FL(x): x is the Godel number of the function letter

(Ely)yo:(zlz)zo((x =1+ 8(2y 32) ANY >0Az> 0)

EVDbI(x): x is the Gédel number of an expression consisting of a variable
EFL(x): x is the Gddel number of an expression consisting of a function letter
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Num(x): the Godel number of the numeral ¥
Num(0) =19
Num(y + 1) = 23 * Num(y) * 25+ 217

Trm(x): x is the G6del number of a term
Nu(x): x is the Godel number of a numeral

(3Y)y<x(x = Num(y))

Arg(x) = number of arguments of a function letter, f, if x is the Godel number
of f
x * y = the Godel number of an expression AB if x is the Godel number of the
expression A and y is the Godel number of B
Subst(x, y, u, v): v is the Godel number of a variable x;, u is the Godel number
of a term ¢, y is the Godel number of an expression .7, and x is
the Godel number of the result of substituting ¢ for all occur-
rences of x;in .7
The following are also primitive recursive:
Eqt(x): x is the Godel number of an equation:

(1) yex (FW) ey (Trm(u) A Trm(w) A x = 2% %23 %2 %27 %2V % 2°)

(Remember that = is A7, whose Gddel number is 99.)
Syst(x): x is the Godel number of a system of equations:

(vy)yw(x) eq((x)y) A (Elu)u<x (Elw)w<x [EFL(ZU) A Trm(w) A X, (x)-1
=2% 423w qp 27 %y x2°]

Occ(u, v): u is the Godel number of a term t or equation 7 and v is the Godel
number of a term that occurs in ¢ or

(Trm(u) v Eqt(u)) A Trm(0) A (3%)xcu (FY)yu (U = x* 0% y

VU=X*VVU=0*YVU=D)

Cons, (1, v): u is the Godel number of an equation ¢;, v is the Godel number of
an equation ¢,, and e, is a consequence of ¢; by rule R;:

Eqt(u) A Eqt(v) A (3x) < (Fy)y<o (Nu(y) A Subst(v, u, v, x) A Occ(u, x))
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Cons,(u, z, v): u, z, v are Godel numbers of equations ey, ¢,, e;, respectively, and
ey is a consequence of e; and e, by rule Rj:

Eqt(u) A Eqt(z). A Eqt(v) A =(3x)x<.(EVbI(x) A Oce(z, x))
A=(3%)x<u (EVD1(x) A Oce(ut, x)) A (FP) peu (3t <u(33)<u (3 ) y<u
(39)geulq = 2153 st A = 2% %2% g2 27 x Num(p) * 2° A
(3002 (3B)pez (Trm(a) ATrm(B) Az = 2% # 2%+ # 27 # B *2° A
{[B=gnrv=2"%2"+0*2" *Num(p)*2°]v (3y),z(38)s
[(B=y*qrv=2"%2%+q*27 *y*Num(p)*2°)v
B=g*3Av=2"%2%+q 27 +q*Num(p)*2°) v
B=y*q*drv=2"*2>*q*2"xy+Num(p)*3+2°)]})

Ded(u, z): u is the Godel number of a system of equations E and z is the Godel
number of a proof from E:

SYSt(u) A (vx)X<//(Z)((E|w)w<//(u)(u)w = (Z)x
Vv (Ely)y<x COHSl((Z)y A2)) v (Ely)yq(zlv)vq COHSZ((Z)}/ (2)0,(2)x))

S,(u, xy, ..., x,, 2): u is the Gddel number of a system of equations E whose

principal letter is of the form £, and z is the Gédel number of a proof from E
of an equation of the form f/'(xy, ..., X,) = p:

Ded(ur Z) N (Elw)w<u (Ely)yql[(u)//(u);l = 299 * 23 * 21+8(2n3w) *YAN

38 (NU(E) A ((2), (21 = 2% %23 %2823 5 2%« Num(x, ) # 27 #
Num(x,)*2” #---* Num(x, ) * 2° * )]

Remember that g(() =3, g()) =5,and g()) = 7.

U(x) = 1y yer G0)iper (X) 0121 =27 #2° #w 27 * Num(y) * 2°)

(The significance of this formula is that, if x is the Gddel number of a proof
of an equation = p, then U(x) = p.)

Proposition 5.23

(Kleene, 1936a) If ¢(xy, ..., x,) is HG-computable by a system of equations E
with Godel number e, then

(P(xlr ceey xn)z u(p'y(sn(erxll ceey xnry)))
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Hence, every HG-computable function ¢ is partial recursive, and, if ¢ is total,
then @ is recursive.

Proof

¢k, ..., k)=pifand only if EI- f/" (ki, ..., ky) = p, where f/"is the principal let-
ter of E. ¢(ky, ..., k,) is defined if and only if (3y)S,(e, ky, ..., k,, ). If o(ky, ..., k)
is defined, py(S,(e, ky, ..., k,, y)) is the Gddel number of a proof from E of an
equation f}'(k, ..., k,) = p. Hence, U(ny(S,(e, ky, ..., k, ) = p = ok, ..., k).
Also, since S, is primitive recursive, py(S,(e, xy, ..., X,, y)) is partial recursive.
If ¢ is total, then (Vxy) ... (Vx,)3y)S, (e xy, .., X, v); hence, uy(S, (e, x,, ..., x,, y))
is recursive, and then, so is U(py(S,(e, x4, -.., X, Y)))-

Thus, the class of HG-computable functions is identical with the class of
partial recursive functions. This is further evidence for Church’s thesis.

5.5.2 Markov Algorithms

By an algorithm in an alphabet A we mean a computable function A whose
domain is a subset of the set of words of A and the values of which are
also words in A. If P is a word in A, U is said to be applicable to P if P is in
the domain of 2; if 2 is applicable to P, we denote its value by 2(P). By an
algorithm over an alphabet A we mean an algorithm 2 in an extension B
of A.* Of course, the notion of algorithm is as hazy as that of computable
function.

Most familiar algorithms can be broken down into a few simple steps.
Starting from this observation and following Markov (1954), we select a par-
ticularly simple operation, substitution of one word for another, as the basic
unit from which algorithms are to be constructed. To this end, if P and Q are
words of an alphabet A, then we call the expressions P — Q and P — -Q pro-
ductions in the alphabet A. We assume that “=” and “” are not symbols of A.
Notice that P or Q is permitted to be the empty word. P — Q is called a simple
production, whereas P — -Q is a terminal production. Let us use P — ()Q to
denote either P - Q or P — -Q. A finite list of productions in A

P - (O)Q
P, = ()Q2

Pr - ()Qr

is called an algorithm schema and determines the following algorithm 2 in A.
As a preliminary definition, we say that a word T occurs in a word Q if there
are words U, V (either one possibly the empty word A) such that Q = UTV.

* An alphabet B is an extension of A if A C B.
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Now, given a word P in A: (1) We write % : P I if none of the words P, ..., P,
occurs in P. (2) Otherwise, if m is the least integer, with 1 < m < r, such that
P, occurs in P, and if R is the word that results from replacing the leftmost
occurrence of P, in P by Q,,, then we write

m’/

a. A:PFR
if P, = ()Q,, is simple (and we say that 2 simply transforms P into R);
b. A:PFR

if P,, = ()Q,, is terminal (and we say that 2 terminally transforms P into R).
We then define 2. P E R to mean that there is a sequence Ry, R,, ..., R, such
that

i. P=R,.
ii. R =R,
iii. For0<j<k- 2, AR F Ry,
iv. Either %: R,_; F R, or 2A: R,_; I - R,. (In the second case, we write 2A:
PE-R)

We set A(P) = R if and only if either A: P F - R, or A: P F R and «A: R 3. The
algorithm thus defined is called a normal algorithm (or a Markov algorithm)
in the alphabet A.

The action of 2 can be described as follows: given a word P, we find the
first production P,, — ()Q,, in the schema such that P,, occurs in P. We then
substitute Q,, for the leftmost occurrence of P, in P. Let R, be the new word
obtained in this way. If P, —» ()Q,, was a terminal production, the process
stops and the value of the algorithm is R,. If P,, = ()Q,, was simple, then we
apply the same process to R, as was just applied to P, and so on. If we ever
obtain a word R; such that 2: R; I, then the process stops and the value 2(P)
is R;. It is possible that the process just described never stops. In that case,
2 is not applicable to the given word P.

Our exposition of the theory of normal algorithms will be based on Markov
(1954).

Examples
1. Let A be the alphabet {b, c}. Consider the schema

b—-A
c—>c
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The normal algorithm 2 defined by this schema transforms any word
that contains at least one occurrence of b into the word obtained by
erasing the leftmost occurrence of b. 2 transforms the empty word A
into itself. 2 is not applicable to any nonempty word that does not con-
tain b.

. Let A be the alphabet {a,, a,, ..., a,}. Consider the schema

ag > A
a1—>A

a, > A
We can abbreviate this schema as follows:
E—>A (EinA)

(Whenever we use such abbreviations, the productions intended may
be listed in any order.) The corresponding normal algorithm trans-
forms every word into the empty word. For example,

A: aqaaaza0 - ajaaqas - a,aaz FajsazsFas H A and 2: A 3. Hence,

QI(alazalag,ao) =A.

3. Let A be an alphabet containing the symbol a;, which we shall abbre-

viate |. For natural numbers 7, we define 7 inductively as follows:
0=land n+1=7| Thus,1=||,2 =] | |, and so on. The words 7 will be
called numerals. Now consider the schema A — -|, defining a normal
algorithm 2. For any word P in A, %(P) = | P* In particular, for every
natural number n, A(7) =n+1.

4. Let A be an arbitrary alphabet {a, a;, ...,a,}. Givenaword P = a; a; ---a;,

letP=a i “-ajaj, be the inverse of P. We seek a normal algorithm 2 such
that 2(P) = P. Consider the following (abbreviated) algorithm schema
in the alphabet B = 2 U {a, f}.

a. oax—f
b. pE—EB(Ein A)
c. Pa—P
d p—--A

* To see this, observe that A occurs at the beginning of any word P, since P = AP.
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e. anf — &an (€, nin A)
f. A—-a

This determines a normal algorithm A in B. Let P=aja; ---a;
be any word in A. Then A: P F+ oP by production (f). Then,
aPFajo0ajaj, ...a; Fajajoajaj ...a; ...Faza;, ...a0aj, all by pro-
duction (e). Thus, A: PFa;; a, ... a; aay,. Then, by production (f), 2: P F a,
a3 ... a; 0@y 0@y, Iterating this process, we obtain 2: P F aa; oa;_; o ... 0@y

oayy. Then, by production (f), %: P F away, aa_; « ... a@;; 0@y, and, by pro-

duction (a), A: P F Ba aa;; a ... 0a; aa,. Applying productions (b) and ()
and finally (d), we arrive at 2( : P = -P. Thus, ¥ is a normal algorithm over
A that inverts every word of A*

Exercises

5.61 Let A be an alphabet. Describe the action of the normal algorithms
given by the following schemas.

a. Let(Qbe afixed word in A and let the algorithm schema be: A — - Q.

b. Let Q be a fixed word in A and let « be a symbol not in A. Let B =
A U {a}. Consider the schema

af > & (§in A)
oa—-Q

A—a

c. Let QDbe a fixed word in A. Take the schema
E—>A (§inA)
A—>-Q

d. LetB= A U {|}. Consider the schema

& - EinA-{[}
A >

* The distinction between a normal algorithm in A and a normal algorithm over A is impor-
tant. A normal algorithm in A uses only symbols of A, whereas a normal algorithm over A
may use additional symbols not in A. Every normal algorithm in A is a normal algorithm
over A, but there are algorithms in A that are determined by normal algorithms over A but
that are not normal algorithms in A (for example, the algorithm of Exercise 5.62(d)).
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5.62

5.63

5.64

Introduction to Mathematical Logic

Let A be an alphabet not containing the symbols o, f, y. Let B= A U {o}
andC=AuU o, B, v}

a. Construct a normal algorithm % in B such that 2(A) = A and
A(EP) = P for any symbol € in A and any word P in A. Thus, 2 erases
the first letter of any nonempty word in A.

b. Construct a normal algorithm @ in B such that D(A) = A and
D(PE) = P for any symbol £ in A and any word P in A. Thus, D
erases the last letter of any nonempty word in A.

c. Construct a normal algorithm € in B such that €(P) equals A if P
contains exactly two occurrences of a and €(P) is defined and is not
equal to A in all other cases.

d. Constructanormal algorithm » in C such that, for any word P of
A, B(P) =PP.

Let A and B be alphabets and let a be a symbol in neither A nor B. For

certain symbols a,, ..., a,in A, let Q,, ..., Q, be corresponding words

in B. Consider the algorithm that associates with each word P of A

the word Subg g, (P) obtained by simultaneous substitution of each

Q; for a,i = 1, ..., k). Show that this is given by a normal algorithm in

A UBU {a}.

Let H = {|} and M = {|, B}. Every natural number # is represented by its

numeral 77, which is a word in H. We represent every k-tuple (1, 11,, ..., 1)

of natural numbers by the word 1;B#,B ... B, in M. We shall denote

this word by (1,15, ..., nx). For example, (3,1,2) is ||||B]||B]|].

a. Show that the schema

B - B
af - o
al -
A - o

defines a normal algorithm 2, over M such that (i) =0 for
any #, and U is applicable only to numerals in M.

b. Show that the schema
B—B
o=l

A—>a

defines a normal algorithm 2, over M such that U y (1) = n +1 for
all n, and Ay is applicable only to numerals in M.
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c. Letay, ..., oy be symbols notin M. Let 1 <j < k. Let . be the list

0li-1B = 051B
021 |—> Ol |
Qo; |—> Ol

0B = dging

If 1< j <k consider If j=1, consider If j =k, consider
the algorithm schema the schema the schema
A oB — oyB 2!
: o > as | '
/i o, |- o Y1
Ozj1B — 0, 4B a,B — os Olok1B — ar_1B
Qi1 [=> Oy | /2 Qo1 [ oo |
Opj |—)| Olaj Olok |—)| Olok
Olsz —> Olojs1 k-1 0B — aB
/i1 Olok-1B = oz 1B o —>-A
: Olok1 |- oo | A—ay
k-1 B |
Ook_1B — ol 1B oo B — o B
Ook-1 | Gk oo —>-A
Olok | ok A— oy

(XZkB g (XZkB
Olok —-A
A— (051

Show that the corresponding normal algorithm ¥ is such that
?Ik]-((nl, ..., M) =1;; and *21’} is applicable to only words of the
form (ny, ..., ny).

d. Construct a schema for a normal algorithm in M transforming
(ny,ny) into | 1y —n, |.

e. Construct a normal algorithm in M for addition.

f. Construct a normal algorithm over M for multiplication.

Given algorithms 2 and B and a word P, we write (P) ~ B(P) if and only if
either A and B are both applicable to P and 2(P) = B(P) or neither % nor B is
applicable to P. More generally, if C and D are expressions, then C =~ D is to
hold if and only if neither C nor D is defined, or both C and D are defined and
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denote the same object. If 2 and B are algorithms over an alphabet A, then we
say that 2 and B are fully equivalent relative to A if and only if 2A(P) ~ B(P) for
every word P in A; we say that 2 and B are equivalent relative to A if and only if,
for any word P in A, whenever 2(P) or B(P) exists and is in A, then A(P) = B(P).

Let M be the alphabet {|, B}, as in Exercise 5.64, and let ® be the set of natu-
ral numbers. Given a partial number-theoretic function ¢ of k arguments,
that is, a function from a subset of * into ®, we denote by B, the correspond-
ing function in M; that is, B,((m, ..., m)) = ¢(ny, ..., 1) whenever either of
the two sides of the equation is defined. B, is assumed to be inapplicable
to words not of the form (1, ..., n;). The function ¢ is said to be Markov-
computable if and only if there is a normal algorithm 2 over M that has the
value @(1, ..., n) when applied to (1, ..., 1;).*

A normal algorithm is said to be closed if and only if one of the productions in
its schema has the form A — - Q. Such an algorithm can end only terminally—
that is, by an application of a terminal production. Given an arbitrary normal
algorithm 2, add on at the end of the schema for 2 the new production A — - A,
and denote by - the normal algorithm determined by this enlarged schema.
2 - is closed, and A - is fully equivalent to 2 relative to the alphabet of 2.

Let us now show that the composition of two normal algorithms is again
a normal algorithm. Let 2 and B be normal algorithms in an alphabet A.
For each symbol b in A, form a new symbol b, called the correlate of b. Let A
be the alphabet consisting of the correlates of the symbols of A. We assume
that A and A have no symbols in common. Let o and  be two symbols not in
AUA. Let @, be the schema of « - except that the terminal dot in terminal
productions is replaced by a. Let ©y be the schema of B - except that every
symbol is replaced by its correlate, every terminal dot is replaced by p, pro-
ductions of the form A — Q are replaced by a — aQ, and productions A — -Q
are replaced by a — apQ. Consider the abbreviated schema

aac —>oa (ain A)
oca—oa (ain A)
ab—>ab  (a,bin A)
ap—>Pa (ain A)
Ba—>pPa (ain A)
ab—ab (a,b in A)
af —>-A

Cp

Ca

* In this and in all other definitions in this chapter, the existential quantifier “there is” is meant
in the ordinary “classical” sense. When we assert that there exists an object of a certain kind,
we do not necessarily imply that any human being has found or ever will find such an object.
Thus, a function ¢ may be Markov-computable without our ever knowing it to be so.
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This schema determines a normal algorithm & over A such that G(P) ~
B(A(P)) for any word P in A. ® is called the composition of A and B and is
denoted B o A.

Let Y be an algorithm in an alphabet A and let B be an extension of A. If we
take a schema for 2) and prefix to it the production b — b for each symbol b
in B — A, then the new schema determines a normal algorithm %)y in B such
that 95(P) ~ 2(P) for every word P in A, and 9); is not applicable to any word
in B that contains any symbol of

B — A. 9y is fully equivalent to ) relative to A and is called the propagation
of 9 onto B.

Assume that U is a normal algorithm in an alphabet A; and B is a normal
algorithm in an alphabet A,. Let A = A; U A,. Let 2, and B, be the propaga-
tions of A and B, respectively, onto A. Then the composition ® of A, and B,
is called the normal composition of A and B and is denoted by B © 2. (When
A, = A,, the normal composition of 2 and B is identical with the composition
of A and %B; hence the notation B o A is unambiguous.) ® is a normal algo-
rithm over A such that G(P) ~ B(U(P)) for any word P in A, and ® is appli-
cable to only those words P of A such that P is a word of A,, 2 is applicable
to P, and B is applicable to 2A(P). For a composition of three or more normal
algorithms, we must use normal compositions, since a composition enlarges
the alphabet.

Proposition 5.24

Let .. be a Turing machine with alphabet A. Then there is a normal algo-
rithm 2 over A that is fully equivalent to the Turing algorithm Alg - relative
to A.

Proof*

LetD=gqy,, ..., gk, Where qx,, ..., qx, are the internal states of .,~and qx, = qo.
Write the algorithm schema for U as follows: Choose a new symbol a and
start by taking the productions aa; — qa; for all symbols a;in A, followed by
the production a — o. Now continue with the algorithm schema in the fol-
lowing manner. First, for all quadruples q;a,a,q, of ., take the production q;a;
— q,3;. Second, for each quadruple q;aLq, of ; take the productions a,q;a; -
q,a,a; for all symbols a, of A; then take the production

qja; = 9,802, Third, for each quadruple q;aRq, of , take the productions
qaa, — a,q,a, for all symbols a, of A; then take the production qja; — a,q,a,.
Fourth, write the productions g, —-A for each internal state qi of ./, and
finally take A — a. This schema defines a normal algorithm 2( over A, and it
is easy to see that, for any word P of A, Alg  (P) = A(P).

* This version of the proof is due to Gordon McLean, Jr.
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Corollary 5.25

Every Turing-computable function is Markov-computable.

Proof

Let f(x,, ..., x,) be standard Turing-computable by a Turing machine ..~ with
alphabet A 2 {|, B}. (Remember that B is a; and | is a,).) We know that, for
any natural numbers k,, ..., k,, if f(k,, ..., k,) is not defined, then Alg  is not
applicable to (ki, ..., k,), whereas, if f(k,, ..., k,) is defined, then

Alg  ((ky, ..., k)= Ry(ky, ..., k)Bf(ky, ..., ki)Ro

where R, and R, are (possibly empty) sequences of Bs. Let B be a normal
algorithm over A that is fully equivalent to Alg  relative to A. Let ® be the
normal algorithm over {|, B} determined by the schema

aB—a
ol->B]
Bl—>IB
BB — By

7B
YB—y
By —>-A
B—>-A
A—>a

If R, and R, are possibly empty sequences of Bs, then ®, when applied to
Ri(ky, ..., k)Bf(ki, ..., k)R, will erase R; and R,. Finally, let AL be the
normal “projection” algorithm defined in Exercise 5.64(c). Then the normal
composition AT} ° & ° B is a normal algorithm that computes f.

Let A be any algorithm over an alphabet A ={a; , ..., a;,}. We can associate
with 2 a partial number-theoretic function y such that yy (1) = m if and
only if either # is not the Godel number* of a word of A and m =0, or n and

m are Godel numbers of words P and Q of A such that A(P) = Q.

Proposition 5.26

If A is a normal algorithm over A ={a;,, ..., a;,}, then yy is partial recursive.

* Here and below, we use the Godel numbering of the language of Turing computability given in
Section 5.3 (page 325). Thus, the Godel number g(a;) of a;is 7 + 4i. In particular, g(B) = g(ag) =7
and ¢(|) = g(a) = 11.
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Proof

We may assume that the symbols of the alphabet of A are of the form a;.
Given a simple production P — Q, we call 2!38®™53@ its index; given a termi-
nal production P — -Q, we let 223s"5s@Q be its index. If Pj — ()Q,, ..., P, = ()Q,
is an algorithm schema, we let its index be 2ok p’,", where k; is the index
of P; - ()Q;. Let Word(u) be the recursive predicate that holds if and only if u
is the Godel number of a finite sequence of symbols of the form a;:

u#z0Afu=1v(vz)(z < th(u) = Cy)(y <u(u), =7 +4y))]

Let SI(1) be the recursive predicate that holds when u is the index of a simple
production: (u) = 3 A (1), = 1 A Word((u);) A Word((),). Similarly, TI(u) is the
recursive predicate that holds when u is the index of a terminal production:
(1) =3 A (1), =2 A Word((u);) A Word((),). Let Ind (1) be the recursive predi-
cate that holds when u is the index of an algorithm schema: u>1 A (V 2)(z <
Au)=>SI((1),) v TI((u),). Let Lsub(x, y, ) be the recursive predicate that holds
if and only if e is the index of a production P=()Q and x and y are Godel
numbers of words U and V such that P occurs in U, and V is the result of
substituting Q for the leftmost occurrence of P in U:

Word(x) A Word(y) A (SI(e) v TI(e)) A (Fu)u<x (F0)oer (x =1 * (€)1 *v
ANYy=u* (6)2 *UN _‘(aw)w@c (Hz)zéx (x =w* (E)l FZAW< M))

Let Occ(x, y) be the recursive predicate that holds when x and y are Godel
numbers of words U and V such that V occurs in U: Word(x) A Word(y) A
(39),<,(32).<, (x = v+ y * 2). Let End(e, 2) be the recursive predicate that holds
when and only when z is the Gddel number of a word P, and e is the index
of an algorithm schema defining an algorithm 2 that cannot be applied to
P (i.e., A: P 0): Ind(e) A Word(z) A (Vw),,  7Occ(z( (e),))- Let SCons(e, y, x) be
the recursive predicate that holds if and only if e is the index of an algorithm
schema and y and x are Gédel numbers of words V and U such that V arises
from U by a simple production of the schema:

Ind(e) A Word(x) A Word(y) A (30)sie [SI((€).) A Lsub(x, y, (e),)
A (V2),,—Occ(x, ((e): )]

Similarly, one defines the recursive predicate TConsf(e, y, x), which differs
from SCons(e, y, x) only in that the production in question is terminal. Let
Der(e, x, y) be the recursive predicate that is true when and only when e
is the index of an algorithm schema that determines an algorithm 2, x is
the Godel number of a word U, y is the Gddel number of a sequence of
words Uy, ..., Uk > 0) such that, for 0<i<k=1,U,,, arises from U; by a
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production of the schema, and either 2 : U.; U or A : Uy - Uy and A:
U, 3O (or, if k =0, just A: U 0):

Ind(e) A Word(x) A (V2)..qy Word((y):) A (y)o = x
A(V2)z<,():25C0ons(e, ()21, (y):) Al(#(y) = 1 AEnd(e, (y)o))
v (#(y) > 1A {TCons(e, (y)//@);l, (y)//(y);z) v (SCons(e, (y)//(ym/
(]/)//(y);z) ~End(e, (y)//mq))})]

Let W,(u) be the recursive predicate that holds if and only if u is the Godel
number of a word of A:

uz0AW=1v(Vz2)c, (). =7+4j, v...v(u), =7+4;,)

Let e be the index of an algorithm schema for 2. Now define the partial recur-
sive function @) = y(WA() A Dere, x, ) v =W, (). But wa (x) = (@(x)) oo
Therefore, yy, is partial recursive.

Corollary 5.27

Every Markov-computable function ¢ is partial recursive.

Proof

Let U be a normal algorithm over {1, B} such that ¢(k,, ..., k,) = | if and only
if A((ky, ..., k,))=1. By Proposition 5.26, the function sy is partial recur-
sive. Define the recursive function y(x) = #(x) = 1. If x = TT\,yp;', then n = y(x).
(Remember that a stroke |, which is an abbreviation for a,, has G6del number
11. So, if x is the Godel number of the numeral #, then y(x) = n.) Recall that
TR(k,, ..., k,) is the Godel number of (ki ..., k,).

TR is primitive recursive (by Proposition 5.4). Then ¢ =y O yy O TR is
partial recursive.

The equivalence of Markov computability and Turing computability fol-
lows from Corollaries 5.25 and 5.27 and the known equivalence of Turing
computability and partial recursiveness. Many other definitions of comput-
ability have been given, all of them turning out to be equivalent to Turing
computability. One of the earliest definitions, A-computability, was developed
by Church and Kleene as part of the theory of A-conversion (see Church, 1941).
Its equivalence with the intuitive notion of computability is not immediately
plausible and gained credence only when A-computability was shown to be
equivalent to partial recursiveness and Turing computability (see Kleene,
1936b; Turing, 1937). All reasonable variations of Turing computability seem
to yield equivalent notions (see Oberschelp, 1958; Fischer, 1965).



Computability 373

5.6 Decision Problems

A class of problems is said to be unsolvable if there is no effective procedure for
solving each problem in the class. For example, given any polynomial f(x) with
integral coefficients (for example, 3x° — 4x* + 7x> — 13x + 12), is there an integer
k such that f(k) = 0? We can certainly answer this question for various special
polynomials, but is there a single general procedure that will solve the prob-
lem for every polynomial f(x)? (The answer is given below in paragraph 4.)

If we can arithmetize the formulation of a class of problems and assign
to each problem a natural number, then this class is unsolvable if and only
if there is no computable function & such that, if n is the number of a given
problem, then h(n) yields the solution of the problem. If Church’s thesis is
assumed, the function / has to be partial recursive, and we then have a more
accessible mathematical question.

Davis (1977b) gives an excellent survey of research on unsolvable prob-
lems. Let us look at a few decision problems, some of which we already have
solved.

1. Is a statement form of the propositional calculus a tautology? Truth tables
provide an easy, effective procedure for answering any such question.

2. Decidable and undecidable theories. Is there a procedure for determining
whether an arbitrary wf of a formal system  is a theorem of ~? If so,
v is called decidable; otherwise, it is undecidable.

a. The system L of Chapter 1 is decidable. The theorems of L are the
tautologies, and we can apply the truth table method.

b. The pure predicate calculus PP and the full predicate calculus PF
were both shown to be recursively undecidable in Proposition 3.54.

c. The theory RR and all its consistent extensions (including Peano
arithmetic S) have been shown to be recursively undecidable in
Corollary 3.46.

d. The axiomatic set theory NBG and all its consistent extensions are
recursively undecidable (see page 273).

e. Various theories concerning order structures or algebraic structures
have been shown to be decidable (often by the method of quanti-
fier elimination). Examples are the theory of unbounded densely
ordered sets (see page 115 and Langford, 1927), the theory of abe-
lian groups (Szmielew, 1955), and the theory of real-closed fields
(Tarski, 1951). For further information, consult Kreisel and Krivine
(1967, Chapter 4); Chang and Keisler (1973, Chapter 1.5); Monk (1976,
Chapter 13); Ershov et al. (1965); Rabin (1977); and Baudisch et al.
(1985). On the other hand, the undecidability of many algebraic the-
ories can be derived from the results in Chapter 3 (see Tarski et al.,
1953, 116, III; Monk, 1976, Chapter 16).
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3. Logical validity. Is a given wf of quantification theory logically valid? By

Godel’s completeness theorem (Corollary 2.19), a wf is logically valid if
and only if it is provable in the full predicate calculus PE. Since PF is
recursively undecidable (Proposition 3.54), the problem of logical valid-
ity is recursively unsolvable.

However, there is a decision procedure for the logical validity of wfs
of the pure monadic predicate calculus (Exercise 3.59).

There have been extensive investigations of decision procedures for
various important subclasses of wfs of the pure predicate calculus; for
example, the class (V 3 V) of all closed wfs of the form (Vx)(3y)(Vz).4(x,
Y, z), where .(x, y, z) contains no quantifiers. See Ackermann (1954),
Dreben and Goldfarb (1980) and Lewis (1979).

. Hilbert’s Tenth Problem. If f(x,, ..., x,) is a polynomial with integral coeffi-

cients, are there integers k;, ..., k, such that f(k,, ..., k,) = 0? This difficult
decision problem is known as Hilbert’s tenth problem.

For one variable, the solution is easy. When a,, 4,, ..., 4, are integers,
any integer x such that a,x" + --- + a;x + a, = 0 must be a divisor of a,.

Hence, when g, # 0, we can test each of the finite number of divisors
of a,. If a; = 0, then x = 0 is a solution. However, there is no analogous
procedure when the polynomial has more than one variable. It was
finally shown by Matiyasevich (1970) that there is no decision procedure
for determining whether a polynomial with integral coefficients has
a solution consisting of integers. His proof was based in part on some
earlier work of Davis et al. (1961). The proof ultimately relies on basic
facts of recursion theory, particularly the existence of a non-recursive
re. set (Proposition 5.21(e)). An up-to-date exposition may be found in
Matiyasevich (1993).

. Word problems.

Semi-Thue Systems. Let B = {b,, ..., b,} be a finite alphabet. Remember that
a word of B is a finite sequence of elements of B. Moreover, the empty
sequence A is considered a word of B. By a production of B we mean an
ordered pair (u, v), where u and v are words of B. If p = (u, v) is a produc-
tion of B, and if w and w’ are words of B, we write w >, w' if w’ arises from
w by replacing a part u of w by v. (Recall that u is a part of w if there exist
(possibly empty) words w, and w, such that w = w,uw,.)

By a semi-Thue system on B we mean a finite set . of productions of B. For
words w and w’ of B, we write w = w’ if there is a finite sequence w,, wy, ...,
w (k > 0) of words of B such that w = w,, w’' = w,, and, for 0 <i <k, there is a
production p of /such that w; =, w,,;. Observe that w = w for any word w
of B. Moreover, if w; = w, and w, = w,, then w; = w;. In addition, if w, =
w, and w; = w,, then w; w; = w, w,. Notice that there is no fixed order in
which the productions have to be applied and that many different produc-
tions of .~ might be applicable to the same word.
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By a Thue system we mean a semi-Thue system such that, for every produc-
tion (u, v), the inverse (v, u) is also a production. Clearly, if ./ is a Thue system
and w = w/, then

w’ = w. Hence, =  is an equivalence relation on the set of words of the
alphabet of ..

Example

Let /#be the Thue system that has alphabet {b} and productions (b% A) and
(A, b3). It is easy to see that every word is transformable into b? b, or A.

By a semigroup we mean a nonempty set G together with a binary operation
on G (denoted by the juxtaposition uv of elements u and v) that satisfies the
associative law x(yz) = (xy)z. An element y such that xy = yx =x forall x in G
is called an identity element. If an identity element exists, it is unique and is
denoted 1.

A Thue system .~ on an alphabet B determines a semigroup G with an
identity element. In fact, for each word w of B, let [w] be the set of all words
w’ such that w = w'. [w] is just the equivalence class of w with respect to = ..
Let G consist of the sets [w] for all words w of B. If U and V are elements of
G, choose a word u in U and a word v in V. Let UV stand for the set [uv]. This
defines an operation on G, since, if u’ is any word in U and v’ is any word in
V, [uv] = [u'v’].

Exercises

5.65 For the set G determined by the Thue system .-, prove:
a. (UV)W =U(VW) for all members U, V and W of G.

b. The equivalence class [A] of the empty word A acts as an identity
element of G.

5.66 a. Show that a semigroup contains at most one identity element.
b. Give an example of a semigroup without an identity element.

A Thue system .~ provides what is called a finite presentation of the corre-
sponding semigroup G. The elements b, ..., b,, of the alphabet of - are called
generators, and the productions (u, v) of .- are written in the form of equa-
tions u = v. These equations are called the relations of the presentation. Thus,
in the Example above, b is the only generator and b® = A can be taken as the
only relation. The corresponding semigroup is a cyclic group of order 3.

If . is a semi-Thue or Thue system, the word problem for . is the problem
of determining, for any words w and w’, whether w = w".

Exercises

5.67 Show that, for the Thue system .»# in the Example, the word problem is
solvable.
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5.68 Consider the following Thue system ... The alphabet is {a, b, ¢, d} and
the productions are (ac, A), (ca, A), (bd, A), (db, A), (@, A), (b?, A), (ab,
ba), and their inverses.

a. Show thatc= a?andd = b.

b. Show that every word of .~ can be transformed into one of the words
a, a% b, ab, a?b, and A.

c. Show that the word problem for .~ is solvable. [Hint: To show that
the six words of part (b) cannot be transformed into one another,
use the cyclic group of order 6 generated by an element g, with
a=g?and b =g3]

Proposition 5.30

(Post, 1947) There exists a Thue system with a recursively unsolvable word
problem.

Proof

Let ~ be a Turing machine with alphabet {a,, a,, ..., a,} and internal states
{90 G - Q). Remember that a tape description is a sequence of symbols
describing the condition of . at any given moment; it consists of symbols
of the alphabet of /" plus one internal state q; and q; is not the last symbol
of the description. ./"is in state q; scanning the symbol following q; and
the alphabet symbols, read from left to right, constitute the entire tape at
the given moment. We shall construct a semi-Thue system . that will reflect
the operation of /: each action induced by quadruples of ./~ will be copied
by productions of .~ The alphabet of . consists of {ay, a;, ..., a,, o, Qo -+ » Qs B
d, }. The symbol p will be placed at the beginning and end of a tape descrip-
tion in order to “alert” the semi-Thue system when it is necessary to add an
extra blank square on the left or right end of the tape. We wish to ensure that,
if W = W, then BWp =, BW'B. The productions of ~are constructed from
the quadruples of . in the following manner.

a. If qja,a,q, is a quadruple of ; let (g, a,qy) be a production of .

b. If q;aRq, is a quadruple of ; let (q;a,a, a,q,a,) be a production of ./ for
every a,. In addition, let (g;a; B a;, q,a, B) be a production of . (This last
production adds a blank square when ~reaches the right end of the
tape and is ordered to move right.)

c. If qjaLq, is a quadruple of ; let (a,q;a;, q,aa;) be a production of ./ for
each a,. In addition, let (8 q;a;, p g,a5a;) be a production of . (This last
production adds a blank square to the left of the tape when this is
required.)

d. If there is no quadruple of ./~ beginning with ga;, let ~ contain the following
productions: (g;a, 5), (5 a, 8) for all a,; (5 §, &), (a, €, &) for all a,; and (B &, £).
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s~ stops when it is in a state q; scanning a symbol a;, such that g;a; does not
begin a quadruple of - In such a case, » would replace g;a; in the final tape
description of /by 8. Then 6 proceeds to annihilate all the other symbols to
its right, including the rightmost , whereupon it changes to &. & then anni-
hilates all symbols to its left, including the remaining p. The final result is &
alone. Hence:

(O) For any initial tape description o, .~ halts when and only when poaf = &

Now, enlarge .~ to a Thue system ./’ by adding to . the inverses of all the
productions of .. Let us show that

(V) For any initial tape description a of ./, fap = '€ if and only if pap = &
Clearly, if pap = &, then Pap = ' & Conversely, assume for the sake of

contradiction that faff = ' €, but it is not the case that pap = & Consider a
sequence of words leading from pafto&in +"

Bafp=wy= ..=> w1 =  w;=¢§

Here, each arrow is intended to indicate a single application of a produc-
tion. It is clear from the definition of ./ that no production of ./ applies to &
alone. Hence, the last step in the sequence w, ; = ' £ must be the result of a
production of .. So, w,_; = & Working backward, let us find the least p such
that w, = €. Since we have assumed that it is not true that pof = £, we must
have p > 0. By the minimality of p, it is not true that w, ; = w,. Therefore,
w, = w,_;. Examination of the productions of .~shows that each of the words
Wy, Wy, ..., W, must contain exactly one of the symbols q,, q, ..., q,, 6, or &,
and that, to such a word, at most one production of . is applicable. But, w, is
transformed into both w,,; and w,_; by productions of . Hence, w, ; _w,,,;.
But, w,,; = & Hence, w,; = &, contradicting the definition of p. This estab-
lishes (V).

Now, let sbe a Turing machine with a recursively unsolvable halting
problem (Proposition 5.14). Construct the corresponding Thue system .~ as
above. Then, by ((J) and (V), for any tape description «, .~ halts if and only if
Bap =" & So, if the word problem for ..* were recursively solvable, the halt-
ing problem for - would be recursively solvable. (The function that assigns
to the Godel number of o the Godel number of (fap, &) is clearly recursive
under a suitable arithmetization of the symbolism of Turing machines and
Thue systems.) Thus, .~ has a recursively unsolvable word problem.

That the word problem is unsolvable even for certain Thue systems on a two-
element alphabet (semigroups with two generators) was proved by Hall (1949).

a. Finitely presented groups. A finite presentation of a group consists of a finite
set of generators g, ..., g, and a finite set of equations W, = W, ..., W,
= W, between words of the alphabet B={g;, ..., g,,g{l, ey g;l}. What
is really involved here is a Thue system S with alphabet B, produc-
tions (W, Wy'), ..., (W,, W,’) and their inverses, and all the productions
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(gigfl,A>,<g{1gi,A> and their inverses. The corresponding semigroup
G is actually a group and is called a finitely presented group. The word
problem for G (or, rather, for the finite presentation of G) is the word
problem for the Thue system ..

Problems that concern word problems for finitely presented groups are
generally much more difficult than corresponding problems for finitely
presented semigroups (Thue systems). The existence of a finitely presented
group with a recursively unsolvable word problem was proved, indepen-
dently, by Novikov (1955) and Boone (1959). Other proofs have been given by
Higman (1961), Britton (1963), and McKenzie and Thompson (1973). (See also
Rotman, 1973.) Results on other decision problems connected with groups
may be found in Rabin (1958). For corresponding problems in general alge-
braic systems, consult Evans (1951).



Appendix A: Second-Order Logic

Our treatment of quantification theory in Chapter 2 was confined to first-
order logic; that is, the variables used in quantifiers were only individual
variables. The axiom systems for formal number theory in Chapter 3 and
set theory in Chapter 4 also were formulated within first-order languages.
This restriction brings with it certain advantages and disadvantages, and
we wish now to see what happens when the restriction is lifted. That will
mean allowing quantification with respect to predicate and function vari-
ables. Emphasis will be on second-order logic, since the important differ-
ences between first-order and higher-order logics already reveal themselves
at the second-order level. Our treatment will offer only a sketch of the basic
ideas and results of second-order logic.

Let L1C be the first-order language in which C is the set of nonlogical
constants (i.e., individual constants, function letters, and predicate letters).
Start with the language L1C, and add function variables g; gand predicate
variables R}, where 1 and 7 are any positive integers.* (We shall use g", h", ...
to stand for any function variables of n arguments and R”, S, ..., X", Y", Z"
to stand for any predicate variables of n arguments; we shall also omit the
superscript n when the value of n is clear from the context.) Let (u), stand
for any sequence of individual variables u,, ..., u,' and let V(u), stand for
the expression (Vu,) ... (Vu,). Similarly, let (t), stand for a sequence of terms
ti, ..., t,. We expand the set of terms by allowing formation of terms g"({t),),
where g" is a function variable, and we then expand the set of formulas by
allowing formation of atomic formulas A} ((t),) and R"((t),) where (t),, is
any sequence of the newly enlarged set of terms, A/ is any predicate letter
of C, and R" is any n-ary predicate variable. Finally, we expand the set of
formulas by quantification (Vg") .»and (VR") ..» with respect to function and
predicate variables.

Let L2C denote the second-order language obtained in this way. The lan-
guage L2C will be called a full second-order language. The adjective “full”
indicates that we allow both function variables and predicate variables and
that there is no restriction on the arity n of those variables. An example of
a nonfull second-order language is the second-order monadic predicate

* We use bold letters to avoid confusion with function letters and predicate letters. Note that
function letters and predicate letters are supposed to denote specific operations and rela-
tions, whereas function variables and predicate variables vary over arbitrary operations and
relations.

* In particular, (x), will stand for x,, ..., x,,.

379
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language in which there are no function letters or variables, no predicate let-
ters, and only monadic predicate variables.*

It is not necessary to take = as a primitive symbol, since it can be defined
in the following manner.

Definitions

t =u stands for (VR')(R't < R'u)
g" =h" stands for V(x), (g" ((x),)=h" ((x)n))

R" =S" stands for V(x), (R" ((x),) < S" ((x),))

Standard Second-Order Semantics for L2C

For a given language L2C, let us start with a first-order interpretation with
domain D. In the first-order case, we defined satisfaction for the set . of
denumerable sequences of members of D. Now, instead of 2, we use the
set 2. of functions s that assign to each individual variable a member of
D, to each function variable g" some n-ary operation s(g”) on D, and to
each predicate variable R" some n-ary relation s(R”) on D. For each such
s, we extend the denotations determined by s by specifying that, for any
terms t,, ..., t, and any function variable g", the denotation s(g"(t,, ..., t,)) is
s(g"(s(ty), ..., s(t,)). The first-order definition of satisfaction is extended as
follows:

a. For any predicate variable R” and any finite sequence (f), of terms, s
satisfies R"((t),) if and only if (s(t,), ..., s(t,)) € s(R").

b. s satisfies (vg") ~if and only if s’ satisfies ~ for every s’ in 22 that
agrees with s except possibly at g".

c. s satisfies (VR") ~if and only if s’ satisfies » for every s’ in 22 that
agrees with s except possibly at R".

The resulting interpretation .~ is called a standard interpretation of the given
language.

* Third-order logics are obtained by adding function and predicate letters and variables that
can have as arguments individual variables, function and predicate letters, and second-order
function and predicate variables and then allowing quantification with respect to the new
function and predicate variables. This procedure can be iterated to obtain nth-order logics for
alln >1.

* An n-ary relation on D is a subset of the set D" of n-tuples of D. When n = 1, an n-ary relation
is just a subset of D.
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A formula .7 is said to be true for a standard interpretation .~ (written
» E %) if .zis satisfied by every sin >,. 7 is false for . » if no function s in 3,
satisfies ..

A formula .~ is said to be standardly valid if s is true for all standard
interpretations. . is said to be standardly satisfiable if .» is satisfied by
some s in Y, in some standard interpretation. A formula ~ is said to be
a standard logical consequence of a set I' of formulas if, for every standard
interpretation, every s in ¥, that satisfies every formula in I" also satisfies «.
A formula 7 is said to standardly logically imply a formula « if ~ is a logical
consequence of {7 }.

The basic properties of satisfaction, truth, logical consequence, and logi-
cal implication that held in the first-order case (see (I)-(XI) on pages 57-60)
also hold here for their standard versions. In particular, a sentence
» is standardly satisfiable if and only if »» is true for some standard
interpretation.

We shall see that second-order languages have much greater expressive
power than first-order languages. This is true even in the case where the set
C of nonlogical constants is empty. The corresponding language L2@ will
be denoted L2 and called the pure full second-order language. Consider the
following sentence in L2:

(1) Bg)EN)(VR)(R(x) A (Vy)(R(y) = R(g(y)))) = (V¥)R(x)]

This sentence is true for a standard interpretation if and only if the domain
D is finite or denumerable. To see this, consider an operation g and ele-
ment x given by this sentence. By induction, define the sequence x, g(x),
9(9(x)), g(g(g(x))), ..., and let R be the set of objects in this sequence. R is
finite or denumerable, and (1) tells us that every object in D is in R. Hence,
D =R and D is finite or denumerable. Conversely, assume that D is finite or
denumerable. Let F be a one—one function from D onto ® (when D is denu-
merable) or onto an initial segment {0, 1, ..., n} of ® (When D is finite).* Let
x = F}(0) and define an operation g on D in the following manner. When D
is denumerable, g(u) = F-'(F(u) + 1) for all u in D; when D is finite, let g(u) =
FY(F(u) + 1)) if F(u) < n and g(u) = x if F(u) = n. With this choice of g and x,
(1) holds.

Exercise

A1 Show that there is no first-order sentence .» such that .7 is true in an
interpretation if and only if its domain is finite or denumerable. (Hint:
Use Corollary 2.22))

* Remember that the domain of an interpretation is assumed to be nonempty.
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Let us introduce the abbreviations Y! C X! for (Vu)(Y'(4) = X'(u)), NonEm
(XY for (Fu)(X'(u)), and Asym (R?, X!) for (Vu)(Vo)(X(u) A X(v) A R¥u, v) =
“R?(w, u)). Let R2 We X! stand for the second-order formula:

Asym(R?*, XA (VY')(Y' < X' ANonEm(Y")

= Fu)(Y ') A (Vo) (Y (0) Av % u= R*(u,0)))

Then R? We X! is satisfied by an assignment in a given standard interpre-
tation if and only if the binary relation assigned to R? well-orders the set
assigned to X!. (First note that the asymmetry Asym(R?, X!) implies that R?is
irreflexive on X'. To see that R?is transitive on X!, assume R%(i, v) and R*®v, w).
Letting Y' = {u, v, w}, we leave it as an exercise to conclude that R%(u, w). To
show that R? is connected on X!, take any two distinct elements x and y of X!
and consider Y?= {x, y}.)

Let Suc(u, v, R?) stand for R*(v, u) A (Vw)—~(R*(v, w) A R¥(w, u)), and let
First(u, R?) stand for (Yv)(v # 1 = R*(u, v)). Consider the following second-
order formula:

(2) AGRH)EAXHR*WeX" A (V)X (1) A (V1) (—First(u, R?)
= (Fv)Suc(u,v,R?)) A (Fu)(Vo)(v # u = R*(v,u)))

This is true for a standard interpretation if and only if there is a well-ordering
of the domain in which every element other than the first is a successor and
there is a last element. But this is equivalent to the domain being finite.
Hence, (2) is true for a standard interpretation if and only if its domain is
finite.

Exercise

A.2 (a) Show that, for every natural number 1, there is a first-order sentence
the models of which are all interpretations whose domain contains at
least n elements. (b) Show that, for every positive integer n, there is
a first-order theory the models of which are all interpretations whose
domain contains exactly 7 elements. (c) Show that there is no first-order
sentence ~that is true for any interpretation if and only if its domain is
finite.

The second-order sentence (1) A —(2) is true for a standard interpretation if
and only if the domain is denumerable.

Exercises

A.3 Show that there is no first-order sentence .~ the models of which are all
interpretations whose domain is denumerable.
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A.4 Construct a second-order formula Den(X!) that is satisfied by an
assignment in a standard interpretation if and only if the set assigned
to X! is denumerable.

Second-Order Theories

We define a second-order theory in a language L2C by adding the following
new logical axioms and rules to the first-order axioms and rules:

(B4a) (VR") .# (R") =7 (W"), where .. (W") arises from .7 (R") by replacing
all free occurrences of R" by W' and W is free for R” in .» (R").
(B4b) (Vg™ .7 (g") =~ (h"), where .7 (h") arises from .7 (g") by replacing all

free occurrences of g" by h" and h" is free for g" in ..z (g").
(B5a) (VR®)( =) = (#= (VR") ¢), where R" is not free in .
(B5b) (Vg")(.w =) = (= (Vg") »), where g" is not free in ..

Comprehension Schema (COMP)

(AR")(V(x),)(R"({x),) ©.»), provided that all free variables of -» occur in (x),
and R" is not free in ..

Function Definition Schema (FUNDEF)

(VR (V) ) GIR™ ((x),,y) = (38") (V0 )R (0,8 ((00))|

New Rules

(Gen2a) (VR") .7 follows from .
(Gen2b) (Vg") .» follows from ./

Exercises

A.5 Show that we can prove analogues of the usual equality axioms
(A6)—(A7) in any second-order theory:
i Ft=tAg'=g'AR"=R"
ii. Ft=s=(2 (1) =>7(t5s), where #(t, s) arises from .7 (t, t) by replac-
ing zero or more occurrences of t by s, provided that s is free for t in
7 (¢, b).
iii. Fg'=h"=(»(g", g") =7(g" h"), where »(g", h") arises from . (g",
g") by replacing zero or more occurrences of g" by h*, provided that
h" is free for g" in .7 (g", g").
iv. FR"=8"= (#(R", R") =2 (R" S"), where .7 (R", §") arises from .7
(R", R" by replacing zero or more occurrences of R" by S, provided
that S” is free for R* in .7 (R", R").
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A.6 Formulate and prove a second-order analogue of the first-order deduc-
tion theorem (Proposition 2.5).

Let PC2 denote the second-order theory in the language L2C without any
nonlogical axioms. PC2 is called a second-order predicate calculus.

Proposition A.1 (Soundness)
Every theorem of PC2 is standardly valid.

Proof

That all the logical axioms (except Comp and FunDef) are standardly
valid and that the rules of inference preserve standard validity follow by
arguments like those for the analogous first-order properties. The standard
validity of Comp and FunDef follows by simple set-theoretic arguments.

We shall see that the converse of Proposition A.1 does not hold. This will
turn out to be not a consequence of a poor choice of axioms and rules but an
inherent incompleteness of second-order logic.

Let us consider the system of natural numbers. No first-order theory will
have as its models those and only those interpretations that are isomorphic
to the system of natural numbers.* However, a second-order characterization
of the natural numbers is possible. Let AR2 be the conjunction of the axioms
(S1)—(S8) of the theory S of formal arithmetic (see page 154), and the following
second-order principle of mathematical induction:

(259) (VRl)[Rl(O) A(V0)(R'(x) = R(x)) = (Vx)Rl(x)]

Notice that, with the help of Comp, all instances of the first-order axiom
schema (S9) can be derived from (259).t

For any standard interpretation that is a model of AR2 we can prove the
following result that justifies inductive definition.

* Let K be any first-order theory in the language of arithmetic whose axioms are true in the
system of natural numbers. Add a new individual constant b and the axioms b # 11 for every
natural number 7. The new theory K is consistent, since any finite set of its axioms has a
model in the system of natural numbers. By Proposition 2.17, K" has a model, but that model
cannot be isomorphic to the system of natural numbers, since the object denoted by b cannot
correspond to a natural number.

* In AR2, the function letters for addition and multiplication and the associated axioms (S5)—
(S8) can be omitted. The existence of operations satisfying (55)—(S8) can then be proved. See
Mendelson (1973, Sections 2.3 and 2.5).
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Proposition A.2 (Iteration Theorem)

Let # be a standard interpretation that is a model of AR2, and let D be the
domain of . # Let ¢ be an element of an arbitrary set W and let g be a singu-
lary operation of W. Then there is a unique function F from D into W such
that F(0) = c and (Vx)(x € D = F(x') = g(F(x))).*

Proof

Let ~ be the set of all subsets H of D x W such that (1, ¢) € H and (Vx)(Vw)
((x, wy € H = (x/, g(w)) € H). Note that D x W € . Let F be the intersection
of all sets H in ~. We leave it to the reader to prove the following assertions:

a.Fer

b. F is a function from D into W. (Hint: Let B be the set of all x in D for
which there is a unique w in W such that (x, w)e F. By mathematical
induction, show that B = D.)

c. FO)=c.

d. F(x") = g(F(x)) for all x in D.

The uniqueness of F can be shown by a simple application of mathematical
induction.

Proposition A.3 (Categoricity of AR2)

Any two standard interpretations ~ and ~* that are models of AR2 are
isomorphic.

Proof

Let D and D* be the domains of .~ and .~ * 0 and 0* the respective zero
elements, and f and f* the respective successor operations. By the iteration
theorem applied to . 7, with W = D* ¢ = 0* and g = f* we obtain a function F
from D into D* such that F(0) = 0* and F(f(x)) = f*(F(x)) for any x in D. An easy
application of mathematical induction in . 7 * shows that every element of D*
is in the range of F. To show that F is one—one, apply mathematical induction
in .7 to the set of all x in D such that (V y)[(y € D A y # x)=F(x) # F(y)]t

Let ., consist of the nonlogical constants of formal arithmetic (zero,
successor, addition, multiplication, equality). Let ./~ be the standard

* In order to avoid cumbersome notation, “0” denotes the interpretation in . ~of the individual
constant “0,” and “x’” denotes the result of the application to the object x of the interpretation
of the successor function.

* Details of the proof may be found in Mendelson (1973, Section 2.7).
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interpretation of L2 - with the set of natural numbers as its domain and the
usual interpretations of the nonlogical constants.

Proposition A.4

Let » be any formula of L2 ~. Then . is true in ./ if and only if AR2 =7 is
standardly valid.

Proof

Assume AR2 = 7is standardly valid. So AR2 =~ is true in /. But AR2 is
true in /. Hence, ~is true in . /. Conversely, assume .~ is true in . /. We must
show that AR2 =~ is standardly valid. Assume that AR2 is true in some
standard interpretation ~ of L2 By the categoricity of AR2, 7 is isomor-
phic to . /. Therefore, since v is true in ./, . is true in .~ Thus, AR2 = is
true in every standard interpretation of L2 ., that is, AR2 =~ is standardly
valid.

Proposition A.5

a. The set SV of standardly valid formulas of L2 is not effectively
enumerable.

b. SV is not recursively enumerable, that is, the set of Godel numbers of
formulas in SV is not recursively enumerable.

Proof

a. Assume that SV is effectively enumerable. Then, by Proposition A4,
we could effectively enumerate the set /7 of all true formulas of first-
order arithmetic by running through SV, finding all formulas of the
form AR2 =, where .~ is a formula of first-order arithmetic, and
listing those formulas ~. Then the theory = would be decidable,
since, for any closed formula », we could effectively enumerate /=
until either « or its negation appears. By Church’s thesis, . would
be recursively decidable, contradicting Corollary 3.46 (since /% is a
consistent extension of RR).

b. This follows from part (a) by Church’s thesis.

The use of Church’s thesis in the proof could be avoided by a consistent use
of recursion-theoretic language and results. The same technique as the one
used in part (a), together with Tarski’s theorem (Corollary 3.44), would show
the stronger result that the set (of Godel numbers) of the formulas in SV is
not arithmetical.
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Corollary A.6

The set of all standardly valid formulas is not effectively (or recursively)
enumerable.

Proof

An enumeration of all standardly valid formulas would yield an enumera-
tion of all standardly valid formulas of L2/, since the set of formulas of
L2/ is decidable (recursively decidable).

Corollary A.7

There is no axiomatic formal system whose theorems are the standardly
valid formulas of L2 ..

Proof

If there were such an axiom system, we could enumerate the standardly
valid formulas of L2 ./, contradicting Corollary A.5.

Proposition A.8 (Incompleteness of Standard Semantics)

There is no axiomatic formal system whose theorems are all standardly valid
formulas.

Proof

If there were such an axiom system, we could enumerate the set of all stan-
dardly valid formulas, contradicting Corollary A.6.

Proposition A.8 sharply distinguishes second-order logic from first-order
logic, since Godel’s completeness theorem tells us that there is an axiomatic
formal system whose theorems are all logically valid first-order formulas.
Here are some additional important properties enjoyed by first-order theo-
ries that do not hold for second-order theories:

L. Every consistent theory has a model. To see that this does not hold
for second-order logic (with “model” meaning “model in the sense
of the standard semantics”), add to the theory AR2 a new individ-
ual constant b. Let /~ be the theory obtained by adding to AR2 the
set of axioms b # 7 for all natural number n.  is consistent. (Any
proof involves a finite number of the axioms b #71. AR2 plus any
finite number of the axioms b # 71 has the standard interpretation as
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a model, with b interpreted as a suitable natural number. So every
step of the proof would be true in . /. Therefore, a contradiction can-
not be proved.). But ~has no standard model. (If » were such a
model, AR2 would be true in .~ Hence, . » would be isomorphic to

/, and so the domain of . » would consist of the objects denoted by
the numerals 71. But this contradicts the requirement that the domain
of . » would have to have an object denoted by “b” that would satisfy
the axioms b # 7 for all natural numbers n.)

II. The compactness property: a set I' of formulas has a model if and
only if every finite subset of I" has a model. A counterexample is
furnished by the set of axioms of the theory .~ in (I) earlier.

III. The upward Skolem-Léwenheim theorem: every theory that has an
infinite model has models of every infinite cardinality. In second-
order logic this fails for the theory AR2. By Proposition A.3, all mod-
els of AR must be denumerable.

IV. The downward Skolem-Léwenheim theorem: every model ./ of a
theory has a countable elementary submodel* In second-order logic,
a counterexample is furnished by the second-order categorical the-
ory for the real number system.! Another argument can be given
by the following considerations. We can express by the following
second-order formula . (Y!, X!) the assertion that Y! is equinumer-
ous with the power set of X!:

(ERZ)[(Vxl)(sz)(Xl(xl) AX(x2) A (V}/)(Yl(y) = [R*(x, y) e
R%(x2, Y)]) = x1 = x2) A(YWHW'  Y! = (3x)(X (%) A

(VY)W (y) (= R (x, )]

R? correlates with each x in X! the set of all y in Y! such that R*(x, y). Now
consider the following sentence Cont:

(3%)(3Y")(Den(X') A () Y' (y) A~ (Y, X))

Then Cont is true in a standard interpretation if and only if the domain of the
interpretation has the power of the continuum, since the power set of a denu-
merable set has the power of the continuum. See Shapiro (1991, Section 5.1.2)

* For a definition of elementary submodel, see Section 2.13.

* The axioms are those for an ordered field (see page 97) plus a second-order completeness
axiom. The latter can be taken to be the assertion that every nonempty subset that is bounded
above has a least upper bound (or, equivalently, that no Dedekind cut is a gap). For a proof of
categoricity, see Mendelson (1973, Section 5.4).
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and Garland (1974) for more information about the definability of cardinal
numbers in second-order logic.

Exercises

A.7 Show that a sentence of pure second-order logic is true in a standard
interpretation . ~ if and only if it is true in any other standard interpre-
tation whose domain has the same cardinal number as that of

A.8 a. Show that there is a formula Cont (X') of pure second-order logic
that is satisfied by an assignment in an interpretation if and only if
the set assigned to X! has the power of the continuum.

b. Find a sentence CH of pure second-order logic that is standardly
valid if and only if the continuum hypothesis is true.*

Henkin Semantics for L2C

In light of the fact that completeness, compactness, and the Skolem-
Lowenheim theorems do not hold in second-order logic, it is of some inter-
est that there is a modification of the semantics for second-order logic that
removes those drawbacks and restores a completeness property. The funda-
mental ideas sketched later are due to Henkin (1950).

Start with a first-order interpretation with domain D. For each positive
integer n, choose a fixed collection (1) of n-ary relations on D and a fixed
collection .+~ (n) of n-ary operations on D. Instead of 2.,, we now use the set
>4 of assignments s in ¥, such that, for each predicate variable R*, s(R") is
in 7 (n) and, for each function variable g", s(g") is in .+ (n). The definitions of
satisfaction and truth are the same as for standard semantics, except that >,
is replaced by Y3 Such an interpretation will be called a Henkin interpreta-
tion. Using a Henkin interpretation amounts to restricting the ranges of the
predicate and function variables. For example, the range of a predicate vari-
able R! need not be the entire power set . (D) of the domain D. In order for
a Henkin interpretation ~ to serve as an adequate semantic framework, we
must require that all instances of the comprehension schema and the func-
tion definition schema are truein » . A Henkin interpretation for which this
condition is met will be called a general model. A formula that is true in all
general models will be said to be generally valid, and a formula that is satis-
fied by some assignment in some general model will be said to be generally
satisfiable. We say that v generally implies ~if v = is generally valid and that
- is generally equivalent to ~if .7 <« is generally valid.

A standard interpretation on a domain D determines a corresponding gen-
eral model in which ~ (n) is the set of all n-ary relations on D and . (1) is the
set of all n-ary operations on D. Such a general model is called a full general

* We take as the continuum hypothesis the assertion that every subset of the set of real num-
bers is either finite or denumerable or is equinumerous with the set of all real numbers.
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model. Standard satisfaction and truth are equivalent to Henkin satisfaction
and truth for the corresponding full general model. Hence, the following
statements are obvious.

Proposition A.9

a. Every generally valid formula is also standardly valid.
b. Every standardly satisfiable formula is generally satisfiable.

We also have the following strengthening of Proposition A.1.

Proposition A.10

Every theorem of PC2 is generally valid.

Proof

The general validity of (Comp) and (FunDef) follows from the definition of
a general model. The proofs for the other logical axioms are similar to those
in the first-order case, as is the verification that general validity is preserved
by the rules of inference.

Proposition A.11 (General Second-Order Completeness)

The theorems of PC2 coincide with the generally valid formulas of L2C.

Proof

Let .7 be a generally valid formula of L2C. We must show that .~is a theorem
of PC2. (It suffices to consider only closed formulas.) Assume, for the sake of
contradiction, that .# is not a theorem of PC2. Then, by the deduction theo-
rem, the theory PC2+{-#} is consistent. If we could prove that any consistent
extension of PC2 has a general model, then it would follow that PC2+{—~ }
has a general model, contradicting our hypothesis that ..~ is generally valid.
Hence, it suffices to establish the following result.

Henkin’s Lemma

Every consistent extension . of PC2 has a general model.

Proof

The strategy is the same as in Henkin’s proof of the fact that every consis-
tent first-order theory has a model. One first adds enough new individual
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constants, function letters, and predicate letters to provide “witnesses” for all
existential sentences. For example, for each sentence (3x) « (x), there will be a
new individual constant b such that (3x) ~ (x) =~ (b) can be consistently added
to the theory. (See Lemma 2.15 for the basic technique.) The same thing is
done for existential quantifiers (3g”) and (3R"). Let .~ * be the consistent exten-
sion of /~ obtained by adding all such conditionals as axioms. Then, by the
method of Lindenbaum’s lemma (Lemma 2.14), we inductively extend ~* to a
maximal consistent theory ./*. A general model .~ of ~"can be extracted from
/* The domain consists of the constant terms of ./ *. The range of the predi-
cate variables consists of the relations determined by the predicate letters of
/*. A predicate letter B determines the relation B* such that B#(t), holds in
» if and only if B¥(t), is a theorem of /* The range of the function variables
consists of the operations determined by the function letters of ~* If fis a
function letter of /*, define an operation f* by letting f#((t),) = f((t),). A proof
by induction shows that, for every sentence ¢, ~is true in . 7 if and only if ~is
a theorem of /* In particular, all theorems of /~are true in .~
The compactness property and the Skolem-Léwenheim theorems also
hold for general models. See Manzano (1996, Chapter IV) or Shapiro (1991)
for detailed discussions.*

Corollary A.12

There are standardly valid formulas that are not generally valid.

Proof

By Corollary A.7, there is no axiomatic formal system whose theorems are
the standardly valid formulas of L2 . By Proposition A.11, the generally
valid formulas of L2 -/ are the theorems of the second-order theory P. 2.
Hence, the set of standardly valid formulas of L2 ./ is different from the set
of generally valid formulas of L2 .. Since all generally valid formulas are
standardly valid, there must be some standardly valid formula that is not
generally valid.

We can exhibit an explicit sentence that is standardly valid but not gener-
ally valid. The Godel-Rosser incompleteness theorem (Proposition 3.38) can
be proved for the second-order theory AR2. Let ..» be Rosser’s undecidable
sentence for AR2! If AR2 is consistent, .7 is true in the standard model of
arithmetic. (Recall that ..»» asserts that, for any proof in AR2 of ., there is a
proof in AR2, with a smaller Godel number, of —.». If AR2 is consistent, .»
is undecidable in AR2 and, therefore, there is no proof in AR2 of .2, which

* Lindstrém (1969) has shown that, in a certain very precise sense, first-order logic is the stron-
gest logic that satisfies the countable compactness and Skolem-Léwenheim theorems. So
general models really are disguised first-order models.

* We must assume that AR is consistent.
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makes « trivially true.) Hence, AR2 = is standardly valid, by Proposition
A 4. However, AR2 = »is not generally valid. For, if AR2 = »» were generally
valid, it would be provable in P~ 2, by Proposition A.11. Hence, .» would be
provable in AR2, contradicting the fact that it is an undecidable sentence of
AR2.

Exercise

A9 a. Show that the second-order theory AR2 is recursively undecidable.

b. Show that the pure second-order predicate calculus P 2 is recur-
sively undecidable.*

It appears that second-order and higher-order logics were the implicitly
understood logics of mathematics until the 1920s. The axiomatic charac-
terization of the natural numbers by Dedekind and Peano, the axiomatic
characterization of the real numbers as a complete ordered field by Hilbert
in 1900, and Hilbert’s axiomatization of Euclidean geometry in 1902 (in the
French translation of his original 1899 book) all presupposed a second-order
logic in order to obtain the desired categoricity. The distinction between
first-order and second-order languages was made by Léwenheim (1915) and
by Hilbert in unpublished 1917 lectures and was crystal clear in Hilbert and
Ackermann’s (1950)," where the problem was posed about the completeness
of their axiom system for first-order logic. The positive solution to this prob-
lem presented in Godel (1930), and the compactness and Skolem-Léwenheim
theorems that followed therefrom, probably made the use of first-order logic
more attractive. Another strong point favoring first-order logic was the fact
that Skolem in 1922 constructed a first-order system for axiomatic set theory
that overcame the imprecision in the Zermelo and Fraenkel systems.* Skolem
was always an advocate of first-order logic, perhaps because it yielded the
relativity of mathematical notions that Skolem believed in. Philosophical
support for first-order logic came from WV. Quine, who championed the
position that logic is first-order logic and that second-order logic is just set
theory in disguise.

The rich lodes of first-order model theory and proof theory kept logicians
busy and satisfied for over a half-century, but recent years have seen a revival
of interest in higher-order logic and other alternatives to first-order logic,

* The pure second-order monadic predicate logic MP2 (in which there are no nonlogical con-
stants and no function variables and all second-order predicate variables are monadic) is
recursively decidable. See Ackermann (1954) for a proof. The earliest proof was found by
Lowenheim (1915), and simpler proofs were given by Skolem (1919) and Behmann (1922).

* Hilbert and Ackermann (1950) is a translation of the second (1938) edition of a book which
was first published in 1928 as Grundziige der theoretischen Logik.

+ See Moore (1988) and Shapiro (1991) for more about the history of first-order logic. Shapiro
(1991) is a reliable and thorough study of the controversies involving first-order and second-
order logic.
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and the papers in the book Model-Theoretic Logics (edited by Barwise and
Feferman 1985) offer a picture of these new developments.* Barwise (1985)
lays down the challenge to the old first-order orthodoxy, and Shapiro (1991)
and Corcoran (1987, 1998) provide philosophical, historical, and technical
support for higher-order logic. Of course, we need not choose between first-
order and higher-order logic; there is plenty of room for both.

* Van Benthem and Doets (1983) also provide a high-level survey of second-order logic and its
ramifications.






Appendix B: First Steps in
Modal Propositional Logic

(#) It is necessary that 1 +1 = 2.

(##) It is possible that George Washington never met King George III of
England.

These assertions are examples of the application of the modal operators “nec-
essary” and “possible.” We understand here that “necessity” and “possibil-
ity” are used in the logical or mathematical sense.* There are other usages,
such as “scientific necessity,” but, unless something is said to the contrary,
we shall hold to the logical or mathematical sense.

In its classical usage, the notation Oa stands for the assertion that a is neces-
sary. Here, “o” and other lowercase Greek letters will stand for propositions.
In traditional modal logic, ¢a was taken to assert that o is possible. As before,
as basic propositional connectives we choose negation — and the condi-
tional =. The other standard connectives, conjunction A, disjunction v, and the
biconditional <, are introduced by definition in the usual way. The well-formed
formulas (wfs) of modal propositional logic are obtained from the propositional
letters A, Ay, A, ... by applying =, =, and O in the usual ways. Thus, each 4; is
awf, and if a and f are wfs, then (-a), (@ = ), and (o) are wfs. The expression
(©a) is defined as (- (O (—~ ), since asserting that o is possible is intuitively
equivalent to asserting that the negation of a is not necessary.

We shall adopt the same conventions for omitting parentheses as in
Chapter 1, with the additional proviso that 00 and ¢ are treated like —. For
example, (- (O (- A)))) is abbreviated as = 0 — A,, and A, = A, is an abbre-
viation of ((JA;) = A,). Finally, to avoid writing too many subscripts, we
often will write A, B, C, D instead of A,, A,, A;, A,.

Our study of modal logic will begin with the study of various axiomatic
theories. A theory is a set of formulas closed with respect to two rules: the
traditional modus ponens rule
(MP): p follows from o and a = 8
and the necessitation rule
(N): Ou follows from o

* We could also say that the sentence “1 + 1 = 2" is logically necessary and the sentence “George
Washington never met King George III of England” is logically possible by virtue of the mean-
ing of those sentences, but some people prefer to avoid use of the concept of “meaning.” If we
should find out that George Washington actually did meet King George III, then the sentence
(##) would still be true, but uninteresting. If we should find out that George Washington
never did meet King George III, then, although (##) is true, it would be silly to assert it when
we knew a stronger statement. In general, a sentence A logically implies that A is possible.

395
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An axiomatic theory will be determined in the usual way by a set of axioms
and the rules of inference (MP) and (N). Thus, a proof in such a theory is a
finite sequence of wfs such that each wf in the sequence is either an axiom or
follows by (MP) or (N) from the preceding wfs in the sequence, and a theorem
of a theory is the last wf of any proof in the theory. We shall study several
modal theories that have historical and theoretical importance. For some of
those theories, the principal interpretation of Oa will not be “a is necessary.”
For example, Oa may mean that o is provable (in a specified formal system).

Inclusion of the necessitation rule (N) may call for some explanation, since
we ordinarily would not want the necessity of a to follow from o. However,
the systems to be studied here initially will have as theorems logical or
mathematical truths, and these are necessary truths. Moreover, in most of
the systems that are now referred to as modal logics, rule (N) will be seen
to be acceptable. Axiomatic systems for which this is not so will not include
rule (N).*

By K we shall denote the modal theory whose axioms are the following
axiom schemas:

(A1) All instances of tautologies
(A2) All wfs of the form O(a = f) = (Oo = Op)

These are reasonable assumptions, given our interpretation of the necessity
operator [, and they also will be reasonable with the other interpretations
of O that we shall study.

By a normal theory we shall mean any theory for which all instances of (A1)
and (A2) are theorems. Unless something is said to the contrary, in what fol-
lows all our theories will be assumed to be normal. Note that any extension*
of a normal theory is a normal theory.

Exercises

B.1 a. If ais a tautology, then |— Oo.
b. If a = Bis a tautology, then |— Oa = Of
c¢. If a= pisatautology and |— Oa, then |- OP.

d. If @ © P is a tautology, then |- Oua < Op. (Note that, if a © pis a
tautology, then so are a = f and f = «.)

e. If |—xa= P, then |- Oo = OP. (Use (N) and (A2).)
If |-x @ = B, then |- Oa = OP. (First get |—x = p = - aand use (e).)

* When needed, the effect of rule (N) can be obtained for special cases by adding suitable
axioms.

* A theory V is defined to be an extension of a theory U if all theorems of U are theorems of V.
Moreover, an extension V of U is called a proper extension of U if V has a theorem that is not
a theorem of U.
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B.2 a. |- O(@ A B) = Oa and |- O(x A B) = OP. (Use the tautologies
aAP=>aand a AP =P, and B.1(b).)

b. |- Oo = @B = O A p). (Use the tautology o = (p = o A ), and
B.1(b).)

¢ |-k O0A OB < O A B). (Use (a) and (b).)

d. If | a< B, then |- O < P).

e. |—x O < p) = [@a < Op). (Use (c) and (A2), recalling that y < & is
definedas (y =) A (6 =>17).)

f. If |-x a< Bthen |- Oua < Op.

B.3 | oV p) & oa Vv Of. (Note that - O(a v p) is provably equivalent* in
K to O (a v B), which, by B.1(d), is, in turn, provably equivalent in K
to O (- a A = f) and the latter, by B.2(c), is provably equivalent in K to
O - a A O~ B. This wf is provably equivalentin Kto~ (-O-av-0O-f),
which is = (Ga v ©f). Putting together these equivalences, we see that -
O(a v P) is provably equivalent in K to = (¢a v ©f) and, therefore, that
O(a v P) is provably equivalent in K to oo v ©f.)

B4 a. |-¢ Oa < = ¢ = «a (note that Oa is, by B.1(d), provably equivalent in
K to O~ = o, and the latter is provably equivalent in K to = -0 - o,
whichis = ¢ — o)
|« "Ooese o -a
[« Caeda
|-xOeep)=>0Caep
|xO@ep)=>0O-~asOp
|—x O & p) = (Ca e Of)
|« O0ae o0 " a
|—x Oo v Op = Ol V ).
|—x Ol A B) = Ca A OP.
c | Ou= (Op = O A p)).
Define a v p as O(c = P). This relation is called strict implication.
B6 a. |gavpe-O@Ap)
b. |-xkavBAPOY=>avy
¢. |-xOa= (B v o) (this says that a necessary wf is strictly implied by
every wf)

B.5

T P@ e a0 T

d. |-x O a = (x v p) (this says that an impossible wf strictly implies
every wf)

|-k Oo < (- o) va

o

* To say that y is provably equivalent in K to 8 amounts to saying that |-y < 6.
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Theorem B.1 Substitution of Equivalents

Let I', be a modal wf containing the wf a and let I'y be obtained from I', by
replacing one occurrence of a by p. If |- a < B, then |- T, & T

Proof

Induction on the number n of connectives (including O) in Ta.. If n =0, then T,
is a statement letter A and ais A itself. So I'; is B, the hypothesisis |- A < B,
and the required conclusion |- I', < I is the same as the hypothesis. For
the inductive step, assume that the theorem holds for all wfs having fewer
than n connectives.

Case 1. T, has the form = A,. Then I'; has the form -~ Ay, where A is obtained
from A, by replacing one occurrence of a by f. By the inductive hypothesis,
|-x A, & Ay Hence, |- = A, & = Ay, which is the desired conclusion.

Case 2. T, has the form A, = A,. By the inductive hypothesis, |-x A, & A,
and |- A, © A, where A; and A are obtained from A, and A, by replacing
zero or one occurrence of a by f. But from |- A, & Agand |—¢ A, © Ay, one
can derive |- (A, = A) © (A; = Ay, which is the required conclusion |-
I,erl,

Case 3. T, has the form OA,. By the inductive hypothesis, |- A, < A, where
A, is obtained from A, by replacing one occurrence of a by . By B.2(f), |-
04, & OAy, thatis, |- T, & T},

Note that, by iteration, this theorem can be extended to cases where more
than one occurrence of « is replaced by f.

Theorem B.2 General Substitution of Equivalents

The result of Theorem B.1 holds in any extension of K (i.e., in any modal the-
ory containing (A1) and (A2)). The same proof works as that for Theorem B.1.

Exercise

B.7 a. |00 (AVvB)eoOo (-A=B)
b. |[-«x@Oa=>-0pe--Oa=>0-p)

Notice that, if Oa is interpreted as “o is necessary,” acceptance of the neces-
sitation rule limits us to theories in which all axioms are necessary. For, if o
were an axiom that is not a necessary proposition, then Ca would be a theo-
rem, contrary to the intended interpretation. Moreover, since it is obvious that
(MP) and (N) lead from necessary propositions to necessary propositions, all
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theorems would be necessary. So, if we want an applied modal logic with
some theorems that are not necessary, as we would, say, in physics, then we
would be impelled to give up rule (N). To still have the theorem on substitu-
tion of equivalences, we would have to add as axioms certain necessary wfs
that would enable us to obtain the result of Exercise B.2(f), namely, if |—
o < B, then |- Oa < Op. However, to avoid the resulting complexity, we
shall keep (N) as a rule of inference in our treatment of modal logic.

Let us extend the normal theory K to a stronger theory T by adding to K
the axiom schema:

(A3) All wfs of the form Oa = «.

This schema is sometimes called the necessity schema. It asserts that every
necessary proposition is true. We shall show later that T is stronger than K,
that is, that there are wfs OJa = o that are not theorems of K. Note that, in
T, strict implication a v  implies the ordinary conditional @ = § (which is
sometimes called a material implication).

Exercise

B.8 a. |-y a= < (use the instance 0 - o = = « of (A3) and an instance of
the tautology (y =~ 8) = @ = 7))

b. |-y O0a = Oa (replace a by Oo in (A3))
¢. |- O... Oa = O« (for any positive number of (0's in the antecedent)
d |[a=290..0«

Now we turn to an extension of the system T obtained by adding the axiom
schema:

(A4) All wfs of the form Oo = OO«

This enlarged system is traditionally designated as S4. This notation is
taken from the work Symbolic Logic (New York, 1932) by C.I. Lewis and C.H.
Langford, one of the earliest treatments of modal logic from the standpoint
of modern formal logic.

The justification of (A4) is not as straightforward as that for the previous
axioms. If Ou is true, then the necessity of a is due to the form of o, that is,
to the logical structure of the proposition asserted by a. Since that structure
is not an empirical fact, that is, it does not depend on the way our world is
constituted, the truth of Oa is necessary. Hence, OO« follows.

Exercises

B9 a. |-, O0a = OO0« (and so on, for any number of [0's)
b. |-g,Oa=0O... Ou (and so on, for any number of [I's)
¢ |—gs Oo < OO (use (A3) and B.8(b))
d. |-gsOo< O... Ox (use (b) and B.8(c))
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B.10 a. |-g, 00 -~ - Oa

| -4 OO < O- — Oa (use B.2(e))

| -4 O © O- — Oa (use (b) and B.9(c))

| -5, O- o0 & O~ = O~ « (replace a by = ain (c))
|- O~ae-O--0O«a

| -5 O © OO (abbreviation of (e))

g |—udaeo.. oa

™0 a0 T

By B.9(d) and substitution of equivalents, any sequence of consecutive 's
within a modal wf y can be replaced by a single occurrence of O to yield a wf
that is provably equivalent to y in 54 or any extension of S4. By B.10(g), the
same holds for ¢ instead of 0.

Exercise

B.11 (A Sharper Substitution of Equivalents) Let ', be a modal wf containing
the wf o and let I'; be obtained from I, by replacing one occurrence
of a by f. Then |-, O(x < p) = (T, & T'y). (Hint: The proof, like that of
Theorem B.1, is by induction, except that the induction wf, instead of
being

“If |-x a & B, then |- I, & T',” is now “|—, O < p) = (I, & [p.”

When 1 = 0, we now need (A3). For Case 3 of the induction step, we
must use B.1(e), (A4), and B.2(e).) Note that we can extend B.11 to the case
where two or more occurrences of a are replaced by f.

Exercises

B.12 a. |—g ©O0a = O (use (A3) to get |—g, OGx = Ga and then B(f) to
get |—g, OOO® = OO and then B.10(f))
b. |-g O0a = O0O0 (use B.8(a) to get |—g, O0a = OO and then
B.1(e) to get |-, OOGa = OOOO; finally, apply B.9(c))
C |-g OCa e O0OCw (apply B.1(e) to B.12(a), and use B.12(b))
d. |-g ¢Oa < oO0Ox (use () and negations)

B.13 Consecutive occurrences of [0's and/or ¢'s can be reduced in S4 to
either 0 or ¢ or O or ¢ or OGO or OIO.

We have seen (in B.9(d) and B.10(g)) that the axiom (A4) entails that con-
secutive occurrences of the same modal operator are reducible in S4 to
a single occurrence of that operator. Now we shall introduce a similar
simplification when there are consecutive occurrences of different modal
operators.
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Let S5 be the theory obtained by adding to T the following schema:
(A5) Ca =00a
This amounts to saying that a proposition that is possible is necessarily possible.

Now we aim to show that (A4) is provable in S5.

Exercises

=
—
=
oV

|-g5 © = OO — « (use (A5) with a replaced by - «)

b. |-g 00 &=~ <& -« (use contrapositive of (a))
¢ |- 0o ae 00 - a(use B4(b)
d. |-5<¢ 0 a=> -0 -a(use (b)and (o)
e. |-g ©oOa= O (use (d), B4(a), and Theorem B.2)
f. |- Oo = ©oOa (use B.8(a), with o replaced by Ca)
g |5 OOa < Oa (use (e) and (f))
B.15 a. |—g O < OO (use (A5), and (A3) with o replaced by <)
b. |-g ©Oa < O¢Oa (replace o by Oa in (a))
¢ |-ss Oa= oOo (use B.8(a))
d. |-¢ 0o = OO« (use (b) and (c))
e. |-gsOa= OO« (apply Theorem B.1 to (d) and B.12(g))

Note that B.15(e) is (A4). Since (A4) is a theorem of S5, it follows that S5 is an
extension of S4. We shall prove later that (A5) is not provable in 54, so that S5
is a proper extension of S4.

Exercise

B.16 If ©0Oo = Oa (which, by B.13(e), is a theorem of S5) is added as an axiom
schema to T, show that schema (A5) becomes derivable. (Hence, 0o =
Oa could be used as an axiom schema for S5 instead of (A5).)

Notice that the two theorem schemas O¢a & ¢a and ¢Oa < Oa of S5
enable us (by substitution of equivalents) to reduce any sequence of modal
operators in a wf to the last modal operator of the sequence.

Exercise

B.17 Find a modal wf that is provably equivalent in S5 to the wf
OO0COA v (0OC-B=0C

and contains no sequence of consecutive modal operators.
Note that the justification of (A5) is similar to the justification of (A4). If Ga
is true, then the fact that o is possible is due to the form of o, that is, to the
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logical structure of the proposition asserted by a. Since that structure is not
an empirical fact, that is, it does not depend on the way our world is consti-
tuted, the truth of ¢a is necessary. Hence, O0¢a follows.

Semantics for Modal Logic

Recall that the basic wfs in propositional modal logic consist of the denumer-
able sequence A, A,, A;, ... of propositional letters. By a world we shall mean
a function that assigns to each of the letters A, A,, A, ... the value t (true)
or the value f (false). By a Kripke frame* we shall mean a nonempty set W of
worlds together with a binary relation R on W. If wRw* for worlds w and
w* then we shall say that w is R-related to w*. (Note that we are making no
assumptions about the relation R. It may or may not be reflexive and it may
or may not have any other special property of binary relations.)

Assume now that the pair (W, R) is a Kripke frame. (W, R) determines a
truth value t or f for each modal wf a in each world w of W according to the
following inductive definition, where the induction takes place with respect
to the number of connectives (including ) in the wf «. If there are no con-
nectives in o, then a is a letter A;and the truth value of « in w is taken to be
the value assigned to A; by the world w. For the inductive step, assume that
the wf o has a positive number n of connectives and that the truth value
of any wf B having fewer than n connectives is already determined in all
worlds of W. If a is a negation — § or a conditional p = vy, then the number of
connectives in  and the number of connectives in y are smaller than n and,
therefore, the truth values of f and y in every world w in W are already deter-
mined. The usual truth tables for - and = then determine the truth value of
= B and p = y in w. Finally, assume that o has the form Of. Then the number
of connectives in p is smaller than n and, therefore, the truth value of p in
every world w in W is already determined. Now define the truth value of O
in a world w in W to be t if and only if the truth value of f in every world w*
to which w is R-related is t. In other words, OIf is true in w if and only if, for
every world w* in W such that wRw*, B is true in w*.

A wf a is said to be valid in a Kripke frame (W, R) if it is true in every world
w in W. a is said to be universally valid if it is valid in every Kripke frame.

Exercises

B.18 For any world w in a Kripke frame (W, R), ¢f is true in w if and only if
there is a world w* in W such that wRw* and f is true in w*.
(Hint: Since ¢f is = O — B, ©P is true in w if and only if O = f is not true
in w. Moreover, [0 = B is not true in w if and only if there exists w* in
W such that wRw* and - = B is true in w* But = = p is true in w* if and
only if B is true in w*)

* In honor of Saul Kripke, who is responsible for a substantial part of the development of mod-
ern modal logic



Appendix B: First Steps in Modal Propositional Logic 403

B.19 If a and o = P are true in a world w in a Kripke frame, then so is .
B.20 Every modal wf that is an instance of a tautology is universally valid.
B.21 a and o = f are universally valid, so is f.

B.22 If a is universally valid, so is Oa. (Hint: If Oa is not universally valid,
then it is not in some Kripke frame (W, R). Hence, o is not true in some
world w in W. Therefore, a is not true in some world w* in W such that
wRw*. Thus, a is not valid in (W, R), contradicting the universal validity
of a.)

B.23 O(a = P) = (Do = Op) is universally valid. (Hint: Assume the given wf
is not valid in some Kripke frame (W, R). So it is false in some world w
in W. Hence, O(x = p) is true in w, and O = O is false in w. Therefore,
Oa is true in w and Op is false in w. Since Op is false in w, f is false in
some world w* such that wRw*. Since O(a = f) and O are true in w,
and wRw*, it follows that a = p and « are true in w* Hence, § is true in
w* contradicting the fact that f is false in w*)

B.24 a. The set of universally valid wfs form a theory. (Use B.21 and B.22.)
b. The set of valid wfs in a Kripke frame form a theory.
c. If all the axioms of a theory are valid in a Kripke frame (W, R), then
all theorems of the theory are valid in (W, R).
B.25 All theorems of K are universally valid. (Use B.20-B.23.)

Theorem B.3 A, = A, Is Not Universally Valid

Proof

Let w; be a world that assigns f to every propositional letter, and let w, be
a world that assigns t to every propositional letter. Let W = {w;, w,}, and let
R be a binary relation on W that holds only for the pair (w;, w,). (W, R) is a
Kripke frame and OA, is true in the world w; of that Kripke frame, since A,
is true in every world w* of W such that w;Rw*. (In fact, w, is the only such
world in W, and A, is true in w,.) On the other hand, A, is false in w,. Thus,
OA, = A, is false in w;. So OA; = A, is not valid in the Kripke frame (W, R)
and, therefore, JA, = A, is not universally valid.

Corollary B.4 OA, = A, Is Not a Theorem of the Theory K

Proof

Theorem B.3 and Exercise B.25.

Corollary B.4 shows that the theory T is a proper extension of K.

Let us call a Kripke frame (W, R) reflexive if R is a reflexive relation
(i.e., wRw for all w in W)
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Exercise

B.26 Every wf Oa = « is valid in every reflexive Kripke frame (W, R).

(Hint: If Oa is true in a world w in W, then « is true in every world w*
such that wRw*. But wRw and, therefore, o is true in w. Thus, Qo = o is
true in every world in W)

Exercise

B.27 Every theorem of T is valid in every reflexive Kripke frame (W, R).
(Use Exercise B.24(c) and B.26.)

Let us call a Kripke frame (W, R) transitive if R is a transitive relation.*

Exercise

B.28 Every wf Oo = OO is valid in every transitive Kripke frame (W, R).

(Hint: Let w be a world in W, and assume O true in w. Let us then show
that OO is true in w. Assume wRw?* where w* is a world in W. We must
show that Ou is then true in w*. Assume w*Rw*, where w is in W. By tran-
sitivity of R, wRw*. Since Oa is true in w, a is true in w*. Hence, O is true
in w* So O0w is true in w. Thus, Oa = O0a is true in w for every w in W)

Exercise

B.29 Every theorem of 54 is valid in every reflexive, transitive Kripke frame.

Theorem B.5 There Is a Reflexive Kripke Frame
in Which OA, = OOA, Is Not Valid

Proof

Let w, and w, be worlds in which A, is true and let w, be a world in which
A, is false. Let W = {w,, w,, w;} and assume that R is a binary relation in W
for which w;Rw;,, w,Rw,, w,Rw,, w;Rw,, and w,Rw,, but R holds for no other
pairs. (In particular, w;Rwj is false.) Now, [JA, is true in w;, since, for any w*
in W, if w;Rw?, then A, is true in w*. On the other hand, OOA, is false in w;.
To see this, first note that w,Rw,. Moreover, (A, is false in w,, since w,Rw;,
and A, is false in wj.

Thus, OA, is true in w; and OOA, is false in w,. Hence, OA, = OOA, is false
in w, and, therefore, not valid in (W, R).

* Ris said to be transitive if and only if whenever xRy and yRz, then xRz.
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Corollary B.6 A, = OOA, Is a Theorem of S4 That Is Not a Theorem of T

Proof
Use Theorem B.5 and Exercise B.27.

Corollary B.7 S4 Is a Proper Extension of T

We want to show now that S5 is a proper extension of 54. Let us say that a
Kripke frame (W, R) is symmetric if the relation R is symmetric in W, that is,
for any w and w* in W, if wRw*, then w*Rw.

Exercise

B.30 If a Kripke frame (W, R) is symmetric and transitive, then every instance
Oa = 00w of (A5) is valid in (W, R). (Hint: Let w be a world in W.
Assume ¢a is true in w. We wish to show that O« is true in w. Since
<o is 70— o, O — « is false in w. Hence, there is a world w* in W such
that wRw* and — « is false in w* So « is true in w* In order to prove
that O¢a is true in w, assume that w* is in W and wRw*. We must prove
that oo is true in w*. Since (W, R) is symmetric and wRw*, it follows
that w#Rw. Since wRw* and (W, R) is transitive, w*Rw*. But a is true in
w* So, by B.16, O is true in w*)

Exercise

B.31 All theorems of S5 are valid in every reflexive, symmetric, transitive
Kripke frame.

Exercise

B.32 ©A, = OGA, is not a theorem of S4. (Hint: Let W = {w;, w,}, where w;
and w, are worlds such that A, is true in w; and false in w,. Let R be the
binary relation on W such that w,Rw;, w,Rw,, and w,Rw,, but w,Rw,
is false. R is reflexive and transitive. GA, is true in w, and false in w,.
OCA, is false in w; because w,;Rw, and ©A, is false in w,. Hence, CA; =
OOA, is false in w, and, therefore, not valid in the reflexive, transitive
Kripke frame (W, R). Now use B.29)

Exercise

B.33 S5 is a proper extension of S4.
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Exercise
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B.34 S5 and all its subtheories (including K, T, and S4) are consistent. (Hint:
Transform every wf a into the wf o* obtained by deleting all O’s. Each
axiom of S5 is transformed into a tautology. Every application of MP
taking wfs f and p = vy into y is transformed into an application of MP
taking p* and f* = y* into v*, and every application of N taking f into
Op simply takes p* into p* Hence, the transform of every theorem is a
tautology. So it is impossible to prove a wf 6 and — & because in such a
case both & and — &* would be tautologies.)

Exercise

B.35 The theory obtained by adding to the theory T the schema

(B) a= OCa

will be denoted B and called Becker’s theory*

a.

b.

g

All instances of B are provable in S5, and therefore, S5 is an exten-
sion of B. (Hint: Use B.8(a) and (A5).)

A, = OCA, is not provable in S4 and, therefore, not provable in T.
(Hint: Use the Kripke frame in the Hint for B.32.)

B is a proper extension of T.

. All theorems of B are valid in every reflexive, symmetric Kripke

frame (W, R). (Hint: Since (W, R) is reflexive, all theorems of T are
valid in (W, R). We must show that every wf a = O¢a is valid in
(W, R). Assume, for the sake of contradiction, that there is a world
w in W such that a is true and O« is false in w. Since ¢ is false
in w, there exists a world w* in W such that wRw* and ¢ is false in
w*. Since R is symmetric, w*Rw and, since a is true in w, ¢a is true
in w* which yields a contradiction.)

OA, = O0OA, is not a theorem of B. (Hint: Let W = {w;, w,, w;}, where
W, W,, w; are worlds such that A, is true in w; and w, and false
in w;. Let R be a reflexive, binary relation on W such that w;Rw,,
w,Rw,, w,Rw;,, w,Rw, hold, but w;Rw, and w;Rw; do not hold. Then
OA, is true in w; and, since OJA, is false in w,, OOA, is false in w;.
Hence, OA, = OOA, is false in w, and, therefore, is not valid in the
reflexive, symmetric Kripke frame (W, R). So, by (d), OA, = OOA, is
not a theorem of B.)

54 is not an extension of B.
S5 is a proper extension of B. (Hint: Use (a) and (f).)

* B is usually called the Brouwerian system and b is called the Brouwerian axiom because of
a connection with L.E]J. Brouwer’s intuitionism. However, the system was proposed by O.
Becker in Becker [1930].



Appendix C: A Consistency Proof
for Formal Number Theory

The first consistency proof for first-order number theory S was given by
Gentzen (1936, 1938). Since then, other proofs along similar lines have been
given by Ackermann (1940), Schiitte (1951). As can be expected from Godel’s
second theorem, all these proofs use methods that apparently are not avail-
able in S. Our exposition will follow Schiitte’s proof (1951).

The consistency proof will apply to a system S that is much stronger
than S. Seo is to have the same individual constant 0 and the same function
letters +, ;, " as S, and the same predicate letter =. Thus, S and S, have the
same terms and, hence, the same atomic formulas (i.e., formulas s = t, where s
and t are terms). However, the primitive propositional connectives of S_, will
be v and ~, whereas S had D and ~ as its basic connectives. We define a wf of
S, to be an expression built up from the atomic formulas by a finite number
of applications of the connectives Vv and ~ and of the quantifiers (x) (i = 1,
2,...). Welet .,> zstand for (~/) vV . then any wf of S is an abbreviation of
awfofS,.

A closed atomic wf s = ¢ (i.e,, an atomic wf containing no variables) is called
correct, if, when we evaluate s and t according to the usual recursion equa-
tions for + and -, the same value is obtained for s and ¢; if different values are
obtained, s = t is said to be incorrect. Clearly, one can effectively determine
whether a given closed atomic wf is correct or incorrect.

As axioms of S, we take: (1) all correct closed atomic wfs and (2) negations
of all incorrect closed atomic wfs. Thus, for example, (0”) - (0”) + 0" = (0"") - (0”)
and 0’ + 0” # 0" 0” are axioms of S_,.

S, has the following rules of inference:

I. Weak rules

-V V.4V C
a. Exchange: -~ >~ 27 * 7
N BN SN T

. . 7 N /NI
b. Consolidation: -2~~~ *
VA
II. Strong rules

&

a. Dilution: (where ./ is any closed wf)

7 NV 7

~. NI ~GN T

b. De Morgan:

~( 2% //)V’/

407
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c. Negation: ¥
~~ /N T
d. Quantification: _~Bve (where t is a closed term)
(~ (@) () v &
s(n)v o

e. Infinite induction: for all natural number n

()7 (x)v 7
Il Cut: Y/~ V7

NV U

In all these rules, the wfs above the line are called premisses, and the wfs
below the line, conclusions. The wfs denoted by ~and 7 are called the side wfs
of the rule; in every rule either or both side wfs may be absent—except that

D must occur in a dilution (II(a)), and at least one of + and 7 in a cut (III). For
~ .7V 7~

”is a cut, and -~ ”_is an instance of De Morgan’s
7 ~( % //)

rule, II(b). In any rule, the wfs that are not side wfs are called the principal

wfs; these are the wfs denoted by .~ and ~in the earlier presentation of the

rules. The principal wf ., of a cut is called the cut wf; the number of proposi-

tional connectives and quantifiers in ~ . is called the degree of the cut.

We still must define the notion of a proof in S_,. Because of the rule of
infinite induction, this is much more complicated than the notion of proof in
S. A G-tree is defined to be a graph the points of which can be decomposed
into disjoint “levels” as follows: At level 0, there is a single point, called the
terminal point; each point at level i + 1 is connected by an edge to exactly one
point at level ;; each point P at level i is connected by edges to either zero, one,
two, or denumerably many points at level i + 1 (these latter points at level
i + 1 are called the predecessors of P); each point at level 7 is connected only to
points at level i — 1 or i + 1; a point at level i not connected to any points at
level i + 1 is called an initial point.

Examples of G-trees.

example, =

C Level 4

A B Level 3

D Level 2

Level 1

E Level 0
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E

1. A, B, C, D, are initial points. E is the terminal point.
2. A, B, C, G, G, ... are the initial points. E is the terminal point.
3. A is the only initial point.

E is the terminal point.
By a proof-tree, we mean an assignment of wfs of S, to the points of a G-tree
such that

1. The wfs assigned to the initial points are axioms of S;

2. The wfs assigned to a non-initial point P and to the predecessors
of P are, respectively, the conclusion and premisses of some rule of
inference;

3. There is a maximal degree of the cuts appearing in the proof-tree.
This maximal degree is called the degree of the proof-tree. If there are
no cuts, the degree is 0;

4. There is an assignment of an ordinal number to each wf occurring in the
proof-tree such that (a) the ordinal of the conclusion of a weak rule is the
same as the ordinal of the premiss and (b) the ordinal of the conclusion
of a strong rule or a cut is greater than the ordinals, of the premisses.
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The wf assigned to the terminal point of a proof-tree is called the terminal
wf; the ordinal of the terminal wf is called the ordinal of the proof-tree.
The proof-tree is said to be a proof of the terminal wf, and the theorems of
S, are defined to be the wfs that are terminal wfs of proof-trees. Notice
that, since all axioms of S_ are closed wfs and the rules of inference
take closed premisses into closed consequences, all theorems of S_, are
closed wfs.

A thread in a proof-tree is a finite or denumerable sequence ., 5, ... of
wfs starting with the terminal wf and such that each wf ., ; is a predeces-
sor of ;. Hence, the ordinals a,, a,, ... assigned to the wfs in a thread do
not increase, and they decrease at each application of a strong rule or a cut.
Since there cannot exist a denumerably decreasing sequence of ordinals, it
follows that only a finite number of applications of strong rules or cuts can
be involved in a thread. Also, to a given wf, only a finite number of applica-
tions of weak rules are necessary. Hence, we can assume that there are only
a finite number of consecutive applications of weak rules in any thread of
a proof-tree. (Let us make this part of the definition of “proof-tree.”) Then
every thread of a proof-tree is finite.

If we restrict the class of ordinals that may be assigned to the wfs of a
proof-tree, then this restricts the notion of a proof-tree, and, therefore, we
obtain a (possibly) smaller set of theorems. If one uses various “construc-
tive” segments of denumerable ordinals, then the systems so obtained and
the methods used in the consistency proof later may be considered more or
less “constructive”.

Exercise

(7 v )vz d/v(/V//)

Prove that the associative rules are derivable

v (s v.F) (¢ v. )V

from the exchange rule, assuming association to the left. Hence, parentheses
may be omitted from a disjunction.

Lemma A.l

Let ./ be a closed wf having n connectives and quantifiers. Then there is a proof of
~ Vs of ordinal < 2n + 1 (in which no cut is used).

Proof

Induction on #.

1.n = 0. Then . is a closed atomic wf. Hence, either . or ~. is
an axiom, because A is either correct or incorrect. Hence, by
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one application of the dilution rule, one of the following is a

proof-tree.
~ 4 . .
. / dilution
dilution or sV~
~. Ny exchange
~ .7 N7

Hence, we can assign ordinals so that the proof of ~, v, has ordinal 1.
2. Assume true for all k < n.

Case (i): .~ is .4 V .v,. By inductive hypothesis, there are proofs of ~.; v ./
and ~., V ., of ordinals <2(n — 1) + 1 = 2n — 1. By dilution, we obtain
proofs of ~; V 4 V oy and ~o, V 1 V sy, Tespectively, of order 21 and, by
De Morgan’s rule, a proof of ~(w4 V .v5) V .1 V ., of ordinal 21 + 1.

Case (ii): .~ is ~ . Then, by inductive hypothesis, there is a proof of ~ V.7 of
ordinal 2n — 1. By the exchange rule, we obtain a proof of .. v ~~ of ordinal
2n — 1, and then, applying the negation rule, we have a proof of ~~» v ~,
that is of ~~ vV ., of ordinal 2n < 2n + 1.

Case (iii): . is (x).#(x). By inductive hypothesis, for every natural number k,
there is a proof of ~Vv .~ of ordinal <2n — 1. Then, by the quantification rule,
for each k there is a proof of (~ (x) 2(x))v #(k) of ordinal <2n and; hence, by
the exchange rule, a proof of .7(k)v ~ (x).7(x) of ordinal <2n. Finally, by an
application of the infinite induction rule, we obtain a proof of ((x).#(x)) vV ~(x)
#(x) of ordinal <2n + 1 and, by the exchange rule, a proof of (~(x).#(x)) v
(%).7(x) of ordinal <2n + 1.

Lemma A.2

For any closed terms t and s, and any wf ./ (x) with x as its only free variable, the
wif s £tV ~(5) vV /(t) is a theorem of S, and is provable without applying the
qut rule.

Proof

In general, if a closed wf .(f) is provable in S, and s has the same value as ¢,
then .#(s) is also provable in Sco. (Simply replace all occurrences of ¢ that are
“deductively connected” with the t in the terminal wf .(f) by s.) Now, if s has
the same value 7 as f, then, since ~ /(1) v ./ (11) is provable, it follows by the
previous remark that ~A(s) v A(t) is provable. Hence, by dilution, s # ¢ v ~/(s) v

/(t) is provable. If s and ¢ have different values, s = ¢ is incorrect; hence, s # t is
an axiom. So, by dilution and exchange, s #t vV ~/(s) V ./(f) is a theorem.
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Lemma A.3

Every closed wf that is a theorem of S is also a theorem of S.

Proof

Let A be a closed wf that is a theorem of S. Clearly, every proof in S can be

represented in the form of a finite proof-tree, where the initial wfs are axioms

of S and the rules of inference are modus ponens and generalization. Let n be

an ordinal assigned to such a proof-tree for ..
If n =0, then A is an axiom of S.

1.

Note that the ordinals of these proofs are bounded by 2k + 1, where k is the

7/is 2D (# D ), that is, ~» Vv (~~ VvV ). But, ~» Vv .7 is provable in
S., (Lemma A.1). Hence, so is ~~ vV ~~ Vv .7 by a dilution and an
exchange.

. is (D (¢ D2 9) D> (72 D7)D (7D ), thatis, ~(~zV ~¢cV ~7) V

~(~2v C) V (~#Vv D). By Lemma A.l, we have ~(~»V ¢) Vv~V 7and
(~2V ~cV 9)V ~(~»V ~sV 7). Then, by exchange, a cut (with ~ as
cut formula), and consolidation, ~(~ 2V ~¢V 2)V ~(~%V )V ~5V &
is provable.

. is (~ 2D ~/) D (~2D v) D ¥), thatis, ~(~~2V ~) V ~(~~27V /)

V 2. Now, by Lemma A1 we have ~B v B, and then, by the negation
rule, ~~~2V .z, and, by dilution and exchange,
a. ~~~ GV ~(~~IV )V 7
Similarly, we obtain ~~~%V .7V ~~,and ~»V %V ~ ~, and by
De Morgan's rule, ~(~ ~#V /) V.2V ~ ~A; then, by exchange,
b. ~~/V~(~~%V )V %
From (a) and (b), by De Morgan’s rule, we have ~(~~» V ~u Vv
~(~~ 8% /) V 7.

. /is (X).#(x) D .4(t), that is, (~(x).#(x)) V #(t). Then, by Lemma A.1, we

have ~(f) v .4(t); by the quantification rule, (~(x).2(x)) v .(f).

. /18 (X)(#D #) D (7D (x)7), where x; is not free in B, that is, ~(x)(~7 Vv

(@) V~2V (x)7 (x). Now, by Lemma A-1, for every natural number n,
there is a proof of ~ (~ 7 v« (n))v ~ . v« (n).

number of propositional connectives and quantifiers in ~» v « (x).)
Hence, by the quantification rule, for each n, there is a proof of

~x)(~ 7 ve(x)v~ve@m) (of ordinal <2k+2)

Hence, by exchange and infinite induction, there is a proof of

~(x)(~BvC(x))v ~Bv(x)C(x) (of ordinal <2k+3)
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(S1) ,ist,=t,D(t,=t,Dt,=t), thatis, h# L, VH# LV =t
Apply Lemma A-2, with x; =t;as ./ (x), t; as s, t,as t.

(S2) .v/ist,=t, D (t;) = (t,), thatis, t, #t, V (t;) = (t,)" If t; and ¢, have the same
value, then so do (t;) and (t,). Hence (t,)’ = (¢,)’ is correct and therefore an
axiom. By dilution, we obtain ¢, # t, v (t;)’ # (t,)" If t; and ¢, have different
values, ¢, # t, is an axiom; hence, by dilution and exchange, t, # t, v () = (t,)’
is provable.

(S3) ../is 0 # t'. 0 and t’ have different values; hence, 0 # t' is an axiom.
(S4) vis(ty) = () Dt =ty thatis, (t;)' # (t,) V t; = t,. (Exercise.)
(S5) .vist+0=t.t+0and t have the same values. Hence, + 0 = f is an axiom.

(56)—(S8) follow similarly from the recursion equations for evaluating close
terms.

(89) v is #(0) D (X)(#(x) D #(x")) D (x).#(x)), that is,
~ 7(0) v~ (x)(~ #(x)v #(x) v (x) 7 (x)
1. Clearly, by Lemma A.l, exchange and dilution,
~B(0)v ~ (x)(~ B(x) v B(x")) v B(0) is provable.
2. For k > 0, let us prove by induction that the following wf is provable:

~ 2O ~(~ 2(0)v (1) ... v ~(~ 2(k)v 2(k)v (K.

a. Fork =0, ks, ~~2(0)v~ 2(0)v #(l) by Lemma Al, dilution,
and exchange; similarly, s, ~ #(I)v ~ #(0)v #(l). Hence, by
De Morgan’s rule, ks~ (~ #(0)v .2 (I))v ~ #(0)v.»(1) (1), and by
exchange,

s, ~ 20 ~ (~ 2(0)v 2(1))v (1)
b. Assume for k:

s, ~ 2(0)v ~(~ 2(0)v #(1)) v ...
v ~(~ (k) ~ 2(K)) v 2(K')

Hence, by exchange, negation, and dilution,

ks~ ~. 2 (k)v ~ 20 ~(~ 2(0)v . 2((1)) V...
v~ (~ 2k ~ 2(K))v (k")
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Also, by Lemma Al for #(k"), dilution and exchange,

ks, ~ B(k")v ~ B(O)v ~ (~ B(O)v B((1)) v ...
v ~(~B(k)v ~ B(k")) v B(k")

Hence, by De Morgan’s rule,

ﬁJ@A@w~{@w~f@v4~vaﬂdnvm
Vv~ (~ 2k ~ 2(K))v (k")

and, by exchange, the result follows for k + 1.
Now, applying the exchange and quantification rules k times to the result
of (2), we have, for each k > 0,

Fs.~ 2O =) 2V #(x) V..
v~ ()~ () ~ (X)) v (K

and, by consolidation, s, ~ 7 (0)v ~ (x)(~ 7 (x) v 7 (x)) v 4 (k"). Hence, together
with (1), we have, for all k > 0,

b ~ 2O ~ (x)(~ #(x)v #(x)v (k)

Then, by infinite induction,
b, ~ 2(0)v ~ (x)(~ #(x) v 2(x") v (x). #(x)

Thus, all the closed axioms of S are provable in S_. We assume now that
n > 0. Then, (i) A may arise by modus ponens from » and » > ., where
» and .» D .~ have smaller ordinals in the proof-tree. We may assume that
B contains no free variables, since we can replace any such free variables by
0 in B and its predecessors in the proof-tree.

Hence, by inductive hypothesis, b5, . and s, . > ., that is, b5, ~. 7 v ..
Hence, by a cut, we obtain s, ... The other possibility (ii) is that A is (x)B(x) and
comes by generalization from B(x). Now, in the proof-tree, working backward
from B(x), replaces the appropriate free occurrences of x by n. We then obtain a
proof of .7 (1), of the same ordinal. This holds for all n; by inductive hypothesis,
ks, .#(n) for all n. Hence, by infinite induction, ks, (x).~(x), thatis, s, ..

Corollary A .4

If S, is consistent, S is consistent.
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Proof

If Sis inconsistent, then F,0 # 0. Hence, by Lemma A-3,~, 0# 0. But, <, 0=0,
since 0 = 0 is correct. For any wf .~ of S, we would have, by dilution,
k. 0=20v ., and, together with i, 0=0, by a cut, I, .. Thus, any wf of S,
is provable; so S, is inconsistent.

By Corollary A4, to prove the consistency of S, it suffices to show the
consistency of S.

Lemma A.5

The rules of De Morgan, negation, and infinite induction are invertible, that is, from
a proof of a wf that is a consequence of some premisses by one of these rules one can
obtain a proof of the premisses (and the ordinal and degree of such a proof are no
higher than the ordinal and degree of the original proof).

Proof

1. De Morgan. .~ is ~(» VvV #) v 2. Take a proof of .. Take all those
subformulas ~(» v ) of wfs of the proof-tree obtained by starting
with ~(»~ v #) in . and working back up the proof-tree. This pro-
cess continues through all applications of weak rules and through
all strong rules in which ~( v ¢) is part of a side wf. It can end
only at dilutions —~”  or applications of De Morgan’s rule:

~(//V/)Vf

T~ V2 20 V7 The set of all occurrences of ~(#V ) obtained by

~(zVve)Nv T

this process is called the history of ~(.» v ). Let us replace all occur-
rences of ~(7 Vv #) in its history by ~B. Then we still have a proof-tree
(after unnecessary formulas are erased), and the terminal wfis ~» v 2.
Similarly, if we replace ~(» Vv ) by, ~E we obtain a proof of ~E v D.

2. Negation v is ~ ~» vV 7. Define the history of ~ ~~7as was done for
~(2V ) in (1); replace all occurrences of ~ ~~in its history by B; the
result is a proof of . v 7.

3. Infinite induction. .. is ((x).#(x)) v 7. Define the history of (x).#(x) as
in (1); replace (x).#(x) in its history by .»(n) (and if one of the initial
occurrences in its history appears as the consequence of an infi-
nite induction, erase the tree above all the premisses except the one
involving #); we then obtain a proof of #(n)v 7.

Lemma A.6

(Schiitte 1951: Reduktionssatz). Given a proof of - in S, of positive degree m and
ordinal o, there is a proof of ./ in S, of lower degree and ordinal 2°.
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Proof

By transfinite induction on the ordinal a of the given proof of .., a = 0: this
proof can contain no cuts and, hence, has degree 0. Assume the theorem
proved for all ordinals < a. Starting from the terminal wf ., find the first
application of a nonweak rule, that is, of a strong rule or a cut. If it is a strong
rule, each premiss has ordinal a,; < a. By inductive hypothesis, for these prem-
isses, there are proof-trees of lower degree and ordinal 2“. Substitute these
proof-trees for the proof-trees above the premisses in the original proof. We
thus obtain a new proof for . except that the ordinal of .~ should be taken to
be 2%, which is greater than every 2.

The remaining case is that of a cut:

If the ordinals of » V.#and ~~ Vv 7 are a,;, a,, then, by inductive hypothesis,
we can replace the proof-trees above them so that the degrees are reduced
and the ordinals are 2%, 2%, respectively. We shall distinguish various cases
according to the form of the cut formula .

a. .~ is an atomic wf. Either .7 or ~» must be an axiom. Let .~ be the
non-axiom of . and ~v. By inductive hypothesis, the proof-tree
above the premiss containing .~ can be replaced by a proof-tree with
a lower degree having ordinal 2*(i = 1 or 2). In this new proof-tree,
consider the history of .’/ (as defined in the proof of Lemma A-5). The
initial wfs in this history can arise only by dilutions. So, if we erase
all occurrences of . in this history, we obtain a proof-tree for ~ or for
 of ordinal 2%; then, by dilution, we obtain « Vv 7, of ordinal 2*. The
degree of the new proof-tree is less than m.

NV~ ~ ~NV Y

b. Bis

NI
There is a proof-tree for ~ ~+ v 7 of degree < m and ordinal 2“. By
Lemma A-5, there is a proof-tree for ~ v  of degree < m and ordinal
2% There is also, by inductive hypothesis, a proof-tree for » v~ of
degree < m and ordinal 2*. Now, construct

N T VY

Exchange

Exchange

TN & 2N
Cut

TN

Exchange

N
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The degree of the indicated cut is the degree of ~ that is one less

than the degree of ~~ ~, which, in turn, is <m. The ordinal of 7 v~
can be taken to be 2*. Hence, we have a proof of lower degree and
ordinal 2%

cNvENT  ~(ENVT)IVY

C. 718V .7 :

N7
There is a proof-tree for~(<Vv ) vV 7 of lower degree and ordinal 2*.
Hence, by Lemma A-5, there are proof-trees for ~#v ~and ~» Vv 7 of
degree <m and ordinal 2*. There is also a proof-tree for v v v s of
degree <m and ordinal 2*. Construct

NN S ~ 7NV U
Cut
V&N Y

Exchange

N IV ~ N Y
Cut
N TN Y

Consolidation

The cuts indicated have degrees < m; hence, the new proof-tree has
degree < m; the ordinal of # v # v ~can be taken as pmax(a,cz) 4 ol and
then the ordinal » v o v 7and » Vv 7as 2%

d sis (x) cv(x)e (~(x))v o

NV T

By inductive hypothesis, the proof-tree above » Vv (x) can
be replaced by one with smaller degree and ordinal 2. By Lemma
A.5 and the remark at the beginning of the proof of Lemma A.2, we
can obtain proofs of + Vv «(t) of degree <m and ordinal 2¢% for any
closed term t. Now, the proof-tree above the right-hand formula
(~(x)®) V 7 can be replaced, by inductive hypothesis, by one with
smaller degree and ordinal 2*. The history of ~(x) in this proof ter-
minates above either at dilutions or as principal wfs in applications
of the Quantification rule:

~ /(tl)V A

(~ () v
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Replace every such application by the cut

4 \/r'(t1) ("' /(tl))\/’éi
NV

Replace all occurrences in the history of ~(x)/(x) by . The result is still a
proof-tree, and the terminal wf is © v 2. The proof-tree has degree < m,
since the degree of ~«(t,) is less than the degree of ~(x). Replace each old
ordinal f of the proof-tree by 2 + (f. If f was the ordinal of the premiss
~(@)“(t;) V 7 of an eliminated quantification rule application earlier, and if
y was the ordinal of the conclusion (~(x)#) V 7, then, in the new cut intro-
duced, « Vv #(t) has ordinal 2, ~E(t;) V G; has ordinal 2%, and the conclu-
sion » V 7 has ordinal 2* +(y >max(2*, 2* +, ). At all other places, the
ordinal of the conclusion is still greater than the ordinal of the premisses,
since § <, p implies 2™ + (8<,2" + (u. Finally, the right-hand premiss
(~(x)#) v 7 (originally of ordinal a,) goes over into ~ vV < with ordinal
2% 4,202 g pmax(en, ) o pmax(or, 02) _ pmax(er, 02) y p  pmax(en e2) 4 ] < 2% If this
is <,2¢% the ordinal of C v D can be raised to 2.

Corollary A.7

Every proof of . of ordinal o and degree m can be replaced by a proof of .-+ of ordinal
22 g degree 0 (i.e., a cut-free proof).

Proposition A-8

S., is consistent.

Proof

Consider any wf ., of the form (0 #0) v (0 # 0) v ... v (0 # 0). If there is a
proof of ., then by Corollary A-7, there is a cut-free proof of ... By inspection
of the rules of inference, ..~ can be derived only from other wfs of the same
form: (0 #0) v ... v (0 # 0). Hence, the axioms of the proof would have to be
of this form. But there are no axioms of this form; hence, .~ is unprovable.
Therefore, S, is consistent.



Answers to Selected Exercises

1
Chapter 1
1.1 A B
T T F
F T T
T F T
F F F
1.2 A B -A A=B (A=B)yv-A
T T F T T
F T T T T
T F F F F
F F T T T
1.3 (A = B A A
T T T T T
F T T F F
T F F F T
F T F F F
14 a ((A=(-B))A((=A)=(-B)))
¢ (A=>B), A: x is prime, B: x is odd.
(A=>B), A: the sequence s converges,
B: the sequence s is bounded.
e. A BA(CAD))  A:thesheikh is happy,
B: the sheikh has wine,
C: the sheikh has women,
D: the sheikh has song.
f. (A=>B), A: Fiorello goes to the movies.
i. (LA)=>B), A: Kasparov wins today,
B: Karpov will win the tournament.
1.5 (0, (d), (), (g), (), () are tautologies.

419
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1.6

1.11
1.13
1.15

1.16
1.17

1.18

1.19
1.20
1.21
1.22
1.29

1.30

1.32

1.33
1.34
1.36

1.37

Answers to Selected Exercises

(@), (b), (d), (e), (f) are logically equivalent pairs.

All except (i).

Only (c) and (e).

a. B=>-AAC e AeBe-(CvD)

c. Drop all parentheses. (g) ~(-——(B v C) & (B & ()

a. (CVv(=A)AB) © (C=>((AVvB) =>C)ArA)<B)

a. (0(=4) © A) © (B v () (d) and (f) are the only ones that are not

abbreviations of statement forms.

a. V= C-ABand VvC = AB-DC

c¢. @A=>B-AC (b)VvAvVBC

d. (i) isnot. (ii) (A= B)=(B=>C)=>(-A=>C)

f. is contradictory, and (a), (d), (e), (g)—(j) are tautologies.

(b)—(d) are false.

T (b) T (c) indeterminate

AisT,BisFand-AVv (A= B)isF

AisT,CisT,BisT.

DAANBAC)VEBA-C)()AABA-C

(i) ~Av (-BAC)

a. If »is a tautology, the result of replacing all statement letters by
their negations is a tautology. If we then move all negation signs
outward by using Exercise 1.27 (k) and (1), the resulting tautology

is =" Conversely, if =’ is a tautology, let ~ be —=%". By the first
part, -~ is a tautology. But ~~ " is ==

=

oo op

c¢. CGAA-BA-C)V(AABA-D)
a. For figure 1.4:
A
1B

(@), (d) and (h) are not correct.
a. Satisfiable: Let A, B,and Cbe F, and let Dbe T.
For f,

(AABAC)V(-AABAC)V(AA—=BAC)v(-AA—-BA-C)

For = and vV, notice that any statement form built up using = and v
will always take the value T when the statement letters in it are T. In
the case of - and <, using only the statement letters A and B, find all
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1.40
1.41
1.42

1.43
1.45

1.47

1.48

1.50

421

the truth functions of two variables that can be generated by applying
- and < any number of times.

2¢ =16 (b) 2%
h(C, C,C) = -C and h(B, B, =C) is B = C.

a.

b.

For +(A = B) v (-A A C), a disjunctive normal form is (A A =B) v (FA
A C), and a conjunctive normal formis (AvV C) A(-BV ~A) A (=B v C).
(i) For A AB) v -4, afulldnfis (AAB)V (wA AB) vV (-A A =B), and
afull enfis Bv -A.
(i) Yes. A: T,B: T,C:F(ii) Yes. A: T,B:FE C: T

A conjunction  of the form Bi A ... AB,, where each B; is either B,
or —B,, is said to be eligible if some assignment of truth values to

the statement letters of .~ that makes .~ true also makes ~ true.
Let ~ be the disjunction of all eligible conjunctions.

1.

8.

N ST PN W= T e

= 7

bH=

(72 (= N33 )= (43 9)
(r=> 2) =72 (r=> 2)
7= (= 9)

(7= 7)=> (7= 9)
b= U

Y= Y

g (s> )

Z=> (w=>0)

7= (2V 7)

=y

= )= (= omr)
Y= e

Rl

R

Bl e T
FErs )= o)
F(mV.9)=>(sV7)

Hypothesis
Hypothesis

Axiom (A2)

Axiom (A1)

1,4, MP

3,5 MP

2,6, MP

Lemma 1.11(b)
Lemma 1.11(c)

1,2, Corollary 1.10(a)
3, Abbreviation
Hypothesis

Lemma 1.11(e)

1,2, MP

Lemma 1.11(a)

3, 4, Corollary 1.10(a)
1-5

6, deduction theorem

7, abbreviation

Take any assignment of truth values to the statement letters of .~ that
makes .7false. Replace in ..7each letter having the value T by A, v -A,,
and each letter having the value F by A; A =A;. Call the resulting state-
ment form «. Thus, # is an axiom of ¥, and, therefore, k. Observe
that ~ always has the value F for any truth assignment. Hence, =~ is a
tautology. So k- =~ and, therefore, -* = ~.
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1.51 (Deborah Moll) Use two truth values. Let = have its usual table and
let = be interpreted as the constant function F. When B is F, (=B = —A)
=>(-B=>A)=>B)isE

1.52  The theorems of P are the same as the axioms. Assume that P is suitable for
some n-valued logic. Then, for all values k, k * k will be a designated value.
Consider the sequence of formulas 4, = A, 7,; = A * 4. Since there are n"
possible truth functions of one variable, among %, ..., 7. there must be
two different formulas . and . that determine the same truth function.
Hence, 4 * 4 will be an exceptional formula that is not a theorem.

1.53 Take as axioms all exceptional formulas, and the identity function as
the only rule of inference.

1

Chapter 2

21 ((v)(AlGn) A (-41))) ) (((vr)Al(e) & Al)
d. (v ((vaicen)) | = (Al A (<Al )

22 a ((vx)(Al(x) = Al(x))v @x)Aln)

2.3 a. The only free occurrence of a variable is that of x,.
b. The first occurrence of x, is free, as is the last occurrence of x,.

2.6  Yes, in parts (a), (c) and (e)

2.8 a (V)(P(x) = L)
b.  (VX)(P(x) = —H(x)) or ~(3x)(P(x) A H(x))
c.  (Vx)(B(x) = F(x))
d. (Vx)(B(x) = —F(x)) (e) T(x) = I(x)
£ (YW0)(Vy)(SK) A D, y) = J(y)
. (YO)(H(x, x) = H(j, x)) or (Vx)(P(x) A =H(x, x) = H(j, x))

(In the second wf, we have specified that John hates those persons
who do not hate themselves, where P(x) means x is a person.)
2.9 a. Allbachelors are unhappy. (c) There is no greatest integer.
210 a. i Is satisfied by all pairs (x;, x,) of positive integers such that

Xy Xy > 2.

ii. Is satisfied by all pairs (x;, x,) of positive integers such that
either x, < x, (when the antecedent is false) or x, = x, (wWhen the
antecedent and consequent are both true).

iii. Is true.
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211
212

a.

L

IL

1L

VL

VIIL

Between any two real numbers there is a rational number.

A sequence s satisfies = if and only if s does not satisfy ..
Hence, all sequences satisfy —.7if and only if no sequence satis-
fies .7; that is, ~is true if and only if . is false.

There is at least one sequence s in X. If s satisfies ., .. cannot
be false for M. If s does not satisfy ., .7 cannot be true for M.

If a sequence s satisfies both v and .~ = ¢, then s satisfies ~ by
condition 3 of the definition.

. a. s satisfies .7 A ~if and only if s satisfies =(» = =)

if and only if s does not satisfy .7 = -«
if and only if s satisfies ..»but not =~
if and only if s satisfies ..7and s satisfies~

a. Assume k), .. Then every sequence satisfies .». In particular,
every sequence that differs from a sequence s in at most the
ith place satisfies .. So, every sequence satisfies (Vx,).7; that is,
Ey (V). 2.

b. Assume Fy; (Vx)». If s is a sequence, then any sequence that dif-

fers from s in at most the ith place satisfies 7, and, in particular,
s satisfies .. Then every sequence satisfies .; that is, Fy; ..

Lemma. If all the variables in a term t occur in the list x;,, ..., x;
(k > 0; when k = 0, t has no variables), and if the sequences s
and s’ have the same components in the ith, ..., i;th places, then

s* () = ")).

Proof. Induction on the number m of function letter in . Assume
the result holds for all integers less than m.

Case 1. t is an individual constant a,. Then s«(a,) = (@, = (s')x(a,).
Case 2. t is a variable x;. Then s* (x;) = s;; =i, =(s')* (x;)).

Case 3. t is of the form f/'(t;, ..., t,). For g < n, each t, has

fewer than m function letters and all its variables occur
among X, ..., X;. By inductive hypothesis s:(¢t) = (s )(t,)-

Then  s*( j”(tl,... t))=(£1)" (s* (), - s*(tn))—(f]) ((s)*
(), oy )2 EN) =) (f o) 1))

Proof of (VIII). Inductlon on the number r of connectives and
quantifiers in .». Assume the result holds for all g <.

Case 1. zis of the form Aj(t,, ..., t,); thatis, r = 0. All the variables
of each t; occur among x;, ..., x;. Hence, by the lemma, s«(t;) =
(8")+(t;). But s satisties A (t,, ..., t,) if and only if (sx(t,), ..., sx(t,)) is
in (A7) —that is, if and only if ((s')s(t,), ..., (5)(t,)) is in (A7)",
which is equivalent to s” satisfying Aj(t, ..., t,).



424

IX.

Answers to Selected Exercises

Case 2. is of the form —v.
Case 3. zis of the form ~= 2. Both cases 2 and 3 are easy.

Case 4. #is of the form (Vx))~. The free variables of ~occur among
Xi, ---, X and x;. Assume s satisfies . Then every sequence that
differs from s in at most the jth place satisfies ». Let s* be any
sequence that differs from s’ in at most the jth place. Let s® be
a sequence that has the same components as s in all but the jth
place, where it has the same component as s*. Hence, s’ satisfies
7. Since s* and s* agree in the ith, ..., i;th and jth places, it follows
by inductive hypothesis that s’ satisfies ~ if and only if s* satis-
fies . Hence, s* satisfies «. Thus, s’ satisfies .. By symmetry, the
converse also holds.

Assume 7 is closed. By (VIII), for any sequence s and s’, s satis-
fies 7 if and only if s’ satisfies ... If =7 is not true for M, some
sequence s’ does not satisfy - that is, s’ satisfies .». Hence,
every sequence s satisfies ..; that is, Fy ..

Proof of Lemma 1: induction on the number m of function letters
int.

Case 1. tisa; Then t' is a;. Hence,

s*(t)=s*(a))=(a))" = (s)*(a;) = () *(t)

Case 2. t is x;, where j # i. Then t' is x;. By the lemma of (VIII),
s*(t') = (s)*(t), since s and s’ have the same component in the jth
place.

Case 3. tis x;. Then t' is u. Hence, s*(t') = s*(u), while (s)*(t) = (s')*(x) =
si = s*(u).

Case 4. t is of the form f/'(t,...,t,). For 1 < g < n, let t; result

from f, by the substitution of u for x;. By inductive hypothesis,
s*(ty) =(s")*(t,). But

s () =s*(f/'(H, ... t))=( -”)M(s*(ti),...,s*(t;))
= () (), coes )(0)) =) (1t 1)) = () * ()

Proof of Lemma 2(a): induction on the number m of connectives and
quantifiers in . #(x,).

Case 1. m = 0. Then Ax,) is Aj(t,, ..., t,). Let t; be the result of sub-
stituting # for all occurrences of x; in t,. Thus, At) is A} (1, ey t;).
By Lemma 1, s(t;)=(s")*(t,)- I}I/Iow, s satisfies .~ (t) if and only if
(s*(#), ..., s*(t))belongsto( A} ), whichis equivalent to {(s')*(t), ..,

(s")*(t,)) belonging to (A]” )M—that is, to s’ satisfying .7 (x;).
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2.14
2.15

2.17

Case 2. 7 (x;) is =~ (x)); this is straightforward.

Case 3. 7 (x;) is 7 (x) = 7 (x); this is straightforward.

Case 4. 7 (x) is (Vx) 7 (x)).

Case 4a. x; is x;. Then x; is not free in 7 (x;), and .7 (¢) is .~ (x;). Since
x;is not free in .7 (x;), it follows by (VIII) that s satisfies .~ (t) if and
only if s’ satisfies .7 (x,).

Case 4b. x; is different from x;. Since t is free for x;in (x), t is also
free for x; in # (x)).

Assume s satisfies (Vx)  (f). We must show that s’ satisfies (Vx)
7 (x;). Let s* differ from s’ in at most the jth place. It suffices to show
that s* satisfies # (x,). Let s’ be the same as s* except that it has the
same ith component as s. Hence, s is the same as s except in its jth
component. Since s satisfies (Vx)) « (f), s” satisfies ~ (). Now, since # is
free for x;in (Vx) ~ (x)), t does not contain x;. (The other possibility,
that x; is not free in « (x;), is handled as in case 4a.) Hence, by the
lemma of (VIII), (s"*(f) = s*(¥). Hence, by the inductive hypothesis
and the fact that s* is obtained from s’ by substituting (s*)*(t) for the
ith component of s, it follows that s* satisfies « (x,), if and only if s
satisfies ~ (f). Since st satisfies  (f), s* satisfies « (x)).

Conversely, assume s’ satisfies (Vx) ¢ (x). Let s” differ from s in
at most the jth place. Let s* be the same as s’ except in the jth
place, where it is the same as s’. Then s* satisfies « (x)). As above,
s*(t) = (s")*(t). Hence, by the inductive hypothesis, s’ satisfies # (f) if
and only if s* satisfies « (x;). Since s* satisfies « (x;), s’ satisfies ~ (f).
Therefore, s satisfies (Vx) (¢).

Proof of Lemma 2(b). Assume s satisfies (Vx;). (x;). We must show
that s satisfies .7 (f). Let s” arise from s by substituting s*(t) for the
ith component of s. Since s satisfies (Vx;).7 (x;) and s’ differs from s
in at most the ith place, s’ satisfies 7 (x;). By Lemma 2(a), s satisfies

7 (1)

Assume ~is satisfied by a sequence s. Let s’ be any sequence. By (VIII),
s’ also satisfies .». Hence, .7 is satisfied by all sequences; that is, Fy; ..

a.

a.

x is a common divisor of y and z. (d) x, is a bachelor.
i.  Every nonnegative integer is even or odd. True.

ii. If the product of two nonnegative integers is zero, at least one
of them is zero. True.

iii. 11is even. False.

(@) Consider an interpretation with the set of integers as its domain.
Let A{(x) mean that x is even and let A3(x) mean that x is odd. Then
(Vx1)Al(x) is false, and so (Vx;)A{(x;) = (Vx;)A3(x;) is true. However,
(Vxl)(All(xl) = A%(xl)) is false, since it asserts that all even integers
are odd.



426

2.18

2.19

2.21

2.22

2.26
2.27
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[(Vx) =7 (x) = =7 ()] = [7 () = ~(¥x) =7 (x)] is logically valid
because it is an instance of the tautology (A = —B) = (B = -A). By
(X), (Vx)=.7 (x) = =~ (t) is logically valid. Hence, by (III), .~ (t) =
=(Vx)~.7 (x;) is logically valid.

Intuitive proof: If 7 is true for all x; then .~ is true for some x;.
Rigorous proof: Assume (Vx;).»=> (Ix,) #is not logically valid. Then
thereis an interietation M for which it is not true. Hence, there is

asequencesin ) such that s satisfies (Vx;)..»and s does not satisfy

=(Vx))—.~. From the latter, s satisfies (Vx,)—. . Since s satisfies (Vx,). 7,
s satisfies .7, and, since s satisfies (Vx;)—.7, s satisfies —.»7. But then s
satisfies both vand -, which is impossible.

Take the domain to be the set of integers and let Aj(u) mean that
u is even. A sequence s in which s, is even satisfies Ai(x;) but does
not satisfy (Vx;)Af(x;).

Let the domain be the set of integers and let Af(x,y) mean that x <
y. (b) Same interpretation as in (a).

The premisses are (i) (Vx)(S(x) = N(x)) and (ii) (Vx)(V(x) = —~N(x)),
and the conclusion is (Vx)(V(x) = —S(x)). Intuitive proof: Assume
V(x). By (ii), ~N(x). By (i), =S(x). Thus, =S(x) follows from V(x), and
the conclusion holds. A more rigorous proof can be given along
the lines of (I)-(XI), but a better proof will become available after
the study of predicate calculi.

(30)(Fy) (Al (x) A=Al (W)

1. (W)(7= ) Hyp

2. (Vx).» Hyp

3. (W)(z=> )= (7> ) Axiom (A4)

4. 7 =>v 1,3, MP

5. (Vx)vw= v Axiom (A4)

6. v 2,5 MP

VAN 4,6, MP

8. (Vx)r 7, Gen

9. (Vx)(7= 7), (Vx)zk (Vx)« 1-8
10. (Vx)(7 = ) F (Vx).7=> (Vx)~ 1-9, Corollary 2.6
11. = (Va)(7= ©) = (V) 7= (Vx)0) 1-10, Corollary 2.6

2.28 Hint: Assume I .»z. By induction on the number of steps in the proof of
»in K, prove that, for any variables y,, ..., y, (1 > 0), F,(V y1) ... (Vy,).2

2.31

a.

1 (Vx)(Vy)Ai(x,y) Hyp
2. (Vy)Ai(x,y) 1, Rule A4
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2.33

2.36
2.37

2.39

2.46

2.49

2.50
2.55

2.59

A¥(x,x) 2, Rule A4
(Vx)Af (x, x) 3, Gen
(Vx)(Vy)Af (x,y)F (Vx) Al (x, x) 1-4
- (vx)(Vy) A? (x,y) = (Vx)Af (x,x) 1-5, Corollary 2.6
a. F =(¥x)-=» & =(Vx)= by the replacement theorem and the fact
that - ——» & . Replace =(Vx)——. by its abbreviation (3x)—.~.
b. (@) >0A V)G >0= @x)(|x —c|<dA|fx) —flo) |<¥)
i. Assume . By moving the negatlon step-by-step inward to
the atomic wfs, show that - ~%* < ¢, where « is obtained
from .~ by replacing all atomic wfs by their negations. But,

from F ~it can be shown that ~. Hence, - = #* The converse
follows by noting that (/*)* is 2.

SRS

(i) Apply (@) to~zv .

(Fy)(vx)( Al (x,y) & A (x, %)) Hyp
(vVx)(A?(x, b) < —AP(x, %)) 1, Rule C
A}(b,y) < —A2(b,b) 2, Rule A4
4. rA-v 3, Tautology

Sl

(v is any wf not containing b.) Use Proposition 2.10 and proof by
contradiction.

a. Instep 4, bisnot a new individual constant. It was already used in
step 2.

Assume K is complete and let .» and ~ be closed wfs of K such that
Fx .V 7. Assume not-t .. Then, by completeness, - —. Hence,
by the tautology = A = ((A v B) = B), k¢ .». Conversely, assume K is
not complete. Then there is a sentence .7 of K such that not-+ .» and
not-¢ —.z. However, ¢ .2V =.2.

See Tarski, Mostowski and Robinson (1953, pp. 15-16).

b. It suffices to assume 7 is a closed wf. (Otherwise, look at the
closure of »».) We can effectively write all the interpretations on
a finite domain {b,, ..., b;}. (We need only specify the interpreta-
tions of the symbols that occur in .».) For every such interpreta-
tion, replace every wf (Vx) « (x), where ~ (x) has no quantifiers,
by (b)) A ... A 7 (by), and continue until no quantifiers are left.
One can then evaluate the truth of the resulting wf for the given
interpretation.

Assume K is not finitely axiomatizable. Let the axioms of K; be .,
Zb, ..., and let the axioms of K, be 7, 7o, .... Then {4, 4, %, », ...} is
consistent. (If not, some finite subset {4, %, ..., %, 7, -.., 7y} iS incon-
sistent. Since K; is not finitely axiomatizable, there is a theorem B of
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2.60

2.61

2.65

2.68

2.70

2.71

2.74
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K, such that ., %, ..., % F .7 does not hold. Hence, the theory with
axioms {%, %, ..., %, 7.4 has a model M. Since k., M must be a
model of K,, and, therefore, M is a model of {4, %, ..., %, 71, -+ 70},
contradicting the inconsistency of this set of wfs.) Since {4, 7, ., 7, ...}
is consistent, it has a model, which must be a model of both K; and K.

Hint: Let the closures of the axioms of K be %, %, .... Choose a sub-
sequence s, 7, ... such that 7, is the first sentence (if any) after
%, that is not deducible from 7 A...A 7, Let Cbe 4 A 4, A ... A 2.

Then the 7, form an axiom set for the theorems of K such that F+,; =

7 but not-+7 = #,;. Then {+, 1 = »,, v, = 7, ...} is an independent

axiomatization of K.

Assume .7 is not logically valid. Then the closure ~ of .7 is not logi-

cally valid. Hence, the theory K with -« as its only proper axiom has

a model. By the Skolem-Lowenheim theorem, K has a denumerable

model and, by the lemma in the proof of Corollary 2.22, K has a model

of cardinality m. Hence, ~is false in this model and, therefore, ..7is not

true in some model of cardinality m.

c 1 x=x Proposition 2.23(a)

2. Ayx=y 1, rule E4
3. (VW@y)x =y 2, Gen

a. The problem obviously reduces to the case of substitution for a single
variable at a time: - x; = y; = t(x;) = H(y,). From (A7), F x; =y, =
(t(x;) = t(x;) = t(x;) = t(yy)). By Proposition 2.23 (a), - #(x;) = t(x;). Hence,
Fxy =y, = ) = Hyy)-

a. By Exercise 2.65(c), - (3y)x = y. By Proposition 2.23(b, ¢), F (Vy)
(Vz)(x =y A x =z = y = z). Hence, I (3,y)x = y. By Gen, - (Vx)(3,y)
x=1y.

b. i Let A ;<X # X; stand for the conjunction of all wfs of the

form x; # x;, where 1 <i<j<n.LetB,be (3x)) ... (3Ix,) A1 i j<n
X;# Xj.

ii. Assume there is a theory with axioms .4, ..., .4, that has the
same theorems as K. Each of 4, ..., ., is provable from K;
plus a finite number of the wfs %4, %, .... Hence, K; plus a
finite number of wfs 7, ..., 7, suffices to prove all theorems
of K. We may assume j;< -+ <j,. Then an interpretation whose
domain consists of j, objects would be a model of K, contra-
dicting the fact that ., ,; is an axiom of K.

For the independence of axioms (Al)-(A3), replace all t = s by the
statement form A = A; then erase all quantifiers, terms and associ-
ated commas and parentheses; axioms (A4)—-(A6) go over into state-
ment forms of the form P = P, and axiom (A7) into (P = P) = (Q = Q).
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2.83

2.84
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For the independence of axiom (Al), the following four-valued logic,
due to Dr D.K. Roy, works, where 0 is the only designated value.

A=B A=DB A=DB A=DB —-A

W N R O
’_‘H’_‘OU

A
1
1
1
1

W N R O
ooooU
NN NN
W N~ O W
ooooU
W W W W
W N R O

=
0
1
1
0

W N =R O X
o o o ~

When A and B take the values 3 and 0, respectively, axiom (A1) takes
the value 1. For the independence of axiom (A2), Dr Roy devised the
following four-valued logic, where 0 is the only designated value.

A=B A=B A=DB A=DB —-A

W NN =R O

= A
0 1
1 1
1 1
1 1

W N =R O
ooooU
N NN N
W N =R O
ooooU
W W W W
W N R, O
o»—\ooU
W N R O
o O O V-

If A, B, and C take the values 3, 0, and 2, respectively, then axiom (A2)
is 1. For the independence of axiom (A3), the proof on page 36 works.
For axiom (A4), replace all universal quantifiers by existential quanti-
fiers. For axiom (A5), change all terms ¢ to x; and replace all universal
quantifiers by (Vx,). For axiom (A6), replace all wfs t = s by the negation
of some fixed theorem. For axiom (A7), consider an interpretation in
which the interpretation of = is a reflexive nonsymmetric relation.

a. (Vx)(ﬂy)((ﬂz)( 7(z,x,y, ..., y)/\Af(x,y,z)) = (32)(AMz ¥, %, ..., %)
AZ=1X))

a. (EIz)(Vw)(Eix)([All(x) = Af(x,y)} = [All(w) = Alz(y,z)])

/ has the form (ax)(ay)(v.z)([A%(x, y)= A%(x)] = All(z)). Let the
domain D be {1, 2}, let Af be <, and let Aj(u) stand for u = 2. Then  is
true, but (Vx)(3y)Af(x,y) is false.

Let g be a one—one correspondence between D* and D. Define:

()" =o((a)" i) (b1 0) =7 | ()" (9(81), s 9(0) |

A A} by, ..., b, Jif and only if AT [g(Br), .., g(bu)]
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Hint: Extend K by adding axioms .7, where ., asserts that there are at
least 1 elements. The new theory has no finite models.

(@) Hint: Consider the wfs .z, where ., asserts that there are at least
n elements. Use elimination of quantifiers, treating the #,s as if they
were atomic wfs.

Let W be any set. For each b in W, let 4, be an individual constant. Let
the theory K have as its proper axioms: a, # a, for all b, cin W such that
b # ¢, plus the axioms for a total order. K is consistent, since any finite
subset of its axioms has a model. (Any such finite subset contains only
a finite number of individual constants. One can define a total order
on any finite set B by using the one—one correspondence between B
and a set {1, 2, 3, ..., n} and carrying over to B the total order < on
{1, 2,3, ..., n}) Since K is consistent, K has a model M by the general-
ized completeness theorem. The domain D of M is totally ordered by
the relation <M; hence, the subset D, of D consisting of the objects (a,)
is totally ordered by <M. This total ordering of D, can then be carried
over to a total ordering of W: b <, c if and only if a, <Ma..

Assume M, is finite and M, = M,. Let the domain D, of M, have n ele-
ments. Then, since the assertion that a model has exactly n elements
can be written as a sentence, the domain D, of M, must also have n
elements. Let D, =1{b,, ..., b} and D, ={c;, ..., ¢,}.

Assume M, and M, are not isomorphic. Let ¢ be any one of the
n! one—one correspondences between D, and D,. Since ¢ is not an
isomorphism, either: (1) there is an individual constant a and an ele-
ment b; of D, such that either (i) b; = aM A @ (bj)# a™ or (ii) b; # a™M A
o) = a?; or (2) there is a function letter f{" and b;,b;,, ..., b;, in D,
such that

be=(f")" (b, b)) and o) % () ((b3), ..o 0(b3,))
or (3) there is a predicate letter A" and b, ..., bj, in D, such that either

i. R AP[b;, ..., by, Jand Ry, =AF[0(by), .. o(b;, )] or

ii. kR A [bﬁ, ey bjm} and KRy, AY' [(p(bj] ), ey (p(bjm )J Construct a
wf 7, as follows:

Xj=a if (1) (i) holds

X;#a if (1) (ii) holds
Z 18y %, = fi"(xj,, ..., xj,)  if (2) holds

Al (X, X)) if (3) (i) holds

—AL (X, .0, Xj,) if (3) (ii) holds
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2.104

2.105

2.108

2.110

2111

2.112

2.113

2.114
2.115

2.118
2.119

2.120

Let @y, ..., 9, be the one—one correspondences between D, and D,. Let
/ be the wf

(Elxl) (Elx,,)( /\ Xi # Xj N Do N Dy N ... /\v//%J

1<i<j<n

Then ../ is true for M, but not for M,

a. There are Na sentences in the language, of K. Hence, there are
2% gets of sentences. If M; = M, does not hold, then the set of
sentences true for M, is different from the set of sentences true
for M,.

Let K* be the theory with Ry new symbols b, and, as axioms, all sen-

tences true for M and all b, # b, for T # p. Prove K* consistent and apply

Corollary 2.34.

a. Let M be the field of rational numbers and let X = {-1}.

Consider the wf (3x,)x, < x;.

a. ii. Introduce a new individual constant b and form a new theory

by adding to the complete diagram of M, all the sentences
b # t for all closed terms t of the language of K.

If @& . 7#.7(A). Conversely, if @ € .4 then, by clause (3) of the defini-

tion of filter, = = .7(A).

If /=%, then N, C =B € ./ Conversely, if B = ne., C € . then

= g

Use Exercise 2.113.

a. A€ jsinceA=A-@Q.

b. If B=A-W, € sand C=A - W, €  where W, and W, are finite,
thenBNnC=A - (W, UW,) € .4 since W, U W, is finite.

c. IfB=A-W e 4 where W is finite, and if BC C, thenC = A —
(W -C) € 4 since W — C is finite.

d. LetBCC.So, B=A - W, where W is finite. Let b € B. Then W U
{b} is finite. Hence, C= A — (W U {b}) € = But, B € C, since b ¢ C.
Therefore, .7# 4.

Let /' ={DIDCAA@EC)Ce sABNnCCD).

Assume that, for every B C A, either B€ .~ or A - B € < Let vbe a

filter such that ¥ c v.LetBe v— . Then A- B € ~. Hence, A- B e «.

So, @ = BN (A - B) € v and ¢ is improper. The converse follows from

Exercise 2.118.

Assume .7 is an ultrafilter and B ¢ ./, C ¢ ./ By Exercise 2.119, A - B

€ sand A-Ce€ .7~ Hence, A-(BUC)=(A-B)n(A-C) € .7 Since ./~

is proper, BU C ¢ .« Conversely, assume B¢ “AC¢& .- =>BuUC¢& «
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Since BU (A — B) = A € . this implies that, if B ¢ ., then A — B € ... Use

Exercise 2.119.

a. Assume 7 is a principal ultrafilter. Let 2 € C and assume C # {a}.
Then {a} ¢ .z and C - {a} ¢ .. By Exercise 2.120, C = {a} U (C — {a})
¢ ./, which yields a contradiction.

b. Assume a nonprincipal ultrafilter s contains a finite set, and let B
be a finite set in s of least cardinality. Since ./ is nonprincipal, the
cardinality of B is greater than 1. Let b € B. Then B — {b} # @. Both
{b} and B — {b} are finite sets of lower cardinality than B. Hence,
{b} & .~ and B — {b} ¢ . By Exercise 2.120, B = {b} U (B — {b}) & .
which contradicts the definition of B.

Let | be the set of all finite subsets of I'. For each A in ], choose a model

M, of A. For A in ], let A* = {A'|A” € ] A A C A'}. The collection ¢ of all

A*s has the finite-intersection property. By Exercise 2.117, there is a

proper filter .~ 2 «. By the ultrafilter theorem, there is an ultrafilter

7" 2 7D «. Consider H M,/+" Let #we€TI. Then {4}* € « C /"
Ae]
Therefore, { #}x = {A|Ae v AFy, #}e 7". By Lo§’s theorem, »is true
in I I M,/ "
]

Ae
a. Assume 7 is closed under elementary equivalence and ultraprod-

ucts. Let A be the set of all sentences of ~ that are true in every
interpretation in 7. Let M be any model of A. We must show that
M is in 7 Let I be the set of all sentences true for M. Let | be the
set of finite subsets of I. For I = {4, ..., .4,} € ], choose an interpre-
tation N in 7 such that 4 A ... A .7, is true in Ny.. (If there were
no such interpretation, =(«4 A ... A .,), though false in M, would
be in A) As in Exercise 2.124, there is an ultrafilter ./ such that
N*= HF%] Nr /" 1is a model of I. Now, N* € 7. Moreover, M =
N* Hence, M € 7.

b. Use (a) and Exercise 2.59.

c. Let” betheclass of all fields of characteristic 0. Let .~ be a nonprin-
cipal ultrafilter on the set P of primes, and consider M = HZP /7.
Apply (b). peP

R* C R* Hence, the cardinality of R* is > 2%0. On the other hand, R®

is equinumerous with 2° and, therefore, has cardinality 2'. But the

cardinality of R* is at most that of Re.

Assume x and y are infinitesimals. Let € be any positive real. Then

|x| <e/2and |y| <e/2.50, |x+y| < |x| + |y|<e/2 +¢e/2=¢ |xy| =

[x||ly|<l-e=¢ |x—y| < |x| + |-y|<e/2 +e/2=¢.

Assume | x| <r; and |y| < e for all positive real €. Let € be a posi-

tive real. Then ¢/r, is a positive real. Hence | y| <&/ry, and so, |xy| =

%] yl<ne/r) =
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Assume x — r; and x — 1, are infinitesimals, with r; and r, real. Then

(x—r) — (x—r,) =r,—r, is infinitesimal and real. Hence, r, — r; = 0.

a. x - st(x) and y — st(y) are infinitesimals. Hence, their sum (x + y) —
(st(x) + st(y)) is an infinitesimal. Since st(x) + st(y) is real, st(x) +
st(y) = st(x + y) by Exercise 2.130.

a. By Proposition 245, s*(n) = ¢, and u*(n) = ¢, for all n € 0* — .
Hence, s * (n) + u*(n) ~ ¢, + ¢, for all n € w* — w. But s*(n) + u*(n) =
(s + w*(n). Apply Proposition 2.45.

Assume f continuous at c. Take any positive real €. Then there is a

positive real 8 such that (Vx)(x € BA |x —c|<d = |f(x) — flo) |<¢)

holds in . Therefore, (Vx)(x € B* A |x —c|< 8= |f*(x) — f(c) |<¢e) holds
in #* So, if x € B* and x = ¢, then |x — ¢| <& and, therefore, |f*(x) —

f(c)|< e. Since € was arbitrary, f*(x) = f(c). Conversely, assume x € B¥ A

x & ¢ = f*(x) = f(c). Take any positive real €. Let §, be a positive infini-

tesimal. Then (Vx)(x € B* A |x —¢| <8y = |f* ) — flc) | <e) holds for

»* Hence, (38)B >0 A (Vx)(x € B*A |x—c| <8= [f(x) - flc) |<¢)) holds

for #* and so, ()@ >0 A (Vx)(x € BA |x—c¢| <8 = |f(x) - flo) |<¢)

holds in ..

a. Sincex € B* Ax = C = (f*(x) ® flc) A §*(x) ~ g(c)) by Proposition 2.46,
we can conclude x € B* A x = ¢ = (f + 9*(x) = (f + )(¢), and so, by
Proposition 2.46, f + g is continuous at c.

a i {(W)(A}(x) v AN ) = (YAl () v (Vx)A;(x)]
oo (vx)(Al(x) v AN)) @)
ii. {((Vx)A%(x)) v (‘v’x)A%(x)} )
iv.  —(Vx)Alx) (iii)
v.  —(Vx)A3(x) (iii)
vii  (3x)-Al(x) (iv)
vii.  (3x)=Al(x) )
viii. —Ai(b) (vi)
ix. —=A3c) (vii)
x. Al(b) v Akb) (ii)

/ N
xi.  Al(D) Ab) )
xii. x Ao v Ao (i)
/ N
xiii.  Ai(c) As(c) (xii)

X
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No further rules are applicable and there is an unclosed branch.
Let the model M have domain {b, ¢}, let (Al1 )M hold only for ,
and let (A%)M hold for only b. Then, (Vx)(A%(x)vA;(x)) is true
for M, but (Vx)A{(x) and (Vx)Aj(x) are both false for M. Hence,
(vVx)(Al(x) v Ax(x)) = (V) Al(x)) v (V) A3(x) is not logically
valid.

Chapter 3

34

3.5

3.6

Consider the interpretation that has as its domain the set of polynomi-
als with integral coefficients such that the leading coefficient is non-
negative. The usual operations of addition and multiplication are the
interpretations of + and - Verify that (51)-(S8) hold but that Proposition
3.11 is false (substituting the polynomial x for x and 2 for y).

a. Form a new theory S’ by adding to S a new individual constant b
and the axioms b#0,b=1,b=2, ..., b#n, ... Show that S’ is con-
sistent, and apply Proposition 2.26 and Corollary 2.34(c).

b. By a cortege let us mean any denumerable sequence of Os and 1s.
There are 2% cortéges. An element ¢ of a denumerable model M of
S determines a cortege (s, Sy, Sy, -.-) as follows: s; = 0 if F\; p;|c, and
s; = 1if Fy; —(p;|c). Consider now any cortege s. Add a new constant
bto S, together with the axioms 4(b), where 4(b) is p;|b if s;= 0 and

4(b) is —(p;|b) if s; = 1. This theory is consistent and, therefore, has
a denumerable model M,, in which the interpretation of b deter-
mines the cortege s. Thus, each of the 2™ corteges is determined
by an element of some denumerable model. Every denumer-
able model determines denumerably many cortéges. Therefore,
if a maximal collection of mutually nonisomorphic denumerable
models had cardinality m < 2', then the total number of corteges
represented in all denumerable models would be < m x R;< 2™
(We use the fact that the elements of a denumerable model deter-
mine the same cortéges as the elements of an isomorphic model.)

Let (D, 0, ') be one model of Peano’s postulates, with 0 € D and ' the
successor operation, and let (D#, 0#*) be another such model. For
each x in D, by an x-mapping we mean a function f from S, = {u|u €
D A u < x} into D# such that f(0) = 0# and f(u') = (f(u)) * for all u < x.
Show by induction that, for every x in D, there is a unique x-mapping
(which will be denoted f,). It is easy to see that, if x; < x,, then the
restriction of f,, to S,; must be f,,. Define F(x) = f,(x) for all x in D. Then
F is a function from D into D# such that F(0) = 0# and F(x’) = (F(x))*
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3.7

3.8

3.13

3.16

3.18

for all x in D. It is easy to prove that F is one—one. (If not, a contra-
diction results when we consider the least x in D for which there is
some y in D such that x # y and F(x) = F(y).) To see that F is an iso-
morphism, it only remains to show that the range of F is D#. If not,
let z be the least element of D# not in the range of F. Clearly, z # 0#.
Hence, z = w* for some w. Then w is in the range of F, and so w = F(u)
for some u in D. Therefore, F(u') = (F(1))* = w* = z, contradicting the
fact that z is not in the range of F.

The reason why this proof does not work for models of first-order
number theory S is that the proof uses mathematical induction and
the least-number principle several times, and these uses involve prop-
erties that cannot be formulated within the language of S. Since the
validity of mathematical induction and the least-number principle in
models of S is guaranteed to hold, by virtue of axiom (59), only for wfs
of S, the categoricity proof is not applicable. For example, in a nonstan-
dard model for S, the property of being the interpretation of one of the

standard integers 0,1,2,3, ... is not expresEilzleibX a wf of S. If it were,

then, by axiom (59), one could prove that {0, 1,2,3, } constitutes the
whole model.

Use a reduction procedure similar to that given for the theory K, on
pages 114-115. For any number k, define k - t by induction: 0 - tis 0 and
(k+1)-tis (k-f)+¢; thus, k- tis the sum of f taken k times. Also, for any
given k, let t = s(mod k) stand for (Ix)(t =s + k- x Vs =1t + k- x). In the
reduction procedure, consider all such wfs t = s(mod k), as well as the
wfs t < s, as atomic wfs, although they actually are not. Given any wfs
of S,, we may assume by Proposition 2.30 that it is in prenex normal
form. Describe a method that, given a wf (3y)~, where « contains no
quantifiers (remembering the convention that t = s(mod k) and t < s are
considered atomic), finds an equivalent wf without quantifiers (again
remembering our convention). For help on details, see Hilbert and
Bernays (1934, I, pp. 359-366).

b. Use part (a) and Proposition 3.6(a)(i).
c. Use part (b) and Lemma 1.12.

Assume f(x,, ..., x,) = x,,; is expressible in S by “(x;, ..., x,.,1). Let
(X e X)) e (X, o X)) A (V2)(Z < Xy = 22(Xy, ... X)) Show
that ~ represents f (xy, ..., x,) in S. [Use Proposition 3.8(b).] Assume,
conversely, that f (x,, ..., x,) is representable in Sby ../ (xy, ..., x,,;). Show
that the same wf expresses f (xy, ..., x,=X,,, in S.

a. (EIy)MyQ,R(xl, .., X,, ) is equivalent to (3z),<p- sy R(x1, ..., x4, 2+ 1u+1),
and similarly for the other cases.

If the relation R(xy, ..., x,,, y): f(xy, ..., x,) =y is recursive, then Cy is recur-

sive and, therefore, so is f(xy, ..., x,) = py(Cr(xy, ..., x,, ¥) = 0). Conversely,

iff(xy, ..., x,) is recursive, Cy(xy, ..., X,, ) =sg| flxy, ..., x,) —y | is recursive.
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3.19

3.20

3.21

3.22
3.23

3.26

3.28

3.29

3.30
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[V ] =8 (myyena(y® > m)

H(”) ZZ%(CPr(y))

y<n

1 1 1 . 1 1 1
[ne]l=|n(l+1+—=+—+---+—=)|, since n + +oeee | <.
2! 3! n! (n+1)! (n+2)! n!

l:&?. Then ¢0) = 1 and gn + 1) =
n!

n!
(n + 1)gn) + 1. Hence, g is primitive recursive. Therefore, so is

[ne] = [ngn('n)} =qt(n!,ng(n)).

RP(y, 2) stands for (Vx),,..(x|y A x|z = x =1).

Let 1+1+l+--~+
2!

9(n) = > " sg(Cur(y, )

y<n

Z(0)=0,Z(y+1)=U3 (v, Z(y)).

Letv = (pop; ... po + 1. Some prime g is a divisor of v. Hence, g < v. But
qis different from py, py, ..., pi- If = p, then p;|v and p;|p, p; ... p would
imply that p;|1 and, therefore, p; = 1. Thus, py,; <9 < (po p1---po) + 1.

If Goldbach’s conjecture is true, h is the constant function 2. If
Goldbach’s conjecture is false, h is the constant function 1. In either
case, h is primitive recursive.

List the recursive functions step by step in the following way. In the
first step, start with the finite list consisting of Z(x), N(x), and U (x) . At
the (n + 1)th step, make one application of substitution, recursion and
the p-operator to all appropriate sequences of functions already in the
list after the nth step, and then add the n + 1 functions U}‘”(xl, ooy Xi1)
to the list. Every recursive function eventually appears in the list.

Assume f.(y) is primitive recursive (or recursive). Then so is f.(x) + 1.
Hence, f,(x) + 1 is equal to fi(x) for some k. Therefore, f;(x) = f.(x) + 1 for
all x and, in particular, fi(k) = fi(k) + 1.

a. Letdbe the least positive integer in the set Y of integers of the form
au + bu, where u and v are arbitrary integers—say, d = au, + bo,.
Then d|a and d|b. (To see this for a, let a = gd + 1, where 0 < r < d.
Thenr =a—-qd =a — qlauy + bvy) = (1 — qug)a + (— quy)b € Y. Since d
is the least positive integer in Y and r < d, r must be 0. Hence d|a.)
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3.32

3.34
3.37

3.38

3.41

3.45

3.46

If a and b are relatively prime, then d = 1. Hence, 1 = au, + bv,.
Therefore, au, =1 (mod b).

a. 1944 =233%. Hence, 1944 is the Godel number of the expression ().

b. 49 =1 + 8(2'3"). Hence, 49 is the Godel number of the function
letter fi-

a. g(f!)=49and ga) = 15. So, g(fl (m))=2¥3°5"7°.

Take as a normal model for RR, but not for S, the set of polynomials

with integral coefficients such that the leading coefficient is nonnega-

tive. Note that (Vx)(3y)(x =y + y vV x =y + y + 1) is false in this model
but is provable in S.

Let oo be an object that is not a natural number. Let oo’ = o0, o0 +
X = X + oo = oo for all natural numbers x, 00 -0=0-00=0,and co - x=x -
oo = oo for all x # 0.

Assume S is consistent. By Proposition 3.37(a), « is not provable in S.
Hence, by Lemma 2.12, the theory Sg is consistent. Now, = is equiva-
lent to (3x,).#(x,, "<"). Since there is no proof of #in S, Pf (k, g) is false for
all natural numbers k, where g = "<\ Hence, -, .4 (k,q) for all natural
numbers k. Therefore, b, =/ (k,ﬁ). But, k5, (3x2) # (x2,9). Thus S, is
w-inconsistent.

(G. Kreisel, Mathematical Reviews, 1955, Vol. 16, p. 103) Let ..7(x;) be a
wf of S that is the arithmetization of the following: x; is the Godel
number of a closed wf .ssuch that the theory S + {} is ®-inconsistent.

(The latter says that there is a wf #(x) such that, for every n, ~ (ﬁ ) is

provable in S + {~}, and such that (3x)-~ (x) is provable in S + {#}.) By

the fixed-point theorem, let ~ be a closed wf such that kg « < (7).

Let K =S + {¢}. (1) ~is false in the standard model. (Assume ¢ true.

Then K is a true theory. But, » & . (")) is true, since it is provable

in S. So, ("7 is true. Hence, K is w-inconsistent and, therefore, K is

not true, which yields a contradiction.) (2) K is o-consistent. (Assume

K w-inconsistent. Then (77 is true and, therefore, ~ is true, contra-

dicting (1).)

a. Assume the “function” form of Church’s thesis and let A be an
effectively decidable set of natural numbers. Then the characteris-
tic function C, is effectively computable and, therefore, recursive.
Hence, by definition, A is a recursive set.

b. Assume the “set” form of Church’s thesis and letf (x;, ..., x,) be any
effectively computable function. Then the relation f (x,, ..., x,) =y
is effectively decidable. Using the functions ¢*, o} of pages 184-185
let A be the set of all z such that f(ci”l(z), ey GZ”(Z)) =0l (2).
Then A is an effectively decidable set and, therefore, recursive.

n+1

Hence, f(x1,..., X,) =01 (uz(CA(z) = 0)) is recursive.
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3.48

3.49
3.50

3.53

3.56

3.58

3.60

3.61

3.62
3.63
3.64
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Let K be the extension of S that has as proper axioms all wfs that are
true in the standard model. If Tr were recursive, then, by Proposition
3.38, K would have an undecidable sentence, which is impossible.

Use Corollary 3.39.

Letf(x,, ..., x,) be a recursive function. So, f (x;, ..., x,) =y is a recursive

relation, expressible in Kby a wf ./ (x,, ..., x,, ¥). Then f is representable

by v (xy, ..., %, Y) A(¥2)z <y => = (xy, ..., X, 2)), where z < y stands for

ZSYAZ#EY.

a. F0=1= v Hence,  4,(0=1" = 4,7 and, therefore,
F=2,, (") = =4,((0=17). Thus, k¢ = - 4,("0=17).

b. F 2, => 4, %, 7. Also, F -z & 4,(72 7, and so,
F 27 ) & (" 7(T2 ) 7). Hence b (72 7) = 4, (¢ 7). By
a tautology, - ¢« = (-v = (¢ A =2)); hence, - 4, ("¢ ) = 4,,(—v=>
(¢ A —2)7). Therefore, - .7,,(7¢ ) = (4,(M7 ) = 4,(((ZA2)M). Tt
follows that - ,,(T¢ ") = 4,,(((¢ A=2)"). But, F « A-2 = 0=1; so,
F 202 A =29 = 4, ((0=17). Thus, - 4,(7¢ ") = 4,(0=17),
and F 4, ((0=17) = = 4,(77 7). Hence, - 7 /,,((0=1") = «.

‘ew ew

If a theory K is recursively decidable, the set of Godel numbers of the-
orems of K is recursive. Taking the theorems of K as axioms, we obtain
a recursive axiomatization.

Assume there is a recursive set C such that Ty € C and Refyx c C;. Let

C be expressible in K by ./ (x). Let .5, with Gédel number k, be a fixed

point for =/ (x). Then, k¢ 7 & =./(k). Since ./ (x) expresses C in K,

Fx .o (k) or Fy = (k).

a. If by (k) then Fy =/ Therefore, k € Refg = C. Hence, ¢ = (k ),
contradicting the consistency of K.

b. If g - (k), then ¢ % So, k € Ty C C and therefore, - . (k), con-
tradicting the consistency of K.

Let K, be the theory whose axioms are those wfs of K; that are prov-
able in K* The theorems of K, are the axioms of K,. Hence, x € Ty, if
and only if Fmlg, (x) A x € T,... So, if K* were recursively decidable—
that is, if T,. were recursive—Tj, would be recursive. Since K, is a con-
sistent extension of K;, this would contradict the essential recursive
undecidability of K.

a. Compare the proof of Proposition 2.28.

b. By part (a), K*is consistent. Hence, by Exercise 3.60, K* is essentially
recursively undecidable. So, by (a), K is recursively undecidable.

b. Take (Vx)(A}(x) Sx= x) as a possible definition of A}.
Use Exercises 3.61(b) and 3.62.
Use Corollary 3.46, Exercise 3.63, and Proposition 3.47.
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412

4.15

4.18

4.19
4.22

4.23

4.27
4.30
4.33

4.39
4.40

4.41

4.42

4.43

4.44

(s) Assume u € x x y. Then u = (v, w) = {{v}, {v, w}} for some v in x and w
iny. Thenvexuyandwexuy. So, {v} € »(x Uy) and {v, w} € »(x U Y).
Hence, {{v}, {v, w}} € AAx U Y)).

HXCYvYcCX

a. 7(x)Cu(uUx)and /(x)C U (U x). Apply Corollary 4.6(b).

b. Use Exercises 4.12(s), 4.13(b), axiom W, and Corollary 4.6(b).

c. IfRel(Y) thenY € #(Y) x «(Y). Use part (b) and Corollary 4.6(b).

Let X = {yy, ¥2)|v1 = ¥» A y; € Y]; that is, X is the class of all ordered

pairs (u, u) with u € Y. Clearly, Fnc(X) and, for any set x, (30)((v, u) € X

ATV EX) S u€Ynux So, by axiom R, M(Y N x)

Assume Fnc(Y). Then Fnc(x [ Y) and 7(x 1Y) C x. By axiom R, M (Y"x).

a. Let@be the class {u|u # u}. Assume M(X). Then@ C X.So, g =@ nX.
By axiom S, M (@).

Assume M(V). Let Y = {x|x ¢ x}. It was proved above that ~M(Y). But

Y € V. Hence, by Corollary 4.6(b), -M(V).

b. grandparent and uncle

¢. Letu be the least €-element of X — Z.

a. By Proposition 4.11(a), Trans(w). By Proposition 4.11(b) and
Proposition 4.8(j), ® € On. If o € K; then ® € ®», contradicting
Proposition 4.8(a). Hence, o ¢ K.

Let X, =Xx{g}and Y; =Y x {1}.

For any u C y, let the characteristic function C, be the function with

domain y such that Cw=Jifweuand C,iw=1ifw ey — u. Let F be

the function with domain .~ (y) such that F'u = C, for u € ./ (y). Then

7 (x)=2" =

F

a. Forany setu, 7 (u) is a set by Exercise 4.15(a).

b. Ifuexy, thenu Cyxx. So,x¥C 7 (y x x).

a. @ is the only function with domain @.

c. If 7(u)+# @, then »(u) # @.

Define a function F with domain X such that, for any x, in X, F(x,) is

the function g in X" such that g'u = x,. Then X %X {”’.

Assume X=zY and ZzW. If -M(W), then -M(Z) and X? =YW =@

by ExerciseF4.41(a). Hénce, we may assume M(W) and M(Z). Define

a function ® on X? as follows: if f € X%, let ® 'f = F o f o G Then
X#=y".
O]
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4.45

4.46

4.47

4.48
4.54

4.55

4.56

4.59

4.62

4.63
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If X or Y is not a set, then ZX¥Y and ZX x Z¥ are both @. We may assume
then that X and Y are sets. Define a function ® with domain Z*¥ as
follows: if f € ZXY, let ® 'f= (X I f, Y L f). Then Z*** %ZX xZ".

Define a function F with domain (x¥)? as follows: for any fin (x¥)? let F'f
be the function in x¥** such that (F'’f)(u, v) = (f'v)'u for all (u, v) € y x z.
Then (x')* = X

If “M@Z),XxY)Y?=0=g x@=X?x Y% Assume then that M(Z).
Define a function F:X? x Y% — (X x Y)? as follows: for any f € X%, g €
YZ, (F(f, g)z = (fz, g'z) for all zin Z. Then X* x Y* =(X Y)~?.

This is a direct consequence of Proposition 4.19.

b. Use Bernstein’s theorem (Proposition 4.23(d)).

c.  Use Proposition 4.23(c, d).

Define a function F from V into 2_ as follows: F'u = {u, @} if u # @; F@ =
{1, 2}. Since, F is one-one, V < 2.. Hence, by Exercises 4.23 and 4.50, ~-M(2).

(h) Use Exercise 4.45.
L 2%=2% + 2%+ 2¥=2"x 2 2¥ x 21  2X+ 1 Dx,
Hence, by Bernstein’s Theorem, 2* +.x = 2~

Under the assumption of the axiom of infinity, @ is a set such that (Ju)u €
®) A (Vy)(y € ® = (32)(z € ® Ay C 2)). Conversely, assume (*) and let b be a
set such that (i) (Ju)(u € b) and (ii) (Vy)(y € b= (Fz)(z € b Ay C 2)). Let
d={u|(Fz)z€bAucz)Sinced C (| (b), dis a set. Define a relation
R={n,v)lnewnv={uluedAu=n}} Thus, (n,v) € Risand only
if n € w and v consists of all elements of d that are equinumerous with 7.
R is a one—one function with domain w and range a subset of .(d). Hence,

by the replacement axiom applied to R, w is a set and, therefore, axiom I
holds.

a. Induction on o in (Vx)(x 2 a A @ € ® = Fin(Ax))).

Inductionon ain (Vx)(x 2 a A a € o A (Y )(y € x = Fin(y)) = Fin( x)).
Use Proposition 4.27(a).

xCrs/(Uvandyex=>ycJx

Inductionon ain (Vx)x ZaAa€E®=> (XY VY %)
Inductionon ain (Vx)x 2 a A a € A Inf(Y) = x <y)

Use Proposition 4.26(c).

i W C.o(yxx)

SR e a0 o

Let Z be a set such that every non-empty set of subsets of Z has a mini-
mal element. Assume Inf(Z). Let Y be the set of all infinite subsets of Z.
Then Y is a non-empty set of subsets of Z without a minimal element.
Conversely, prove by induction that, for all a in w, any non-empty sub-
set of .7(a) has a minimal element. The result then carries over to non-
empty subsets of ./(z), where z is any finite set.
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4.64

4.65

4.68

4.69

4.70

4.71

a. Induction on ain (Vx)(x 2 @ A a € @ A Den(y) = Den(x U y)).

b. Induction on ain (¥ x)(x =2 a A x # @ A Den(y)=Den(x x 1))
Assume z C x and Den(z). Let zz®. Define a function g on x as fol-
lows: gu=uif uex—z; g'u :< ]’)’(( fru)) if u € z. Assume x is
Dedekind-infinite. Assume z C x and x=z. Let v € x — z. Define a

function & on o such that /'@ = v and h’(&’) =f(h'o) ifa € 0. Then h
is one—one. So, Den (o) and "o C x.

f.  Assumey ¢ x. (i) Assume x U {y} = x. Define by induction a function g
on o such that ¢'@ = y and g'(n + 1) = f'(g'n). g is a one—one func-
tion from o into x. Hence, x contains a denumerable subset and, by
part (c), x is Dedekind-infinite. (ii) Assume x is Dedekind-infinite.
Then, by part (), there is a denumerable subset z of x. Assume
zz=o. Let ¢y = (f!)'@. Define a function F as follows: F'u = u for
ufex—z Fey=y F'u=(fY)(fu-1) for u € z - {c,}. Then x= xu{y}
If zis {cy, ¢y, ¢y, ...}, F takes c,,; into ¢; and moves c, into y.

g. Assume o < x. By part (), x is Dedekind-infinite. Choose y ¢ x. By
part (f), x 2 x U {y}. Hence, x +. 1 = (x x {@) U @, 1)} =2 x U {y} = x.

Assume M is a model of NBG with denumerable domain D. Let d be
the element of D satisfying the wf x = 2°. Hence, d satisfies the wf =(x = w).
This means that there is no object in D that satisfies the condition of
being a one-one correspondence between d and . Since D is denu-
merable, there is a one—one correspondence between the set of “ele-
ments” of d (that is, the set of objects ¢ in D such that Fy, c € d) and the
set of natural numbers. However, no such one—one correspondence
exists within M.

NBG is finitely axiomatizable and has only the binary predicate letter
Aj. The argument on pages 273-274 shows that NBG is recursively
undecidable. Hence, by Proposition 3.49, the predicate calculus with
Aj as its only non-logical constant is recursively undecidable.

a. Assume x < 0, If 2 < x, then, by Propositions 4.37(b) and 4.40,
XU, XX X0, <0, X0, =0, If x contains one element, use
Exercise 4.64(c, f).

b. Use Corollary 4.41.

a.  7(0y) X .7 (0,) & 2% x 200 2 D0 tcda & Doa 2 (@) )

b. ( /r(ma))x = (2“’“ )X =290 2 2% = /()

a. Ifywerenon-empty and finite, y = iy +.y would contradict Exercise
4.62(b).

b. Bypart(c),lety=uvv,unv=gu=zyov=y. Let yzv Define a func-

tion g on ./(y) as follows: for x Cy, let g'x = u U (f"x). Then g'xCyand
y=u<gx=<y. Hence gx 2v.So, g is a one—one function from ../()
intoA={z|zCyAz=y} Thus, /(y) < A.Since A C /(y), A< /().
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Use part (d): {z|]z Cy Az y} C {z|z Cy A Inf(2)}.

By part (c), lety =uvuogunv=g,uxy vy Letu = o Define f

ony as follows: fx =h'xif x euand fx = (h )xif x € v.

Use Proposition 4.37(b).

i. Perm(y)cy’= (Zy )y =21 =2 = (y).

ii. By part (a), we may use Exercise 4.7 (0). Lety =uuv,unov=
@, u=y,v=y Let u=v and yzu. Define a function F: ./(y) —
Perm(y) in the followmg way: assume z € /(y) Lety,:y — ybe
defined as follows: y,’x = H'x if x € G"z; y,’x = (HVx if (HVx €
G"z; y,'x = x otherwise. Then y, € Perm(y). Let F'z = w,. F is
one-one. Hence, .Ay) < Perm(y).

Use WO and Proposition 4.19.

The proof of Zorn = WO in Proposition 4.42 uses only this special
case of Zorn’s Lemma.

To prove the Hausdorff maximal principal (HMP) from Zorn,
consider some Gchain C; in x. Let i be the set of all Gchains C
in x such that C, € C and apply part (b) to y. Conversely, assume
HMP. To prove part (b), assume that the union of each nonempty
C-chain in a given non-empty set x is also in x. By HMP applied to
the C-chain g, there is some maximal C -chain C in x. Then |J (C)
is an C-maximal element of x.

Assume the Teichmiiller-Tukey lemma (TT). To prove part (b),
assume that the union of each non-empty c-chain in a given non-
empty set x is also in x. Let y be the set of all C-chains in x. y is
easily seen to be a set of finite character. Therefore, y contains a
Gmaximal element C. Then U (C) is a C-maximal element of x.
Conversely, let x be any set of finite character. In order to prove TT
by means of part (b), we must show that, if C is a C-chain in x, then
U (C) € x. By the finite character of x, it suffices to show that every
finite subset z of U (C) is in x. Now, since z is finite, z is a subset of
the union of a finite subset W of C. Since C is a C-chain, W has a
Cgreatest element w € x, and z is a subset of w. Since x is of finite
character, z € x.

Assume Rel(x). Let u = {z|(Fv)(v € 7(x) A z = {v}lx}; that is, z €
u if z is the set of all ordered pairs (v, w) in x, for some fixed v.
Apply the multiplicative axiom to u. The resulting choice set
y € x is a function with domain 7(x). Conversely, the given
property easily yields the multiplicative axiom. If x is a set of
disjoint non-empty sets, let r be the set of all ordered pairs (u, v)
such that u € x and v € u. Hence, there is a function f C r such
that 7(f) = 7(r) = x. The range (f) is the required choice set
for x.
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4.81

By trichotomy, either x <y or y < x. If x <y, there is a function with
domain y and range x. (Assume x=y; c v .) Take c € x. Define gu=c

ifuey-y,and g'u = (fu if u € y,) Similarly, if y < x, there is
a function with domain x and range y. Conversely, to prove WO,
apply the assumption (f) to x and #'(~(x)). Note that, if (3f)(fu—v A
#(f) =v), then .~ (v) < .(u). Therefore, if there were a function f from
x onto '((x)), we would have » ’( % (x)) < /( % ’( % (x))) <./ (x)
contradicting the definition of #'(~(x)). Hence, there is a function
from #'(7(x)) onto x. Since #’'((x)) is an ordinal, one can define
a one-one function from x into #'(~(x)). Thus x < #’'(7(x)) and,
therefore, x can be well-ordered.

If < is a partial ordering of x, use Zorn’s lemma to obtain a maximal
partial ordering <* of x with < C <* But a maximal partial ordering
must be a total ordering. (If u, v were distinct elements of x unrelated
by <* we could add to <* all pairs (u;, v;) such that u; <* u and v <* v,.
The new relation would be a partial ordering properly containing <*)

b.

Sincex xyx+y,xxy=aubwithanb=g,a=x,b=y. Letrbe
a well-ordering of y. (i) Assume there exists u in x such that (u, v)
€aforallviny. Theny <a. Since a = x, y < x, contradicting —(y < x).
Hence, (ii) for any u in x, there exists v in y such that (u, v) € b.
Define f: x — b such that f'u = (u, v), where v is the r-least element
of y such that (u, v) € b. Since fis one—one, x < b = v,.

Clearly Inf(z) and Inf(x +, z). Then x +.z = (x +.2)? = x2 +,2 x
(xx2z)+.222x+.2x (X x2)+.2

Therefore, x x z <2 x (x x 2) < x +.2 x (x x 2) +.z 2 x +.z. Conversely,
X +.z < x x z by Proposition 4.37(b).

If AC holds, (Vy)(Inf(y) = y = y x y) follows from Proposition 4.40
and Exercise 4.73(a). Conversely, if we assume y = y x y for all
infinite y, then, by parts (c) and (b), it follows that x < ' x for any
infinite set x. Since #’x is an ordinal, x can be well-ordered. Thus,
WO holds.

Let ( be a well-ordering of the range of 7. Let f'@ be the (-least ele-
ment of . (), and let f'n be the (-least element of those v in .7 (r)
such that ( f'n, v) er.

Assume Den(x) A (V w)(u € x > u # @). Let o= x. Let r be the set of
all pairs (g, b) such that a and b are finite squuences Vg, Uy, eey Uy
and (v, vy, ..., v, , 1) such that, for0 <i<n+1, v, € g'i. Since . (r) C
7 (r), PDC produces a function h: ® — 7 () such that (h'n, h'(n")) e r
for all n in w. Define the choice function f by taking, for each u in
x, f'u to be the (g'u) th component of the sequence /' (g'u).

Assume PDC and Inf(x). Let r consist of all ordered pairs (u, u U {a}),
where u U {a} C x,Fin(u U {a}), and a & u. By PDC, there is a function
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f: @ = 2(r) such that (f'nf(n')) € r for all n in ©. Define g: ® — x
by setting ¢'n equal to the unique element of f'(n’) — f'n. Then g is
one-one, and so, o < X.

d. In the proof of Proposition 4.44(b), instead of using the choice
function k, apply PDC to obtain the function f. As the relation 7,
use the set of all pairs (4, v) suchthatu ec,vecveunX.

a. Use transfinite induction.
d. Use induction on p.
(e)—(f) Use transfinite induction and part (a).

h. Assume u C H. Let v be the set of ranks p’x of elements x in u. Let
B=uUv. Thenu C¥ p. Hence u € »(¥'p) = ¥'(p) C H.

Assume X #@ A - (3Ay)(y € X Ay n X = @). Choose u € X. Define a

function g such that g’ @ =unX, g(n’) =uU (g'n) N X. Let x = U (#(9)).

Thenx#@and Vy)y ex=>ynNnx #Q).

Hint: Assume that the other axioms of NBG are consistent and that the

Axiom of Infinity is provable from them. Show that H, is a model for

the other axioms but not for the Axiom of Infinity.

Use Hy.00

a. LetC={x|-@Ayxeyryex)}

Chapter 5

5.1

5.2
5.7

5.8

5.10

Q|Bqp

qoBRq

SHIEH

q:BRq,

a. U3 b.d(x)

Let a Turing machine s compute the function f. Replace all occur-
rences of q, in the quadruples of ./ by a new internal state g,. Then
add the quadruples q, 4, 4; q, for all symbols a; of the alphabet of ./
The Turing machine defined by the enlarged set of quadruples also
computes the function f.

p finds the first non-blank square to the right of the initially scanned
square and then stops; if there is no such square, it keeps moving to
the right forever. X's behavior is similar to that of p, except that it moves
to the left.

aNx)=x+1 b.flxy=1forallx c 2x
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5.12

5.14
5.16

5.20

5.21

5.22

5.29

5.31

a.

'

So(Ky)? 1agl —> Lragp —>= S

e °

C F2KC

a. The empty function b.N(x)=x+1 c Z(x)
If f(a,) = by, ..., fla,) = b, then

f(x):uy[(x=a1/\y=b1)v v(xzanAy:b,1)]

Let g(z, x) = U(nyIi(z, x, y)) and use Corollary 5.11. Let v, be a number
such that g(x, x) + 1 = g(v,, x). Then, if g(v,, v,) is defined, g(v,, vy) + 1 =
9(v,, vy), which is impossible.

g(xl, ., xn):hl(xl, ., xn)~%(CR1 (xl, ., xn))+-~~+

(xy, -y X0) 58 (Cry (X1, ..., X))

a. Assume that h(x) is a recursive function such that h(x) = pyTy(x, x, y)
for every x in the domain of pyTi(x, x, y). Then (FY)Ti(x, x, y) if and
only if Ti(x, x, h(x)). Since Ti(x, x, h(x)) is a recursive relation, this
contradicts Corollary 5.13(a).

b. Use Exercise 5.21.

Z(pyTy(x, x, y)) is recursively completable, but its domain is {x|(Jy)
Ti(x, x, y)}, which, by Corollary 5.13(a), is not recursive.

Let ~~ be a Turing machine with a recursively unsolvable halting prob-
lem. Let a; be a symbol not in the alphabet of . Let g, be an internal
state symbol that does not occur in the quadruples of .= For each g;
of ~and a; of  if no quadruple of .~ begins with q; a;, then add the
quadruple q; a; a; g,. Call the new Turing machine T* Then, for any
initial tape description a of ., /* begun on a, prints a, if and only if

/~is applicable to a. Hence, if the printing problem for ~* and a, were
recursively solvable, then the halting problem for ~would be recur-
sively solvable.

Let .~ be a Turing machine with a recursively unsolvable halting prob-
lem. For any initial tape description  for ; construct a Turing machine
Ta that does the following: for any initial tape description p, start ~on
o; if ./~ stops, erase the result and then start ., on . It is easy to check
that ~is applicable to a if and only if .;; has a recursively unsolvable
halting problem. It is very tedious to show how to construct ; and to
prove that the Godel number of . is a recursive function of the Godel
number of a.
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Let v, be the index of a partial recursive function G(x) with non-empty
domain. If the given decision problem were recursively solvable, so
would be the decision problem of Example 1 on page 340.

By Corollary 5.16, there is a recursive function g(u) such that
Qg (¥) = x-uyT (u,1,y). Then @y, has an empty domain if and
only if -(Ay)Ty(u, u, y). But, -(Ay)Ty(u, u, y) is not recursive by
Corollary 5.13(a).

a.

By Corollary 5.16, there is a recursive function g(u) such that
Py (X) =Wy (x =uny =x). The domain of ¢y, is {u}. Apply the
fixed-point theorem to g.

Thereisa re-cursive .function g(u) such that (p}q(,,) (x)=py (x;tu/\y = O) .
Apply the fixed-point theorem to g.

Let A = {x|f(x) € B). By Proposition 5.21(c), B is the domain of a
partial recursive function g. Then A is the domain of the composi-
tion g o f. Since g o fis partial recursive by substitution, A is r.e. by
Proposition 5.21(c).

Let B be a recursive set and let D be the inverse image of B under
a recursive function f Then x € D if and only if Cy(f(x)) = 0, and
Cp(f(x)) = 0 is a recursive relation.

Let Bbe an r.e. set and let A be the image {f(x)|x € B} under a partial
recursive function f. If B is empty, so is A. If B is nonempty, then B is
the range of a recursive function g. Then A is the range of the partial
recursive function f(g(x)) and, by Proposition 5.21(b), A is r.e.

Consider part (b). Given any natural number x, compute the value
f(x) and determine whether f(x) is in B. This is an effective pro-
cedure for determining membership in the inverse image of B.
Hence, by Church’s thesis, B is recursive.

Any non-empty re. set that is not recursive (such as that of
Proposition 5.21(e)) is the range of a recursive function g and is,
therefore, the image of the recursive set o of all natural numbers
under the function g.

The proof has two parts:

1.

Let A be an infinite recursive set. Let g(i) = px(x € A A (¥)),; (x # 9()))
Then g() = h(i, g#(i)), where h(i, u) = px(x € A A (V));.; (x # W)
h is recursive, and g is recursive by Preposition 3.20. g is strictly
increasing and its range is A. (This proof is due to Gordon
McLean, Jr.)

Let A be the range of a strictly increasing recursive function g.
Then g(x) > x for all x (by the special case of Proposition 4.15).
Hence, x € A if and only if (Ju),.,g(m) = x. So, A is recursive by
Proposition 3.18.
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5.44

5.45

5.46

5.47

5.48

5.49

Assume A is an infinite r.e. set. Let A be the range of the recursive
function g(x). Define the function f by the following course-of-values
recursion:

F(m) =gy ((92).., 9(v) = £ (2))) =9 [ ((v2)._, 9 (v) = (£ #(m).))

Then A is the range of f, f is one-one, and f is recursive by Propositions
3.18 and 3.20. Intuitively, f{0) = g(0) and, for n > 0, f(n) = g(y), where y is
the least number for which g(y) is different from f(0), A), ..., f(n — 1).

Let A be an infinite r.e. set, and let A be the range of the recursive
function g. Since A is infinite, F(u) = py(g(y) > u) is a recursive func-
tion. Define G(0) = g(0), G(n + 1) = g(py(g(y) > G(n))) = g(F(G(n))). G is
a strictly increasing recursive function whose range is infinite and
included in A. By Exercise 5.43, the range of G is an infinite recursive
subset of A.

a. By Corollary 5.16, there is a recursive function g(u, v) such that

Oy (¥) = W (Ti (1,5, y) v Ti (0,7, ).

Assume (V). Let f(x, ..., x,) be effectively computable. Then the set
B = {u|f((w), ..., W),) = (), is effectively enumerable and, there-
fore, by (V), r.e. Hence, u € B & (Iy)R(u, y) for some recursive rela-
tion R. Then

Far, orny %) = ([uv(((v)o )= e A(@0), = 0 AR(@), ()] )

n+l

So, f is recursive. Conversely, assume Church’s thesis and let W be an
effectively enumerable set. If W is empty, then W is r.e. If W is non-
empty, let W be the range of the effectively computable function g. By
Church’s thesis, g is recursive. But, x € W < (Ju)(g(u) = x). Hence, W is
r.e. by Proposition 5.21(a).

Assume A isr.e. Since A # @, A is the range of a recursive function g(z).
So, for each z, U(pyT1(g(2), x, 1)) is total and, therefore, recursive. Hence,
U(uyT(g(x), x, y)) + 1 is recursive. Then there must be a number z, such
that U(uyTi(g(®), x, y)) + 1 is recursive. Then there must be a number
z, such that U(uyTi(g(x), x, y)) + 1 = U(uyT1(g(ze), X, v)). A contradiction
results when x = z,,.

(@) Let ¢(n) = n for all n.
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Let ¢(z)=07 (py[Tl (z,csf(y),cs%(y)) AGT(Y) > 22}), and let B be the
range of .

b.

o

Let Abe re. Then x € A & (JY)R(x, y), where R is recursive. Let Ax, y)
express R(x, y) in K. Thenk e A & (Ely) //(k,y).

Assume ke A k¢ v (E) for all natural numbers k. Thenk € A <
(3y)B (k,y) and B is recursive (see the proof of Proposition 3.29 on
page 201

Clearly Ty is infinite. Let f(x) be a recursive function with range
Tx. Let %, 4, ... be the theorems of K, where  is the wf of K
with Godel number f (j). Let g(x, y) be the recursive function such
that, if x is the Godel number of a wf ~, then g(x, j) is the Godel
number of the conjunction A # A ... A ~ consisting of j conjuncts;
and, otherwise, g(x, j)=0. Then g(f(j), j) is the Godel number of
the j-fold conjunction ;A 4 A ... A . Let K’ be the theory whose
axioms are all these j-fold conjunctions, forj =0, 1,2, ... Then K’
and K have the same theorems. Moreover, the set of axioms of K’
is recursive. In fact, x is the Godel number of an axiom of K’ if
and only if x # 0 A (3y),<.(9(f(¥), y) = x). From an intuitive stand-
point using Church’s thesis, we observe that, given any wf A, one
can decide whether A is a conjunction # A # A ... A 7; if it is such
a conjunction, one can determine the number j of conjuncts and

check whether ¢ is .
Part (b) follows from part (a).

Assume (x;) weakly expresses (Tx)* in K. Then, for any ,
k7 (7) if and only if n e (Tx)*. Let p be the Godel number of
#(x,). Then b .7 (;7) ifand only if p eﬁ(TK)*. Hence, ¢ .#(p) if and
only if the Godel number of () is in Ty; that is, k¢ .«(p) if and only
if not-F¢ .#(p).

If K is recursively decidable, Ty is recursive. Hence, Ty is recursive
and, by Exercise 5.57, (Tx)" is recursive. So, (Tx)* is weakly express-
ible in K, contradicting part (a).

Use part (b); every recursive set is expressible, and, therefore,
weakly expressible, in every consistent extension of K.

i 8(x).
ii. x1=x
iii. The function with empty domain.
iv. The doubling function.
i flz(xllo) =X1
f12(0/x2) =Xz
fl2 ((xl)',(xz)') = flz(xl,xz)
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5.61

5.62

5.63

ii. f12(xl,0) =x
£ (31, x2)) = (201, %2))
f2(x1,0)=0
f2 (3, () = 7 fE 2, 202),31)
iii. f(0)=1
fi((x))=0
£2(0)=0

f((a))= A (fi)

Any word P is transformed into QP.

Any word P in A is transformed into PQ.
Any word P in A is transformed into Q.

a0 o e

Any word P in A is transformed into 71, where # is the number of
symbols in P.

a af—->-AEinA)
oa—-A
A—-a
b. aé—-Ea(EinA)
Ea—-AEin A)
oa—-A
A—-a
c. E->AEInA)
aa—-A
A—-a
d Enp-npEEninA)
at—EPEaEinA)
By
y—= A
oa—-A
A—-a
aa, > Qua@=1,..k
af—>EaEinA—-{ay, ..., a))
oa—-A

A—-
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564 d. | B|-B
B —|
e [Bl—|
f. Let a, B and 6 be new symbols.
Bl-[B
oc‘—)‘Boc
oa—>A
I8 =] da
8]
3|—>38]
8|
3 -]
Bl
B — 8
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