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Preface to “Integral Transforms and
Operational Calculus”

This volume contains a total of 36 accepted submissions (including several invited feature
articles) to the Special Issue of the MDPI’s journal, Symmetry on the general subject-area of “Integral
Transforms and Operational Calculus” from all over the world.

Investigations involving the theory and applications of integral transforms and operational
calculus are remarkably wide-spread in many diverse areas of the mathematical, physical, chemical,
engineering and statistical sciences. In this Special Issue, we invited and welcome review, expository
and original research articles dealing with the recent advances on the topics of integral transforms
and operational calculus as well as their multidisciplinary applications.

The suggested topics of interest for the call of papers for this Special Issue included, but were

not limited to, the following keywords:

eIntegral Transforms and Integral as well as Other Related Operators

eApplications Involving Mathematical (or Higher Transcendental) Functions

eApplications Involving Fractional-Order Differential and Differintegral Equations
eApplications Involving ¢-Series and g-Polynomials

eApplications Involving Analytic Number Theory

eApplications Involving Special Functions of Mathematical Physics and Applied Mathematics

eApplications Involving Geometric Function Theory of Complex Analysis

Several well-established scientific research journals, which are published by such publishers as
(for example) Elsevier Science Publishers, John Wiley and Sons, Hindawi Publishing Corporation,
Springer, De Gruyter, MDPI, and other publishing houses, have published and continue to publish
a number of infoTitleSpecial Issues of many of their journals on recent advances on different
aspects, especially of the subject of one of the above-mentioned keywords, “Applications Involving
Fractional-Order Differential and Differintegral Equations.” Many widely-attended international
conferences, too, continue to be successfully organized and held world-wide ever since the very first
one on this particular subject-area in U.S.A. in the year 1974.

Finally, it gives me enormous pleasure in thanking all of the participants in this Special Issue
as well as the editorial personnel in the MDPI Editorial Office for Symmetry for their contributions
toward the success of this Special Issue. The wholehearted support and dedication of one and all are

indeed greatly appreciated.

H. M. Srivastava
Special Issue Editor

xi
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Abstract: The main purpose of this paper is to find some interesting symmetric identities
for the (p,q)-Hurwitz-Euler eta function in a complex field. Firstly, we define the multiple
(p,q)-Hurwitz-Euler eta function by generalizing the Carlitz’s form (p, q)-Euler numbers and
polynomials. We find some formulas and properties involved in Carlitz’s form (p,q)-Euler
numbers and polynomials with higher order. We find new symmetric identities for multiple
(p, q)-Hurwitz-Euler eta functions. We also obtain symmetric identities for Carlitz’s form (p, q)-Euler
numbers and polynomials with higher order by using symmetry about multiple (p, q)-Hurwitz-Euler
eta functions. Finally, we study the distribution and symmetric properties of the zero of Carlitz’s
form (p, q)-Euler numbers and polynomials with higher order.

Keywords: Euler numbers and polynomials; g-Euler numbers and polynomials; Hurwitz-Euler
eta function; multiple Hurwitz-Euler eta function; higher order g-Euler numbers and polynomials;
(p, q)-Euler numbers and polynomials of higher order; symmetric identities; symmetry of the zero

MSC: 11B68; 11540; 11580

1. Introduction

The area of the specific functions like the gamma and beta functions, the hypergeometric
functions, special polynomials, the zeta functions and the area of series such as g-series, and series
representations are a rapidly developing area in advanced mathematics (see [1-15]). Many g-extensions
of specific functions and polynomials have been studied (see [1,3,6-10,13,16]). Srivastava [15] discussed
some properties and g-extensions of the Bernoulli polynomials, Euler polynomials, and Genocchi
polynomials. Choi, Anderson and Srivastava have developed the g-extension of the Riemann zeta
function and functions related to the Riemann zeta function (see [5]). Choi and Srivastava presented
a generalized Hurwitz formula and Hurwitz-Euler eta function (see [4]). Recently, many authors
have developed (p, g)-extensions of the special functions, Riemann zeta function and related functions
(see [1,13,17-19]). The symmetry of special polynomials is also actively studied (see [8,9,19]).

We use this

n n n

my=0 m,=0 my,--- myp=0

We know the binomial formula as

(1—ay = ié) (?)(—ﬂ)i/ where <;l1> _ n(nfl)l.:(nfiJrl)/

1!

" i~ 0o =g () -5 ()
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Choi and Srivastava [4] constructed and made formulas about the multiple Hurwitz-Euler eta
function 7, (s, a) defined by following r-ple series:

oo (,1)k1+-~+ky
L a) = T, (Re(s) >0;a>0;r € N),

Wr(s a) k],..gy:() (k] +---+ kr + ﬂ)s ( E(S) ! ! )

where N is the set of natural numbers. It is known that (s, a) can be analytically continued to be all

complex s-plane (see [4]). The (p, g)-number was defined as

—q"

n — _ nfl_,’_
(1] p—q P p

n—2 n—3 2

Pt P g g

q+p

It can be seen that the (p, g)-number contains a symmetric property, and this number is g-number
when p = 1. In particular, we can see limg_,1[n],, = n with p = 1. Since [n],; = p"~![n] 1, we
observe that p-numbers and (p, g)-numbers are different. In other words, by substituting g by % in the
g-number, we could not obtain a (p, g)-number. Therefore, much research has been conducted in the
area of special functions by using (p, g)-number (see [1,13,18,19]). In this article, the (p, )-extension of
the multiple form of Hurwitz-Euler eta function can be defined as follows: For s, x € C with Re(x) > 0,

the multiple (p, g)-Hurwitz-Euler eta function 5 ;(,le (s, x) is defined by

0 (_1)m1+---+mrqml+~~+m,

r) — [

Tralerx) =Pl iy, om0 Ml
The aim of this paper is to introduce and study a new some generalizations of the Carlitz’s

form higher order g-Euler numbers and polynomials, the multiple g-Euler zeta function, and the
multiple Hurwitz g-Euler zeta function. We call them Carlitz’s type higher-order (p, 4)-Euler numbers
and polynomials, the multiple (p, 7)-Euler zeta function, and the multiple (p, g)-Hurwitz-Euler eta
function. The paper is structured as follows. In Section 2 we define Carlitz’s type higher-order
(p,q)-Euler numbers and (p, q)-Euler polynomials and induce some of their properties involving
elementary properties, distribution relation, property of complement, and so on. In Section 3, by
using the Carlitz’s type higher-order (p, g)-Euler numbers and polynomials, the multiple (p, g)-Euler
zeta function and the multiple (p, q)-Hurwitz-Euler eta function are defined. We also present some
connection formulae between the Carlitz’s type higher-order (p, q)-Euler numbers and polynomials,
the multiple (p, q)-Euler zeta function, and the multiple (p, q)-Hurwitz-Euler eta function. In Section 4
we give several symmetric identities about the multiple (p, g)-Hurwitz-Euler eta function and Carlitz’s
type higher-order (p, q)-Euler numbers and polynomials. In Section 5, we investigate the distribution
and symmetry of the zero of Carlitz’s type higher-order (p, q)-Euler polynomials using a computer.
Our paper ends with Section 6, where the conclusions and future developments of this work
are presented.
Definition 1. The classical higher-order Euler numbers denoted by E,(f) and Euler polynomials denoted by
E,([) (x) are defined as the below generating functions

2 r 00 r)tn
) = LEDS (<,

2\, £
(m) =Y BV (<),
—0 .

respectively (see [15]).
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Definition 2. For 0 < g < p <1, the Carlitz’s type (p, q)-Euler polynomials denoted by Ey, p 4(x) are defined
as the below generating function (see [13])

Z Enpz] ]q Z m m m+x]pqt

2. Carlitz’s Form Higher-Order (p, q)-Euler Numbers and Polynomials

First, we think the Carlitz’s form with high-order (p,q)-Euler numbers and polynomials as
follows:

Definition 3. For r € N, the high-order (p,q)-Euler polynomials denoted by Eﬁ,t])ﬂ,q(x) are defined like the
generating function:

Y E ) =l Y (At )
n=0 my,--- mp=0
Ifx=0, Eﬁ, l)”'i = E (0) are called the higher-order (p, q)-Euler numbers Eﬁ,r,l),,,q. Note that if r = 1,
then E,ﬁ;,q = Epp,q and ,(12,,7( ) = Enpgq(x). Observe that if p = 1,4 — 1, then E,sy,;a,q — Ey) and
Eiipa(x) = EJ ().

Definition 4. Forr € N, the (h, p, q)-Euler polynomials with high-order denoted by Eﬁlr; 27 (x) are defined as

the below generating function:

o () oy - ettty Bty e eobn) [y p gt

, p .y .y .y
ZOE"JWI(X)E = [z]q Z O(,q)ml mr ph(m my) glm my+xpqt @)
n= iy iy =

Ifx=0, EV p; = nrphq(O) is called (h, p,q)-Euler numbers with higher-order denoted by E%,q. Remark
that if h = 0, then E,(1 ,,?1 = Eﬁ,l)ﬂq and E,S ,,2,( x) = Enrpq(x) We see that if r = 1, then Eﬁ,rph,)i = Ef,{glq and
Es,f;,hzl( ) = E,,pq( x) (see [13]). Observe that if p = 1,4 — 1, then E,(,r,% — E,(, " and Eﬁ,pl),( ) — Eﬁ,r)(x).

By (1) and (2), we know that

B (v +1) = z ( )P I (ol
i ( qxz n 1E<’” 1). (3)
= iy

Theorem 1. Forr € N, we have

Er(lt;,q(x) — [2]; Z (7])m1+'..+m,qml+w+mr [ml 4+t my + x}zlq

1y, i1y =0
Rl & (n 1)l gl (=D 1 !
B (P—q)”,;)<l>( RN (Hq’“r’"‘l) '

Proof. When we use the Taylor series expansion of ellrat, we can get
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00 1 00
Y Ef () =2y L (A
= I my, - =0
) ) tl
=) ([215, )» (—1)’"1*“*"1%*"1*“**"'[ml+-~~+mr+x]lp/q> i
1=0 my, ,my=0 !

The first part of the theorem follows when we compare the coefficients of fl, in the above equation.
By (p, q)-numbers and binomial expansion, we also note that

[eS)

E)g(x) = 25 30 (—1ym g gy o,
my, - my=0
[ ]r i ( )m +eeetmy o+ tm pm1+---+my+x — qm1+-~+my+x !
= 2 _1 1T rq 1T r < )
qml,---,m,-:O P—q

_ [2}; = (n 1\l (n—I)x

[2}; " n 1 1 4
_ —1)lg¥! (n—=1)x ( ) )
(P*Q)"1§)<l>( Sy L gt pr!
We finish the proof of Theorem 1. [

Theorem 2. Forr € N, we get

E (r+m—1
Epa) = 2 3 (770 ) o+ @)
m=0
Proof. By Taylor-Maclaurin series expansion of (1 —a) ™", we have
1 ' o (m+r—1 m (41 n—Iym
<1 +ql+1pn71> = mZ::o ( m >(—1) (= p" )"
Also, by Theorem 1 and binomial expansion, one can obtain the desired result immediately. [

For d € Nwithd = 1( mod 2), by Theorem 1 we can show

21" n n d—1 )
Eipa(x) = 2 Z(l)(—l)lq’”p(”‘”" Y Y (cymtere

ay, ar=0my, - my=0

(n—1)(ay+dmy+---+a,+dmy)

my+--+my (141) (ay+dmy+---+a,+dm
x (=1)™ gl (@+dm p .

Theorem 3. (Distribution relation of (p,q)-Euler polynomials with higher-order). For d € N with d =
1( mod 2), we have

0 oy B 5 e (@At
En,p,q(x) = [2];,1 [d]plqul,--g,:o( q) En,pd,qd d :
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Proof. Since

E(r) <u1+---+ur+x>

npdq? d
_ [Z}Sd i n (71)lql(u1+w+ar+x)p(n—l)(a1+---+uy+x) 1 !
(' —q")" S\ 14 gl )pdn=h) )7

we have

d—1
+-4a, (r) ap+---+a+x
iy (g

ay,,a,=0
[z]rd " /n
- T (_1)1 Ix  (n—I)x
(P”*qd)”,;)<l> vy
+ SRREN ooy gl(ay e tay) o (n=1) (ag - ay) 1 '
@ ety g teetay o +eetay) (n=D (g +otay) (L
Xal..g’:o( 1) 1 q b <1+qd(1+l)pd(11fl)> :

Hence, we derive

2 . = . a4 +ap+x
_ 1o tay (r) 1 r
o, e, o T ()

2 & (n) / _ 1 ’
_ 1)l gl y(n=D)x <7) _
(p*q)”lgo ) VT L gttipn!

We prove Theorem 3. [

3. Multiple (p, g)-Hurwitz-Euler eta Function

We define multiple (p,q)-Hurwitz-Euler eta function. This function makes (p,q)-Euler
polynomials at negative integers with higher-order. Choi and Srivastava [4] defined #:(s,a) by

means of
0 (_1)k1+~~~+kr
,a) = —, (R > 0;a > 0;r € N).
’77(5 a) kl/ugy:() (kl +---+ kr + Il)s ( E(S) ¢ 4 )

It is known that 7,(s,4) can be continued analytically to be all complex s-plane (see [4]).
The (p, q)-extension of 7, (s, a) can be defined as follows:
Definition 5. For s,x € C with Re(x) > 0, the multiple (p,q)-Hurwitz-Euler eta function ng)(s,x) is

defined as
(r) p 0 (71)m1+---+mqu]+---+m,
,x) =2 .
(s x) = [2]; Z:o e

my,..., My

Observe that when p = 1,q — 1, then 2’7];,;;(5,61) = 1,(s,a).

Let
) n
() = Y B ()
n=0 :
o (5)
_ [2]; Z (_1)ml+---+m,qmﬁ—---+m,e[m1+---+m7+x]plqt
1seeety=0
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where T(s) = [;” 2" e 2dz.

Proof. From (5) and Definition 5, we get

() 0 (_1)ml+---+mrqm1+---+m,

Mpa(s,x) =123 32

iy =0 [my+- - +m+ x};,q

B [2}7 1 0 (_1)ml+~«+mqu1+~'+m, /oo 2571672dz
1T(s) ,, =0 [my+---+m+ x];,q Jo
2 & ©
_ q Z (_1)m1+---+n1qu]+---+m, / e[nu+~-+n1y+x]p,qtts—1dt
(5) iy, =0 0

We are finished Theorem 4. []

The value of multiple (p, q)-Hurwitz-Euler eta function ql(ﬂf,;(s, x) at negative integers is given
explicitly by the following theorem:

Theorem 5. Let n € N . Then we obtain
T (—n,x) = ES) ().

Proof. Again, by (5) and (6), we have

(") _ 1 /°° ")y )51 1 ¢
Hpq(s,x) = ) Jo Fyg(x, —t)~ldt = TG Z:: (7)
We note that
oo 1 /aN\" (=)
_ _ —z,—n-1 — 1 - n+1,-z, —n-1y _
I'(—n) /0 e %z dz 213[1)271111! (dz) ("M ez ) =27 T (8)

For n € N, let us take s = —n in (7). Then, by (7), (8), and Cauchy residue theorem, we have

e} v eo
i) = tim s 3 D 0 0 [

!
) m:

— o <ngn%> (Eg;ﬂ(x) (—nl!)">

o 1 0 A EDY
=271 <2m’<n1!)"> <En,p,q(x) o = E,,/W(x).

The proof of Theorem 5 is finished. [

By (4), we have

2 B~y (’”**‘1)( 1ymgrelmlnat

1’1 m=0 m
From Taylor series of el™pat in the above formula, we can get

i E,S’;q;i‘ = i ({2}; i <m +n:—l>(_1)mqm[m];/q> ;—”'

n=0 : n=0 m=0
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m

If we compare coefficients 7, then we know

s
= (m+k—1
B =12 ¥ (") onei, ©)
m=0
By using (9), we define multiple (p, q)-Euler zeta function like below formula:
Definition 6. Fors € C, we define
) b e (mAr =1\ (=1)"g"
e =2 X LU, (10)
P =Bl 2 ) g,
The function { ;(,rl),(s) makes the number E,([;,,q in negative integers. Instead of s, s = —n forn € N

into (10), and using (9), we can obtain the below theorem:

Theorem 6. Let n € N, We have
gz(ﬂr,q(_”) = Eg;,m

4. Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function

Let wy,w; € N where, w; = 1 (mod 2), w, = 1 (mod 2). Forr € Nand n € Z,, we get
symmetry identities about the multiple (p, g)-Hurwitz-Euler eta function.

Theorem 7. Let wy, w; be natural numbers, where wy =1 (mod 2), wy =1 (mod 2). Then we obtain

w;—1 . .o
w2l Y (~1)Eig i
Jujr=0
wy . .
X ’7;;21,11”1 (s, wox + —2(j1+ -+ )
w1
wy—1 (11)

— il Y (~)Fig S
i =0
(r)

w1, . .
X prz,qwz(s,wlx + ?72(]1 o).
Proof. We know that [xy], = [x],[y]; for any x,y € C. Hence, using wyx + %(]1 + .- +j,) instead

of x and replacing by 4“1 and p“! instead of g and p in (11), respectively, we induce the next result

1 (r) wy . .
mﬂpuqquq (S, WX + wfl(]l + - +]r))

0 Myt my WMy wym
(_]) 1 rgim 1My

wy . S \1s
myemy=0 [y =+ -y + w02 + == (1 ) Sy
wq g

00 my+--my qwymy A+ wym
(_1) 1 rgm 1My

gm0 [ W1(my 4 -+ my) Fwiwex + wa(+ -+ ) |

w1 PUgY1
) (_l)ml+»»»+m,qwlml+m+wlm,
= o T ) g F eyt il
[ZU1]§”7
iy g g o
=[w - -
L4 iy =0 (W1 (M1 - )+ wwax +wp(ji 4 4 i)l
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) wy—1 (71)m1+~«+m, WMy Wy My
=fh, Y% i
pg SINREENTS
iy iy ik:O [w1(my + -+ -+ my) + wiwax + wa(j1 + -+ +jir)]5 4

_ [wl]s Z Z 1)):;:1(wzmj+ij)qwl Y (womj+ij)

my, ,mp=0iy,- ,i,=0
. . . s \ L 12
X ([wl(wzml +11)+-~~+w1(w2my+zy)+w1wzx+wz(]1+~-~+]r)};,q) (12)
wy—1
=lwlh, L 2 (D)5 () g g
’ my, mp=0iy, ,i,=0
—1
x ([wlwz(x+m1+~~+m,) +wy iy + - +ir) + waljy +-~-+jr)};,q)
Thus, from (12), we see the following equation.
[walpy V! i woa (it wy . .
G L (CR iy L (5wt 2G4 )
qet jy,ejr=0 1
wy—1 w;—1 .
= [wl];,q[wﬂs E 2 Z ):, 1 ]1+11+m,)qw1wz Y m (13)
1y, =01y, ,iy=0 1, jr=
X qwl ):1:1 ’lqwz 21:1 I
N1
X ([wlwz(x+m1+~~+m,) +wi (i + - +ip) + wa(jr +~--+jr)};,q)
By using the same method as (13), we have
[wilp, “e=! et w1yt w . ,
s L (SO g (s G+ )
qwz jlr"'rjr:O 2
) wy—1 wi—1 .o
:[wl];lq[wz];q Z Z Z (71)21:1(]1+11+m1) (14)

my, =0 jy, e jy=01iy, - ir=0
T T T
X qwlwz Y1 mlqwz Y1 llqwl Y1l

< ([wrwar+my 4 my) b wr (44 j) b walin o in)lh,)
Therefore, by (13) and (14), we complete the proof Theorem 7. [
Taking w, = 1 in Theorem 7, we obtain the below corollary.
Corollary 1. Let wy be natural numbers, where w1 =1 (mod 2). For v € Nand n € Z.., we obtain

[2]; w;—1

[ (_1)27:1jlqw2 Zf:1jl
[2],’;1"1 [wl];i,q 1 jr=0

Mo (5, w01x) =

(15)
et
X W;:r)zwl,qwl <5;x + #) .
If p =1,9 — 1in above Corollary 1, then we can see the below corollary.
Corollary 2. Let m € N.m =1 (mod 2). Forr € Nand n € Z., we obtain
1l — X+a+oo+j
Ny (s,x) =— Z (71)]1+ +]r11r (S,M> . (16)
" =0 "
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Forr € Nand n € Z4, we see symmetry identities about higher-order (p, g)-Euler polynomials.

Theorem 8. Let wy, wy be natural numbers with wy = 1 (mod 2), wp = 1 (mod 2). Forr € N and
n € Zy., we obtain
w;—1 . .
il L (DTt
j1 =0
wy . .
X Eil )“1 wy <wzx+ *2(11 + +]r)>
P w1
(17)
wy—1 . .
= lwalpgl2ln }L (S1EgE
1=

() w1 (. ;
B (034 G )
Proof. Using Theorems 5 and 7, we see easily the Theorem 8. [J
Taking w, = 1 in Theorem 8, we have the below corollary.

Corollary 3. Let wy be the natural number with wy =1 (mod 2). Forr € Nand n € Z.., we obtain

) 2]} Wzl Sy
En ot gon (@1%) = [2]’ [wilpg 3o (F1)==iigtakimd
wq ]1 ---,]‘,:0 (18)

" bt
X En,pwl,qwl <S,X + T .

If p = 1,9 — 1 in the above Corollary, then we get the another Corollary.

Corollary 4. Let m be the natural number, where m =1 (mod 2). Let r € Nand n € Z., we see

m—1 . X i e 1
E£,Y>(X) E— Z (*1)]1+”'+]TE,<{> <x +51+ +]r> ] (19)
1 =0 m
By (3), we have
w;—1 . .
(=1)Zifig@2 X
Jurejr=0
wy . .
X (x4 22450
wp—1 . .
_ Z (,])er:l]lqluz Yl
1 jir=0
) N 1- (20)
X Z < > el +]y)pzvlwszflr 11 ,p1,41 (w2x) {a(h +o +jr):| pU1,4"1
wp—1 . X
=y (—=1)Z=a i P2 Ko
1 jr=0
[wz}p,q i . e
<5 (1) o) (B2

therefore, we can see the below theorem.
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Theorem 9. Let wy, wp € N. Let wq =1 (mod 2), wp =1 (mod 2). Let r € Nand n € Z., we get

w;—1 . .
Y (—=1)Ei=1hig2 X
1 jr=0
(r) wy . s
X En/p"’l,qw] (wzx + ;1(]1 + +]’)>
- (i)
Z < > wl}p quwlwleEn iy q"l (wzx)
wy—
1) ;i
% E . ):1 ljlqwz(n i+1) X ji [jy - +]7};w2/qw2'
J1e =

For all different integers n > 0, let
SO (@)= F (D)D)
n,i,p,q(w) - Z (7 ) =tq - []1 "'Jr]k]p,q'
jir =0

This sum S,(l l)p q( w) is called the alternating (p, q)-power sums.

By above Theorem 9, we get the result

wy;—1 P
galwilyy Y, (~DE-digeEia
Jo =0
wy . .
X Ei;wl g1 <w2x+;j(]1++]r)> (21)

n

n
= 2 - (1) el P (03008 1)

i=0

By using the same method as in (21), we have

wy—1 . .
[2};"’1 [wzm,q ‘ Z (—1)}:1:1]’q"’1 Yiah
1,00 jr=0
w . .
X ES:;“’Z,;;“’Z (wlx + w—;(]l + ... +]r)> (22)

o n i _
= 2 35 (1) ol ) 001 g 2]

i=0

So we see the following result using (21) and (22) and Theorem 3.

Theorem 10. Let wy, wy be the natural numbers, where w; =1 (mod 2), wy =1 (mod 2). Let r € N and
n € Z, we can see

n
2 ;WI Z0 ( > [wl]l’ q[ZUZ]P q pw1 o E1(17 lz)p‘”z qv2 (wlx)srs,ri)m“’l 41 (w2)
i=

n

n ww:
P Y ( )[wz]p, orlfg P E )y  (@2)8) o (0).
i=0

Using Theorem 10, we induce the symmetric identity (p,q)-Euler numbers E,(,r,g,lq for the
higher-order in complex field.

10
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Corollary 5. Let wy, wy be the natural numbers which have wy =1 (mod 2), wp =1 (mod 2). Fork € N
and n € Z, we get

n n R
2 Y- () gl S g ()L
i=0

= s 1 () ol 281 o oL g

5. Zeros of the Higher-Order (p, 4)-Euler Polynomials E,(,f,),,q (x)=0

If it is difficult to find solutions of equations, visualizing distributions of solutions using a
computer can help to find regular patterns of solutions. These are particularly interesting because it
is hard to approach theoretically. Therefore, the work of the last section is of interest to us. Based on
these results, we suggest a few unsolved problems.

The values of the Eﬁ,t;v,q (x) are given by

E‘gf;,q(x) =1,
, SVIRY
R
r x(_1 77 . 1 r L )
- (™ () i _(;); ) o ())
G (p3x (ﬁ)r*?’r’zqu( % ) +3pg” <1+pq )7 - (ﬁ)’)
ES,p,q(x) = 7) - |

We see that the numerical results about approximate solutions of zeros of Eﬁ,r;, ;(x) = 0are in
Tables 1 and 2. In Table 1, the numbers of zeros of EE,r;q( ) = 0 are listed about a fixed p = } and

_ 1
9= 10-

(r)

Table 1. Numbers of real and complex zeros of Eyj 5(x).

r=lp=34=1 r=3p=34=1
Degreen Real Zeros Complex Zeros Real Zeros Complex Zeros
1 1 0 0 1
2 2 0 * *
3 1 2 1 2
4 2 2 * *
5 1 4 1 4
6 2 4 2 4
7 1 6 1 6
8 * * * *
9 1 8 1 8
10 2 8 2 8
11 1 10 1 10
12 2 10 2 10
13 1 12 1 12
14 * * 2 12
15 1 14 1 14
16 * * * *
17 1 16 1 16

11
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The * mark in inside of Table 1 means that there is no solution of Er(rr,;,q(x) = 0. It is possible to

(r)

visualize the zeros of Enr,p,q(x) = 0 using computer graphics. The zeros of E,(;z,,q(x) =0, wherex € C
are visualized in Figure 1.

04 : T 04
[ ] ° e® % o
02 02}
( (J
() L
([ ] [
[ 4
Imx) 0.0 — & mw 0o — —
[ ]
[ ..
o
02 ® 02 [ J PY
® L 0e ©
04 04
04 02 00 02 04 0.4 02 00 02 04
Re(x) Re(x)
04 04
'Y X J (1T )
(] ( {
02 () ) 1 02 [ ]
® {
[ ]
Imx) 0.0 € mw 00 S
. .
[ ]
—02fF . . 4 -02f [ ]
®e0® oo ®
04 - - 04 - .
04 02 00 02 04 04 “02 00 02 04
Re(x) Re(x)
Figure 1. Zeros of Eﬁlr/z,,q(x) =0.

In Figure 1 (top-left), we chose r = 7,n = 10,p = 1/2 and q = 1/10. In Figure 1 (top-right), we
choser =7,n=20,p =1/2and q = 1/10. In Figure 1 (bottom-left), we choser =7,n =30,p =1/2
and g = 1/10. In Figure 1 (bottom-right), we chose r = 7,n = 40,p = 1/2 and q = 1/10. We can
see that distribution of zeroes of E,(f/,),,q (x) = 01is very regular. Therefore, the theoretical prediction of
the regularity of distributions of the zeros of Eslf;,,q(x) = 0 will remain as future research problems
(Table 1).

Now, we have the numerical solution satisfying higher-order Euler polynomials Eﬁ,r,;,,q (x)=0

(r)

for x € R. The numerical solutions of the higher-order Euler polynomials E; ; ;(x) = 0 are listed in
Table 2 about a fixed 7 = 3, p = %, and g = % and different value of n.

12
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Table 2. Numerical solutions of Ei,?grq(x) =0,p= %,q = 1170.
Degree n x
1 0.0723976
2 *
3 0.206956
4 *
5 0.258552
6 —0.163912, 0.273465

The * mark in Table 2 means that there is no solution of E,([,),,l, (x) =0.

6. Conclusions and Future Developments

This paper introduced the Carlitz’s form higher-order Euler numbers and polynomials. We have
induced some formulas about the Carlitz’s form Euler numbers and polynomials with high-order.
Symmetric identities about Carlitz’s form Euler numbers and polynomials with high-order are also
gained. In addition, the result of [19] is a special case of r = 1, which can be induced from our paper.
We make the following conjectures by numerical experiments:

Conjecture 1. Prove or disprove that Em’q (x),x € C, has Im(x) = O reflection symmetry analytic complex

functions. Furthermore, E,(f/,),,q(x) has Re(x) = a reflection symmetry for a € R.

It have been checked about many values of n. It is still unknown when the conjecture 1 is true or
false about each value n (see Figure 1).

In Table 1, there is no solution of that the Carlitz’s form (p, g)-Euler polynomials with higher-order
is 0. Find such 7 so that there is no solution. If the Carlitz’s form (p,q)-Euler polynomials with
higher-order has solutions, it is doubtful whether it has distinct solutions.

Conjecture 2. Prove or disprove that Eﬁ,t;lq(x) = 0 has n distinct solutions.

We use the following symbols. R0 denotes the number of real zeros of E ﬁ,r,])ﬂlq (x) =0onthe

. (%)
denotes the number of complex zeros of E (ny;,q (x) = 0. We can check

wpa(¥)
) (see Tables 1 and 2) because 7 is the degree of the polynomial E,(f,;,q (x).

real plane Im(x) = 0and C_)
b

R =n—C_
E'(»;MX) " E*(m)m
Also, when the Carlitz’s form higher-order (p,q)-Euler polynomials is 0, if the equation has

solutions, we have the following question:

Conjecture 3. Prove or disprove that

R )1, ifn= odd,
E,(z’,;):,q(x) ) 2, ifn= even.
We expect that the research in this direction will be a new approach using numerical methods for
the study of Carlitz’s form Euler polynomials Ef{fm (x) = 0 (See [13,17,19,20]).

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the
final manuscript.
Funding: This work was supported by the Dong-A university research fund.

Conflicts of Interest: The authors declare no conflict of interest.

13



Symmetry 2019, 11, 645

References

1. Araci, S;; Duran, U.; Acikgoz, M.; Srivastava, HM. A certain (p, q)-derivative operato rand associated
divided differences. J. Ineq. Appl. 2016, 2016. [CrossRef]

2. Andrews,G.E.; Askey, R; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications 71;
Cambridge University Press: Cambridge, UK, 1999.

3. Carlitz, L. Expansion of g-Bernoulli numbers and polynomials. Duke Math. . 1958, 25, 355-364. [CrossRef]

4. Choi,].; Srivastava, H.M. The Multiple Hurwitz Zeta Function and the Multiple Hurwitz-Euler Eta Function.
Taiwan. J. Math. 2011, 15, 501-522. [CrossRef]

5. Choi, J.; Anderson, PJ.; Srivastava, HM. Carlitz’s g-Bernoulli and g-Euler numbers and polynomials and a
class of generalized g-Hurwiz zeta functions. Appl. Math. Comput. 2009, 215, 1185-1208.

6.  Guariglia, E; Silvestrov, S. A functional equation for the Riemann zeta fractional derivative. AIP Conf. Proc.
2017, 1798, 020063.

7. Guariglia, E. Fractional derivative of the Riemann zeta function. In Fractional Dynamics; De Gruyter: Berlin,
Germany, 2015; pp. 357-368.

8. He, Y. Symmetric identities for Carlitz’s g-Bernoulli numbers and polynomials. Adv. Diff. Equ. 2013, 246, 10.
[CrossRef]

9.  Kim, D; Kim, T, Seo, J.-J. Identities of symmetric for (/, q)-extension of higher-order Euler polynomials.
Appl. Math. Sci. 2014, 8, 3799-3808.

10. Kim T. Barnes type multiple g-zeta function and g-Euler polynomials. J. Phys. A Math. Theor. 2010, 43, 255201.
[CrossRef]

11. Li, C; Dao, X.; Guo, P. Fractional derivatives in complex planes. Nonlinear Anal. 2009, 71, 1857-1869.
[CrossRef]

12.  Ortigueira, M.D. A coherent approach to non-integer order derivatives. Signal Process. 2006, 86, 2505-2515.
[CrossRef]

13.  Ryoo, C.S. (p,q)-analogue of Euler zeta function. J. Appl. Math. Inform. 2017, 35,113-120. [CrossRef]

14. Simsek, Y. Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (I, q)-zeta function and
L-function. ]. Math. Anal. Appl. 2006, 324, 790-804. [CrossRef]

15. Srivastava, HM. Some generalizations and basic (or g-) extensions of the Bernoulli, Euler and Genocchi
Polynomials. Appl. Math. Inform. Sci. 2011, 5, 390-444.

16. Kurt, V. A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the
Apostol-Genocchi polynomials. Appl. Math. Sci. 2009, 3, 53-56.

17.  Agarwal, RP; Kang, J.Y;; Ryoo, C.S. Some properties of (p, q)-tangent polynomials. ]. Comput. Anal. Appl.
2018, 24,1439-1454.

18. Duran, U.; Acikgoz, M.; Araci, S. On (p,q)-Bernoulli, (p,q)-Euler and (p,q)-Genocchi polynomials.
J. Comput. Theor. Nanosci. 2016, 13, 7833-7846. [CrossRef]

19. Ryoo, C.S. Some symmetric identities for (p, q)-Euler zeta function. ]. Comput. Anal. Appl. 2019, 27, 361-366.

20. Ryoo, C.S. On the generalized Barnes type multiple g-Euler polynomials twisted by ramified roots of unity.

Proc. Jangjeon Math. Soc. 2010, 13, 255-263.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

14



symmetry MBPY

Atrticle
A Note on the Truncated-Exponential Based
Apostol-Type Polynomials

H. M. Srivastava >*, Serkan Araci 3, Waseem A. Khan # and Mehmet Acikgoz 5

1
2

Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan

Department of Economics, Faculty of Economics, Administrative and Social Science, Hasan Kalyoncu
University, TR-27410 Gaziantep, Turkey; mtsrkn@hotmail.com

Department of Mathematics, Integral University, Lucknow 226026, Uttar Pradesh, India;
waseem08_khan@rediffmail.com

Department of Mathematics, Faculty of Science and Arts, Gaziantep University, TR-27310 Gaziantep, Turkey;
acikgoz@gantep.edu.tr

*  Correspondence: harimsri@math.uvic.ca

Received: 3 April 2019; Accepted: 12 April 2019; Published: 15 April 2019

Abstract: In this paper, we propose to investigate the truncated-exponential-based Apostol-type
polynomials and derive their various properties. In particular, we establish the operational
correspondence between this new family of polynomials and the familiar Apostol-type polynomials.
We also obtain some implicit summation formulas and symmetric identities by using their generating
functions. The results, which we have derived here, provide generalizations of the corresponding
known formulas including identities involving generalized Hermite-Bernoulli polynomials.
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Bernoulli, Euler, and Genocchi numbers; operational methods; summation formulas;
symmetric identities
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1. Introduction

Operational techniques involving differential operators, which is a consequence of the
monomiality principle, provide efficient tools in the theory of conventional polynomial systems
and their various generalizations. Steffensen [1] suggested the concept of poweroid, which happens
to be behind the idea of monomiality. The principle of monomiality was subsequently reformulated
and developed by Dattoli [2]. The strategy underlining this viewpoint is apparently simple, but the
outcomes are remarkably deep.

In the theory of the monomiality principle, a polynomial set p,(x) (n € N; x € C) is
quasi-monomial if there exist two operators M and P, which are named the multiplicative and the
derivative operators, respectively, are defined as follows:

M{pn(x)} = puy1(x) and ﬁ{?’n(x)} = npu-1(x),

together with the initial condition given by

po(x) =1 )

Symmetry 2019, 11, 538; doi:10.3390/sym11040538 15 www.mdpi.com/journal /symmetry
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The operators M and P satisfy the following commutation relation:
(M, P] =1. @)

Thus, clearly, these operators display a Weyl group structure.

The properties of the polynomials p,(x) can be deduced from those of the operators M and
P. If M and P possess a differential character, then the polynomials p,(x) satisfy the following
differential equation:

MP{pu(x)} = npu(x). ®)

The polynomial family p,(x) can be explicitly constructed through the action of M" on py(x)
as follows:

pulx) = M"{po(x)}. )

Just as in (1), we shall always assume that po(x) = 1. In view of the above identity (4), the exponential
generating function of p,(x) can be written in the form:

(1) = T pue) (1] <9). ©

We now introduce the truncated-exponential polynomials e,(x) (see [3]) defined by the

following series:
n Xk

en(x) = ) 770 (6)
k=0 """

that is, by the first n 4 1 terms of the Taylor-Maclaurin series for the exponential function e*.
These truncated-exponential polynomials play an important role in many problems in optics and
quantum mechanics. However, their properties are apparently as widespread as they should be.
The truncated-exponential polynomials e, (x) have been used to evaluate several overlapping integrals
associated with the optical mode evolution or for characterizing the structure of the flattened beams.
Their usefulness has led to the possibility of appropriately extending their definition. Actually,
Dattoli et al. [4] systematically studied the properties of these polynomials.

The definition (6) does lead us to most (if not all) of the properties of the polynomials e, (x). We
note the following representation:

en(v) = [T ey ag, %)

n!
which follows readily from the classical gamma-function representation (see, for details, [3]).
Consequently, we have the following generating function for the truncated-exponential polynomials

en(x) (see [4]): t
ex

1—

= i en(x) t". ®)

-~

The definition (6) of e,(x) can thus be extended to a family of potentially useful
truncated-exponential polynomials as follows (see [4]):

2lenx) = ¥ ©)

= Y Plen(x)r" (10)
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We also recall the higher-order truncated-exponential polynomials [r]e, (x), which are defined by
the following series (see [4]):
Xk

[rlen(x ; (n — rk)! (11)

and specified by the following generating function (see [4]):
eAt o) "
7= r;)[r]en(x)t . (12)

The special two-variable case of the polynomials in (11) (that is, the case when r = 2) are important
for applications. Moreover, these polynomials help us derive several potentially useful identities in a
simple way and in investigating other novel families of polynomial systems. Actually, Equation (12)
enables us to give a new family of polynomials as has been given in Theorem 1.

A 2-variable extension of the truncated-exponential polynomials is given by (see [4])

(3] kon—2k
_ yx

and possesses the following generating function (see [4]):
t [e)

T Z(J[Z]en(x,y)t". "

EX

With a view to introducing a mixed family of polynomials related to the familiar Sheffer sequence,
we first consider the 2-variable truncated-exponential polynomials (2VTEP) eﬁ,r) (x,y) of order r, which
are expressed explicitly by (see [5])

(5] k yn—rk
() — yx
e, (x,y) = 15
n (v y) L o (15)
and which are generated by
Xt B 0 " n
- HZOen (xy) (16)

From (8), (10), (12), (14) and (16), we can deduce several special cases of the 2VTEP efp (x,y), For
example, we have

eﬁ,z)(x,y) = [2]ex(x,y) e,gl)(x,l) = [r]en(x) eﬁ,z)(x,l) = [2]en(x) and e,sl)(x,l) =eu(x). (17)

As it is shown in [6,7], the 2VTEP eﬁlr) (x,y) are quasi-monomial (see also [1,2]) with respect to
multiplicative and derivative operators given by

My = (x +rydyyd; ") (18)
and R
P = dy, (19)
where 3 3
dy = P and oy = @

17
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Thus, if we apply the monomiality principle as well as the Equations (18) and (19), we have

My {el) (x )} = 0] (x,y) (20)
and
Bo{el (x,y)} = ne (x,y), (21)

respectively.

The 2VTEP e&” (x,y) are quasi-monomial, so their properties can be derived from those of the
multiplicative and derivative operators M o(n and 138(,), respectively. We thus find that
Mo P e (v,9)} = nei) (x,y), 22

which satisfies a differential equation for ey) (x,y) as follows:

(rox + rydyydy — n)es,r) (x,y) =0. (23)

Again, since e(()r) (x,y) =1, the 2VTEP e}(f) (x,y) can be explicitly constructed as follows:

el (x,y) = My (e (x,y)} = M, {1} (24)

Equation (24) yields the following generating function of the 2VTEP efj) (x,):

n

exp(Fn {1} = Y el (oy) (1 < ). 25)
n=0 :

We can easily verify the following relation between M o) and 138(,):

[Py, My =1. (26)

Denoting the classical Bernoulli, Euler and Genocchi polynomials by By (x), E,(x) and G,(x),
respectively, we now recall their familiar generalizations B,(f) (x), ES,“) (x) and G,(f) (x) of order &, which

are generated by (see, for details, [8-14]; see also [15] as well as the references cited therein):

t o . [eS) " m .
(o) = Lo @l (<2m 1=, @)
n=0 :
2\ @ e
(a5) =L@y w<mr = e8)
and ’
28 \" o e @) )
(Et+1) ¢ *V;JGH (x) n! (It < m; &« € Nop). (29)
Obviously, we have
BY(x) = By (x), EY(x)=Es(x) and GV (x)=:Gu(x). (30)
It is also known that
BY(0) =: B, EVM©0) =E, and GV (0)=:G, 31)

for the Bernoulli, Euler, and Genocchi numbers By, E,; and Gy, respectively.

18
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The Apostol-Bernoulli polynomials B,(,'X) (x; A) of order & was introduced by Luo and Srivastava
(see [16,17]). Subsequently, the Apostol-Euler polynomials E,(f‘) (x;A) and the Apostol-Genocchi
polynomials Gs,“) (x;A) of order « were analogously studied by Luo (see [18-20]; see also [21-27]).
Definition 1. The Apostol-Bernoulli polynomials B (x) of order w are defined by

tﬂ

(Aeul> ZB" A (32)

(|t < 2mwhen A = 1; |t| < \log)\| when A #1; 1% :=1)

with
BW(x) =B (1)  and  BW () =BY(0;1), (33)

where B(n“) (M) denotes the Apostol-Bernoulli numbers of order a.
Definition 2. The Apostol-Euler polynomials E ( ) of order w are defined by
2\ S
<m> = r;)En (x;A) Pl (34)
(It| < mwhen A = 1; |t] < |log(—A)| < mwhen A #1; 1% :=1)

with
EN ) =EM (1) and  EY(A) = EP(0A), (35)

where ES,'X) (A) denotes the Apostol-Euler numbers of order a.

Definition 3. The Apostol-Genocchi polynomials G ( x) of order « are defined by

2t > cw t”
(/\e’ + 1) Z n (A ! (36)
(Jt| < mwhen A =1; |t < |log(f )| when A #1; 1 :=1) (37)
with
W) =M 1) and G =6 (00), (38)

where GE[") (A) denotes the Apostol-Genocchi numbers of order a.

Remark 1. Whenever A = 1in (32) and A = —1 in (36), the order « of the Apostol-Bernoulli polynomials
Bﬁ,’x) (x; A) and the order « of the Apostol-Genocchi polynomials G,(,'X) (x; A) should obviously be constrained to
take on nonnegative integer values (see, for details, [14]). A similar remark would apply also to the order a in all
other analogous situations considered in this paper.

Among other authors, Ozden (see [28,29]), Ozden et al. ([30]) and Ozarslan (see [31,32]) introduced
and studied the unification of the above-defined Apostol-type polynomials. In particular, Ozden ([29])

defined the unified polynomials Y’ y(l /S) (x;k,a,b) of higher order by

19
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ol—kike \*
phet — ab ): (x;k,a,b) (39)
<|t <2mwhenp=ua; |t < ‘blog (g)‘ when g #a; 1“:=1; k € Np; a,b € R\ {0}; a, 8 E(C).

By putting x = 0 in (39), we can readily obtain the corresponding unification Y, ,5 /52 (k,a,b) of the
Apostol-type polynomials, which is generated by

21-kgk \* «
g ) = Lutkan o (40)
In fact, from Equations (32), (34), (36) and (39), we have
Y;il,x)\)(x? 1,1,1) = Br(lu)(x})\)/ (A1)
Y (50,-1,1) = B (1) (42)
and .
YVE’,X/\) (X}l;_i, 1> = G,(Z‘X)(X;)L). (43)

Definition 4. For an arbitrary real or complex parameter A, the number Si.(n, A) is given by Zhang and Yang

(see [19]) .
k n+1
Z Sk(n,A) t % (44)

which, for A = 1, yields
Sk(n,1) =: Sx(n).

Our main objective in this article is to first appropriately combine the 2-variable
truncated-exponential polynomials and the Apostol-type polynomials by means of operational
techniques. This leads us to the truncated-exponential-based Apostol-type polynomials. By framing
these polynomials within the context of the monomiality principle, we then establish their potentially
useful properties. We also derive some other properties and investigate several implicit summation
formulas for this general family of polynomials by making use of several different analytical techniques
on their generating functions. We choose to point out some relevant connections between the
truncated-exponential polynomials and the Apostol-type polynomials and thereby derive extensions
of several symmetric identities.

2. Two-Variable Truncated-Exponential-Based Apostol-Type Polynomials

We now start with the following theorem arising from the generating functions for
the truncated—exponential—based Apostol-type polynomials (TEATP), which are denoted by
o) Y( (x,y,k a,b).

71

Theorem 1. The generating function for the 2-variable truncated-exponential-based Apostol-type polynomials

)Yrsf‘ﬁ)(x,y; k,a,b) is given by

o
s (w) . ¢ _ zl_ktk xt 1
Y (¥ipeukab) o= (;;betab i) )

20
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Proof. Replacing x in the left-hand side and the right-hand side of (39) by the multiplicative operator
MY of the 2VTEATP Y\ (x, ;K a,b), we have

() o - Estinnns (n<bum(t)])

Using Equation (25) in the left-hand side and Equation (18) in the right-hand side of Equation (46), we

see that .
Zliktk at /( rax) ¢
(W ) Zen Xy =Y v ( ‘f;(yy,ax);k,a,h> o (47)

n=0

Now, using Equation (16) in the left-hand side and denoting the resulting 2-variable
truncated-exponential-based Apostol-type polynomials (2VTEATP) in the right-hand side by

(a)
e(")Yn,}i (x, y; k, a, b), we have

@ . @ g, _ @ ¢ (v,9x) |
1Yo (x,y;k,a,b) = Y5 (M k,a,b) = Yop <x+ 5(y,92) ;ka,b ), (48)

which yields the assertion (45) of Theorem 1. [

Remark 2. Equation (48) gives the operational representation involving the unified Apostol-type polynomials
YA (x, y;k 0, b) and 2VTEATP ) Y,\%) (x,y;k,a,b).

To frame the 2VTEATP YV(I“; (x,y;k, a,b) within the context of monomiality principle, we state
the following result.

Theorem 2. The 2VTEATP Y,(Zog (x,y; k, a, b) are quasi-monomial with respect to the following multiplicative
and derivative operators:

ak(Bbet —ab) — aplo e

v _ -1
M,y = x+ rydyydy + 92 (et —ab)

(49)

and
Py = 0x. (50)

Proof. Let us consider the following expression:

ocfer oy et L 6

Differentiating both sides of Equation (45) partially with respect to ¢, we see that

bt _ b\ _ byt 1—kk \“ xt
<x+ryayyagl+“k(‘58 a’) txﬁte><2 t ) e

t(ﬁbef _ llh) ﬁbet _ llb 1— ytr
Y oYY ykab) b 52
= Ze(') nH,ﬁ(X,y, ,a, )E (52)
Since
oy, t) = Ty

21
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is an invertible series of t, therefore,
¢ (y,0x)
$(y,0x)

possesses a power-series expansion in f. Thus, using (51), Equation (52) becomes

ak(ﬁbeax _ ub) _ txﬁbaxeax ol—kike \* ot
Ox (ﬁbet _ ub) ‘Bbet —gb 11—yt

E Y, +1ﬁ XYk a, b) (53)

<x + rydyydy !t +

Again, by using the generating function (45) in left-hand side of Equation (53) and rearranging the
resulting summation, we have

n

> 1, ak(Bhe” — ab) — apaye® @ (2 u: L
)3 <x“yayyax e ) {whpeukan}
n

3 t
=) e<'>Y15i)1,ﬁ(x/ y:k,a,b) o 54)

Comparing the coefficients of & o1 in the Equation (54), we get

g ak(Bbe® —ab) — apbo e p”
<x + rydyydy T4 52 (e —ab) x {e(, Y,(, ﬁ> (x,y;k, u,b)}

= m%ﬁﬂ,ﬁ(%y; k,a,b), (55)

which, in view of the monomiality principle exhibited in Equation (20) for Y Py (x, y;k,a,b), yields
the assertion (49) of Theorem 2.

We now prove the assertion (50) of Theorem 2. For this purpose, we start with the following
identity arising from Equations (45) and (51):

n

ax{n;)F )Y (x,y;k,a,b) } ; Y\, 5 ik a,b) o (56)

Rearranging the summation in the left-hand side of Equation (56), and then equating the coefficients of
the same powers of t in both sides of the resulting equation, we find that

i { Y yika, b)} =Y s ykab)  (neN), (7)
which, in view of the monomiality principle exhibited in Equation (21) for Yrsaﬁ) (x,y;k,a,b)), yields
the assertion (50) of Theorem 2. Our demonstration of Theorem 2 is thus completed. [

We note that the properties of quasi-monomials can be derived by means of the actions of
the multiplicative and derivative operators. We derive the differential equation for the 2VTEATP
Y( /5) (x,y;k,a,b) in the following theorem.

Theorem 3. The 2VTEATP ) YVE“ﬂ) (x,y;k, a,b) satisfies the following differential equation:

, ., ok(Ble! —ab) — apaye’ y®
<x8x + rydyyoy + (et —ab) —n {E g (YK a, b)} (58)
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Proof. Theorem 3 can be easily proved by combining (49) and (50) with the monomiality principle
exhibited in (22). [

Remark 3. When r = 2, the 2VTEP e\")(x,y) of order r reduces to the 2VTEP [ien (x,y). Therefore, if we
set r = 2 in Equation (45), we get the following generating function for the 2-variable truncated-exponential
Apostol-type polynomials (2VTEATP) (3, Yé"g (x,y;k,a,b) :

21-kik ‘ ot o @) I
B — b e (1—yt2> 2 Y xy,kab) (59)

The series definition and other results for the 2VTEATP [y, g(x y;k,a,b) can be obtained by taking r = 2
in Theorems 1 and 2. Table 1 shown the special cases of the 2VTEATP o) Yn (x,y;k,a,b).

Remark 4. For the case y = 1, the polynomials yex(x,1) reduce to the truncated-exponential polynomials
[jen(x). Therefore, by taking y = 1 in Equation (59), we get the following generating function for the

truncated-exponential Apostol-type polynomials (TEATP) ), n< /3) (x;k,a,b) :

21k N\ S (@)
lgbgt —ab e <1 _ t2> Z Ynﬁ X,k a, b) (60)

Table 1. Some special cases of the 2VTEATP . Yy (x,y; k, a,b).

S.No.  Values of the Parameter Relation between the Name of the Resultant Generating Functions
2VTEATP ) Y, (x,y; k, a,b) Special Polynomials and the Resultant of

and Its Special Case Special Polynomials

I k=a=b=18=2A o Yu (X, 11,1, A )=y Bﬁ,”(x,}/; A) 2-variable truncated-exponential-based (/\U,‘L1 )k et (ﬁ)
Apostol-Bernoulli polynomial =X U‘”BE‘A)(X,}/; A) %

n=0

1L ktl=—a=b=1=1 ,Yu(x,50,-1,1,7) = E,(z ](x,y;)\) 2-variable truncated-exponential-based (M,ZH)K et (ﬁ)
Apostol-Euler polynomial =X .0 E,(,“)(x,y' A) %

I k=-20=b=1,2=A ,Yulx,y1, 7%,1,&):@,;(3'(1“)(1"%” 2-variable truncated-exponential-based (/ 2 )‘l et ( 1 ,)

= ( o
Apostol-Genocchi polynomial =¥ o G,(,ﬂ)(x/]/;)\) [
=0

In the case when A = 1, the results obtamed above for the 2VTEABP o B )(x, yA),
2VTEAEP Ei,“)(x, y;A) and 2VTEAGP G n (x, ¥;A) give the corresponding results for the
2-variable truncated-exponential Bernoulli polynomials (2VTEBP) (of order &) () B,(f‘) (x,y), 2-variable
truncated-exponential Euler polynomials (2VTEBP) (of order a) EﬁlD‘)(x, y) and 2-variable

truncated-exponential Genocchi polynomials (2VTGBP) (of order «) () Gg“) (x,y) [6]. Again for o =1,
we get the corresponding results for the 2-variable truncated-exponential Bernoulli polynomials
(2VTEBP) ) By (x,y), 2-variable truncated-exponential Euler polynomials (2VTEEP) ¢ E,(x,y) and
2-variable truncated-exponential Genocchi polynomials (2VTEGP) ) Gu(x,y).

3. Implicit Formulas Involving the 2-Variable Truncated-Exponential Based
Apostol-Type Polynomials

In this section, we employ the definition of the 2-variable truncated-exponential-based
Apostol-type polynomials o) Yy;;) (x,y;k,a,b) that help in proving the generalizations of the previous
works of Khan et al. [33] and Pathan and Khan (see [34-36]). For the derivation of implicit formulas
involving the 2-variable truncated-exponential-based Apostol-type polynomials Y(aﬁ) (x,y;k,a,b),
the same considerations as developed for the ordinary Hermite and related polynomials in the works
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by Khan et al. [33] and Pathan et al. (see [34-36]) apply as well. We first prove the following results
involving the 2-variable truncated-exponential-based Apostol-type polynomials Yr(,'xﬁ) (x,y;k,a,b).
Theorem 4. The following implicit summation formulas for the 2-variable truncated-exponential-based

Apostol-type polynomials e(,)Y}EIXﬁ) (x,y;k,a,b) holds true:

q 1
(@) _ 7\ (! (w) )

Proof. We replace t by t + u and rewrite (45) as follows:

21k (4 )k " 1 ) & iy
(ﬁbet+11ub <1—y(t+u)’> - Z elr +lﬁ x %k a, b) q l (62)

q,1=0

Replacing x by z in the Equation (62) and equating the resulting equation to the above equation, we get

Z ) 1

_ d t7 u
ez (t+u) 2 o) (+),5(x vk, a, b) = 2 ) Ylg'xﬁ) (z,y;k,a,b) R (63)
q,1=0 7: q,1=0 q

Upon expanding the exponential function (63), we get

ul

& (=) & (@) R~ (®)
NZOW ZZ:Oe(ﬂYqil,ﬁ(x'y?kr”/b) T ZZ 0 Yz ik a, b & q' IS,
= 4I=0

which, by appealing to the following series manipulation formula:

PR Chd ) = X s (65)

in the left-hand side of (64), becomes

) (Zix)nertnup [ (@) ' I ul o (@) ' I ul
Z gt L Y p(x Yk a,b) P Y Yz vk ab) P (66)
n,p=0 q,1=0 q,1=0

Now, replacing g by g — n and | by | — p, and using a lemma in [37] in the left-hand side of (66), we get

o q 1 Z—X 11+;7 I 1
(a) u
WY o ykab) ——
qlzzo,go,;o ntpt e Yastonop gl O 0) (s
!
= E fl“ﬁ (z,y:k,a,b) — 17' ik (67)

Finally, on equating the coefficients of the like powers of t and u in the equation (67), we get the
required result (61) asserted by Theorem 4. [

If we set
k=a=0b=1 and B=A

in Theorem 4, we get the following corollary.
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Corollary 1. The following implicit summation formula for the truncated-exponential-based Bernoulli
lynomials ) B\ (x,y; A) holds true:
polynomials By, (x,y; A) holds true:

q 1 i
<>B$+1 CAZVEDIDY <Z> (P) (z—x)"*p L,(r)B;’fr);fp,n(X/y}/\)- (68)
n=0p=0
For
k+l=—-a=b=1 and B=A
in Theorem 4, we get the following corollary.

Corollary 2. The following implicit summation formula for the truncated-exponential-based Euler polynomials

o) ( )(x y; A) holds true:

9 1 1
gu)El(,Dfl(Z,y;)\) =) ) (Z) (p) (z—x)"* <JE.5+)1 pon(X Y A). (69)
Letting
k=-2a=b=1 and 26=A

in Theorem 4, we get the following corollary.

Corollary 3. The following implicit summation formulas for the truncated-exponential-based Genocchi
polynomials ) G,S“)(x, ¥ A) holds true:

q 1
F(')Gl;-H Z’y’ Z Z ( )( ) x)”+pe(V)G;i—)l—p—n(x'y;)‘)' (70)

Theorem 5. The following implicit summation formula involving the 2-variable truncated-exponential-based
Apostol-type polynomials ) Y,E'Xﬁ) (x,y;k,a,b) holds true:

n

Yé“;(x,y,k a,b) 2 ( ) ) ﬂ(k a, b)e§ )( LY)- (71)

Proof. By the definition (45), we have

zlfktk * ; 00 e ) s
X lX r L
G ) © (1,yﬂ) L Yup(kab) op b e (y) . (72)

n=0

Now, replacing n by n — s in the right-hand side of the Equation (72) and comparing the coefficients of
t, we get the result (71) asserted by Theorem 5. [

If we set
k=a=0b=1 and B=A

in Theorem 5, we get the following corollary.

Corollary 4. The following implicit summation formula for the 2-variable truncated-exponential-based
Bernoulli polynomials Bﬁ[ﬂ (x,y; A) holds true:

(@) = Y (MY R@® (41,0
. Bu (x+z,y+u,/\)7z s B, (A)es’ (x,y). (73)

s=0
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For
k+l=—-a=b=1 and B=A

in Theorem 5, we get the following corollary.

Corollary 5. The following implicit summation formula for the 2-variable truncated-exponential-based Euler
polynomials emEs,“) (x,y; A) holds true:

WEY G +zy+ua) =) <'S’> E® (el (x, ). (74)
s=0

Letting
k=-2a=b=1 and 26=A

in Theorem 5, we get the following corollary.

Corollary 6. The following implicit summation formula for the 2-variable truncated-exponential-based Genocchi
lynomials ) G\ (x,y; A) holds true:
polynomials Gy, (x,y; A) holds true:

g(')G7€IDC>(x+Z’y+u )L 2 < ) n— s 8( )(x/y) (75)

Theorem 6. The following implicit summation formula involving the 2-variable truncated-exponential-based
Apostol-type polynomials . ;5 /3) (x,y;k,a,b) holds true:

n
)Ylifg(x-&-z,y;k,u b) Z ( )e(, e Sﬂ(x y;k,a,b)z°. (76)
Proof. We first replace x by x + z in (45). Then, by using (16), we rewrite the generating function (45)
as follows:
zlfktk ® (r42)t 1 ) (@) oo
- - X+z — .
pbet — ab e <1fyt’> ’E) )Y”,ﬁ(x,y,k,a b) P
v y@ "
=L oY tzykab) 77)
n=0

Furthermore, upon replacing n by n — s in .h.s and comparing the coefficients of t", we complete the
proof of Theorem 6. [

For
k=a=0b=1 and B=A
in Theorem 6, we get the following corollary.
Corollary 7. The following implicit summation formula for the 2-variable truncated-exponential-based
Bernoulli polynomials Bi[” (x,y; A) holds true:
(w) 3
B Gty ) = V- (1) 0B o G ), 78)

s=0

Upon setting
k+l=—-a=b=1 and B=A

in Theorem 6, we get the following corollary.
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Corollary 8. The following implicit summation formula for the 2-variable truncated-exponential-based Euler
polynomials e(,>E,(1a) (x,y; A) holds true:

™=

WEY iz y+usA) = (’:)M EW. (x,y; A)Hs (2, u). (79)

s=0

Letting
k=-2a=b=1 and 28=A

in Theorem 6, we get the following corollary.

Corollary 9. The following implicit summation formula for the 2-variable truncated-exponential-based Genocchi

polynomials ) G,(,'X) (x,y; A) holds true:

F(,)GE,“>(>C—&-Z,y—|-14 A) Z ( ) (%, y; M) Hs (2, u). (80)

Theorem 7. The following implicit summation formula for the 2-variable truncated-exponential-based

Apostol-type polynomials }5 ﬂ) (x,y;k,a,b) holds true:
(w) - (1) y@ ")
Yo (X, y;k,a,b) = Z(:) . Y2 g(x —zika,b)el” (z,y). (81)
=

Proof. Let us rewrite Equation (45) as follows:

ol—kik \* ezt o > 0 i
X—. r
e e <1—yt'> ;Ynﬁ x—zkub) r;:)e (zy) - (82)
Replacing n by n — r and using (45), and then equating the coefficients of the of t", we complete the
proof of Theorem 7. [

For
k=a=b=1 and B=A

in Theorem 7, we get the following corollary.

Corollary 10. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type Bernoulli polynomials e(,>B,(;x> (x,y; A) holds true:

By 2() (=MD (). (83)

Letting

Il
>~

k+l=—-a=b=1 and B

in Theorem 7, we get the following corollary.

Corollary 11. The following implicit summation formula for the 2-variable truncated-exponential-based

Apostol-type Euler polynomials E,(,'X) (x,y; A) holds true:

B yid) = ) (f)E&‘i&(x ~51)e (z,y). 6

r=0
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If we set
k=-2a=0b=1 and 28=A

in Theorem 7, we get the following corollary.

Corollary 12. The following implicit summation formula for the 2-variable truncated-exponential-based

Apostol-type Genocchi polynomials ) GS,’X) (x,y; A) holds true:
(w) - (M) @ ")
G (A=Y . G (x =z M)l (z,y). (85)
r=0

Theorem 8. The following implicit summation formula for the 2-variable truncated-exponential-based

Apostol-type polynomials r(L ﬁ) (x,y;k,a,b) holds true:

« 1 n «
Ve (x+1ykab) = Y <m>e(,)Y}Qm’ﬁ(x,y; k,a,b). (86)

Proof. Using the generating function (45), we find that

l’l
nl

,;) (e(,.>Y’5f‘ﬁ)(x+l,y;k,u,b) ')Y(ﬁ)(x vk, a, b))

)“ <1 *1yt’> -1

ocﬁ)(x,y,kab (Z —1)
n 00 t

:Ze( Yn‘w(x]/rkab) Z Z nﬁ xy,kab)—!

Il
VRS
=20
Q| =
-
s
o | >

<

I
e
fQ
3&</-\

n

¥
n o t
( )E<,>Y75 g vk ab) = o Y (v ik 0, b)} ot

I
e
=

which, upon equating the coefficients of ", yields the assertion (86) of Theorem 8. [

Remark 5. Several corollaries and consequences of Theorem 11 can be deduced by using many of the
aforementioned specializations of the various parameters involved in Theorem 8.

4. General Symmetry Identities

In this section, we give general symmetry identities for the 2-variable truncated-exponential-based
Apostol-type polynomials Yn(',’;a)(x, y;k,a,b) by applying the generating functions (39) and (45).
The results extend some known identities of Ozarslan (see [31,32]), Khan [38], and Pathan and Khan
(see [34-36]).

Theorem 9. Let a,k € Ny, a,b € R\ {0}, B € C,x,y € Rand n € Ny. Then the following symmetry
identity holds true:

n
y <n>dmcn—m o )Yr(r,)mﬁ(dx d'y;k,a,b) Ymﬂfz;(cX, c"Y;k,a,b)

n
=Y <:1> g g(r>Y( )mﬁ(cx c'y;k,a,b),0) r(n;(dX d"Y;k,a,b). (87)
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Proof. Let us first consider the following expression:

ck gka2(1—k) 2k * i 1 . 1
8(t) = ((ﬁbe” — ab)(pledt — ab)> “ (W) e (W) '

which shows that the function g(t) is symmetric in the parameters a and b. Then, by expanding g(t)
into series in two different ways, we get

00 n 00 dt m
g(t) = Z o) (/g(dx d"y;k,a,b) (c ) Z g(,)Yx‘)B(cX,c’Y;k,a,b) (m)'
n=0 m=0
_y oy (Mg @ Y® (X oy n
= Yy " A" )Yy pldx, d Y K, a, ) ) mﬂ(cX,c Y;k,a,b)t (88)
n=0m=0
and
[e9) dt n 00 Ct m
g(t) = Z%]L(,)Y(ﬁ)(cx ik, b) ¢ ) Zoe(,)Y,EZ;(dX,d’Y;k,a,b) (m)!
n= m=

n - () () .
(m) AT )Y mﬁ(cx cy;k,a,b) Y, Sﬁ(dX,d’Y,k,a,b)t”. (89)

B
Il
o

Il
e
-

Comparing the coefficients of " on the right-hand sides of Equations (88) and (89), we arrive at the
desired result (87). [

For

in Theorem 9, we get the following corollary.

Corollary 13. For all c,d,r € N, n € Ngand A € C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Bernoulli polynomials holds true:

- n m . n—m () T (a) r
) d"c"" By (dx, d"y; A) o By (cX,c"Y;A)
. N\ gn—m (a) r () r
=) m)e a0 By (ex, Ty A) L B (dX,d7YA). (90)

Putting
k+1l=—-a=b=1 and B=A

in Theorem 9, we get the following corollary.

Corollary 14. For all v € N, n € Ny and A € C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Euler polynomials holds true:

E ( )dm n—m ’(f‘) (ix dly /\) ( )( ):,CVY,)\)
m=0 m 4 c
= E < ) :m in—nlg(r)E(ar) 1(CX,C y; )\) e(r) E(‘Xl)( D:, er’ /\) (9 )
m=0

If we set
k=-2a=b=1 and 28=A

in Theorem 9, we get the following corollary.
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Corollary 15. For all r € N, n € No and A € C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Genocchi polynomials holds true:
- n m n—imm (a) T () r
) n A" G (dx, dy; A) G (cX, Y5 M)
m=0

n
-k (:)Cmdnw 0 Gil(ex, Y ) o G (X, 07V ). (92)
m=0

Theorem 10. Let o,k € Ng, a,b € R\ {0}, B € C, x,y € Rand n € Ny. Then the following symmetry
identity holds true:

Z( >i2c“ g, Y™ ﬁ<dx+gl+],dy,kab> YA(eX, Yk a,b)
m=0

i=0 j=0

n n d—1c— (@) ()
=2 <m> ZOZd” e Y (cx + Si i ykab) oYX, dYikab).  (93)
=07=

Proof. Let us first consider the following application:

o
g(t) _ dekZZ(l—k)tZk ecdxt 1 > (eCdt _ 1)2 eCde < 1
(Bbect — ab)(Bledt — ab) 1—y(cdt)" ) (et —1) (e —1) 1—Y(cdt)"
B (1K) kg \ it 1 et _ 1 (1K) gh gk \
"\ pret —ab ) ¢ 1—y(caty ) \ et —1 | \ ghedt —ab
1
dx d
¢ t( cht’) (Mt 1et*1>
(1K) k gk Cdxt Cie”“i 21K gkgk \
/Sbe” —qab Cdt)" = )Sbe”” —qab

d—1
ch cdyt ectj
1-— Y cdt)” ) Jg

E[EORE

n=0

S <dx+ i dyka, b) 0 Voh (X, Yk, u,b)} . (94)

On the other hand, we have

E(LCEEr

i=0 j=0

'e<>Y<)

n—m,f

(Cx+ El“l’]rc y/k a, b) 151‘1)5(dX drY k a, b)) (95)

By comparing the coefficients of #" on the right-hand sides of (94) and (95), we arrive at the desired
result (93) asserted by Theorem 10. [

Remark 6. Several corollaries and consequences of Theorem 11 can be derived by making use of many of the
aforementioned specializations of the various parameters involved in Theorem 10.
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Theorem 11. For each pair of integers a and b and all integers n € Ny, the following identity holds true:

Z< )ZZC” d" n)mﬁ<dx+gzdy,kab> g(,Y(;(cX—i-d],c Y;k,a,b)

m=0 i=0 j=0
n n)d lc—1 @)
= arme™ oY, cx+71cy,kub
mZ::0<m IZéjZ;) ‘ " mﬁ( )
m";(dXJr @ aYika,b). (96)

Proof. The proof of Theorem 11 is analogous to that of Theorem 10, so we omit the details involved in
the proof of Theorem 11. [J

Remark 7. Several corollaries and consequences of Theorem 11 can be derived by applying many of the
aforementioned specializations of the various parameters involved in Theorem 11.

We conclude our present investigation by proving the following symmetric identity involving the
number Sy (1, A), which is defined by (44).

Theorem 12. For all positive integers a and b, and for n € Ny, the following symmetric identity holds true:
o ® o (m BN\ yw
Z <m> g g(,)Ynimlﬁ (dx,d"y;k,a,b) ;} ; Sile—1; A e(')mei,,B(CX’ c"Y;k,a,b)

! b
mgn—m () - m (B
b (ot ()

”<1>lﬁ(dx d'Y;k a,b). 97)

Proof. We first consider the function g(t) given by

g(t) _ (22(]7k)ckdkt2k)a(;3bemf — ab) ecdxt 1 echt 1
(ﬁbect _ ab)lx(ﬁbed[ _ ab)oHrl 1— y(Cdt)r (Cdt
o(1-k) kgk \ - 1 pecdt — ab (1K) gk \ *
“\prer—a) ° <1 _ y(cdt)r> phedt — 5bedt e (cdt) )

_<§0 Y (dxd' ke, ){25< <>> d"t')n}

(i Ya (cX,c"Y;k,a, b)(dt)n>4

Using similar arguments as above, we get

1 (B ticnan ) o o

00 n
( Y o YA (dX, dY;k,a,b) (C;!) ) (98)

N————
<
N——
—
SRS
S
I—ﬂl

n=0

Finally, after a suitable manipulation with the summation index in (98) followed by a comparison
of the coefficients of ", the proof of Theorem 12 is completed. [
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5. Conclusions

Ozden ([29]) defined the unified polynomials Yyﬂ) (x;k,a,b) of order « by means of the following
generating function (see also Remark 1 above):

2tk )" iy YOk ab "
pret—ab ) ¢ 7 Y Yop(xika, ) i
(|t\ <2mwhenf =u; |t| < ‘blog(%)‘ when g #a; 1 :=1; k € Np; a,b € R\ {0}; o, € (C> .

Basing our investigation upon this generating function, we have introduced generating function for

the 2-variable truncated-exponential-based Apostol-type polynomials denoted by Y (x,y;k,a,b)

n,
as follows: .

- (%) . [ 2k xt 1

1120 e(r) Yn/ﬁ (x, v k,a, b) ﬁ = ﬁbef b e 1— yt’ ’

which we have found to be instrumental in deriving quasi-monomiality with respect to the following
multiplicative and derivative operators:

ak(Bbet —ab) — apPo e
O (Bbet — ab)

Moy = x + rydyydy ' +

and
PE(’>Y - ax.

We have also presented a further investigation to obtain some implicit summation formulas and
symmetric identities by means of their generating functions.

In our next investigation, we propose to study an appropriate combination of the operational
approach with that involving integral transforms with a view to studying integral representations
related to the truncated-exponential-based Apostol-type polynomials which we have introduced and
studied in this article.
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1. Introduction

We denote by A the class of functions f that are analytic in the open unit disc D = {z : |z| < 1}
and of the form:

flz) =z+ i ayz". 1
n=2

Let S denote the class of all functions in .4, which are univalent in D. Let S* («), §* («) and c (@)
denote the classes of starlike, strongly starlike and strongly convex functions of order «, respectively,
and defined as:

S*(a) = {f:feAand%(Zj:/(S))>tx,zeu,ae[O,l)},

arg (Z}r,(ij))’ < %, zeU,ac [0,1)},

S*(a) = {f:feAand

and:

E(a):{f:fefland

arg (1 + ZJ]:/”(S))‘ < %, zelU,a € [0,1)}.

Symmetry 2019, 11, 463; doi:10.3390/sym11040463 35 www.mdpi.com/journal /symmetry
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It is clear that:

S (1)=8*(0)=8*, C(1)=C(0) =C.
The class U/CV of uniformly convex functions is defined as:
zf” (Z)) zf" (2) }
UCV:{ eA:?R(lJr > ,z€Dy.
! 7@ )7 e
For more detail, see [1]. If f and g are analytic functions, then the function f is said to be

subordinate to g, written as f(z) < g(z), if there exists a Schwarz function w with w(0) = 0 and
|w| < 1such that f(z) = g(w(z)). Furthermore, if the function g is univalent in ¥/, then we have the

following equivalent relation:

f(z) <8(z) <= f(0) = g(0) and f(U)Cg(U).
Now, we consider the second order inhomogeneous differential equation:

4(%)L+1

VAT (L+1)

2w’ (z) + zw' (2) + (22 - L2> w(z) = ()

The solution of the homogeneous part is Bessel functions of order L, where L is a real or complex
number. For more details about Bessel functions, we refer to [2-8]. The particular solution of the
inhomogeneous equation defined in Equation (2) is called the Struve function of order L; see [9]. It is

defined as:
o0 (_1)11 (2/2)271+L+1

X = . 3
L) ng:ol”(n+3/2)l”(L+n+3/2) ®)
Now, we consider the differential equation:
4(2)EH1
2w" (z) + zw’ (z) — (zz + L2> w(z) = L] )
VAT (L+1)

The Equation (4) differs from the Equation (2) in the coefficients of w. Its particular solution is
called the modified Struve functions of order L and is given as:
. 2\ 2n+L+1
(3)

Yy (z) = —ie P72 (iz) = .
L(Z) e L(ZZ) ,1;01"(71+3/2)1"(L+n+%)

Again, consider the second order inhomogeneous differential equation:

22w’ (z) + bzw' (z) + [cz2 —L24+(1-0) L] w(z) = (5)

where b, ¢, L € C. The Equation (5) generalizes the Equations (2) and (4). In particular, for b =1,
¢ = 1, we obtain Equation (2), and for b = 1, ¢ = —1, we obtain Equation (4). Its particular solution
has the series form:

(_l)n o (2/2)2n+L+1

Wepe (2) = ygor(n+3/2)r(L+n+ (b+2)/2)

(6)
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and is called the generalized Struve function of order L. This series is convergent everywhere. We take
the transformation:

(—c/4)" 2"
6(3/2), (4),”

e

uppe (z) = 28/AT (L+ (b +2) /2) 208D 20, (Vz) = @)

n

where g = L+ (b+2) /2#0,-1,-2,...and (7), = & = 9 (y+1)... (v +n — 1). This function

is analytic in the whole complex plane and satisfies the differential equation:
420" () +2(2p + b +3) zw (2) + [cz +2p + bl w (z) = 2p + b,

where I (.) denotes the Gamma function. The function u} j, . unifies the Struve functions and modified
Struve functions. The function u; j . is not in the class A of analytic functions; therefore, we consider
the following normalized form of the Struve function as:

0 4 Vl+1
OLb,c (Z) = ZULpc = Z ;//2)) ( )

®

Special cases:
(i) Forb =1, c =1, wehave the normalized Struve function X7, : A — A of order L. It is given as:

(=L+1)
2

X (z) = zL\/EI“<L+%>z XL (V2)

(71/4)n 2+l

e

= z4+ ) )
a1 (372),(q),
(ii) Forb =1, c = —1, we have the normalized Struve function Y : A — A of order L. It is given
as:
Vi(z) = 28/ar (L + %) 5y, (Vz)
1/4) n+1
= z4 10
z Z G/2), @), (10)

The functions uy ;. and vy ;. were introduced and studied by Orhan and Yugmur [10] and
further investigated by other authors [11-13]. In the last few years, many mathematicians have set the
univalence criteria of several of those integral operators that preserve the class S. By using a variety
of different analytic techniques, operators and special functions, several authors have studied the
univalence criterion. Recently Din et al. [14] studied the univalence of integral operators involving
generalized Struve functions. These operators are defined as follows:

1
B

Forinp(Z) = {[3 /ﬂH]i[ (W)dt} , a1
'O i=1

1
ny+1

Mur(z) = | (ny+1) / {vLi,blC(t)}Wdt:| ) (12)
o =1
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and:
V4

1/A
2, (2) = [A/ A1 (evLi'hlf(t))Adt:| . 13)

0

Now, we introduce the following integral operators Hr;p ¢4, .6/ 1
the generalized Struve functions as:

e A — Ainvolving

HLi,b,C,'y,,‘B (Z)

{ﬁztﬁlﬁ (U;':"(Ctgt) )w dt} ' , (14)

) p17" U/LirbrC ®\" 1) :
L @) = B[EVTT{ 45 ) (o) ary (s)
0 =

where 7, ;, p are nonzero complex numbers, L; € Rforalli=1,2,--- ,nand g; € A.

In this paper, our aim is to study certain geometric properties like the strong starlikeness and
strong convexity of the Struve functions and univalence for the integral operators Hp, ., s and
11 b,c,7;,6,p associated with the generalized Struve functions. The starlikeness and uniform convexity
of the said integral operators are also part of this research.

2. Preliminary Results

We need the following lemmas to prove our main results.

Lemma 1 ([15]). Let G(z) be convex and univalent in the open unit disc with condition G(0) = 1. Let F(z) be
analytic in the open unit disc with condition F(0) = 1 and F < G in the open unit disc. Then, ¥ n € NU {0},
we obtain:

(n+ 1z [PE@)d < (n+ 1)z [ G(1)at.
/ /

Lemma 2 ([16]). If g € A satisfies:

z8" (z) .
1+ <2, thengeS”.
‘ e §
Lemma 3 ([17]). If ¢ € A satisfies:
2" (2)| _ 1
o) < 5 then g € UCV.

Lemma 4 ([10]). Ifb,L € Randc € C,q = L + szr—z are so constrained that q > max {0, %}, then the

function vy . : D — C satisfies the following inequalities.

EON cl(6q— e

N e ‘ < 3=l Ga- T’
.. zv’L’,b,((z) 6lc|
@ @ | S T

Lemma 5 ([18]). If g € A satisfies the following inequality:

1— |Z‘2§R(a)
R (@)

28" (2)
g (2)

<1,R(a) >0,
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then for every complex number B, R > R («), the function:

: 3
Gp(z) = (,s / -1/ (1) dt) €s.
0

Lemma 6 ([19]). Let g (z) = z + a2z% + - - - be the analytic function in D. If:

&k zep
§@ I~
where K ~ 3.05, then g is univalent in D.
1
Remark 1. The constant K is the solution of the equation 8 [x (3c72)3]7 — 3(477()2 = 12.

An approximation by using the computer programs suggest the value 3.03902118847875. Kudriasov used the
approximated value equal to 3.05.

3. Geometric Properties of Generalized Struve Functions

Theorem 1. If g > %, then vy p . € S* (a), where:

a—iarcsin(lpyll—ll:—l—lg 1—1/)2> (16)
d

and i = 3(41‘5‘) is such that arcsin ¥ + arcsing € [~ %, Z].

Proof. By using Equation (8) with the triangle inequality, we have:

, = " (n+1)
%oe @ =1 < L 373 ar(a)

n=1

By the help of the inequalities:
3 n
(3/2),> 2 (1 41), (@), 2", ¥n>1,

we obtain:

o n—1
e (2 —1] < KL (1l
v -1) < 5 ¥

41cl lc]

BRI RARArS 4

For g > %, it is clear that 0 < ¢ < 1. Furthermore, from expression (17), we concluded that:

Oppe(2) <1+9z = ’arg (U’L’b’c (z))‘ < arcsin . (18)
With the help of Lemma 1, take n = 0 with F(z) = v} , (z) and G(z) =1 + ¢z, and we get:

b (@) gy %z. (19)
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As a result:

arg (%) ’ < arcsin % (20)

By using relations (18) and (19) , we obtain:

(G - (i) -t

o (s )|l e )
4

< arcsin 5 + arcsin .

IN

As 0 < 1p <1, thus one can write the above last expression as:
arg M < aresin | ¢/ —l’b—z—&-f\/l—wz
OL,b,c (Z) 4 2
1—y?

which shows that vy ;. € SN" («) fora = %arcsin (1/1\/ 1-— %2 + %\/ ) .o

Theorem 2. Ifqg > %, then vy . € C («), where:

~ 2 i [i_# ., ¢ >
o = —arcsin ((p 1 T + ) 1—-9¢7|, (21)
2|c|

and ¢ = 321 is such that arcsin § + arcsing € [—%, Z].

Proof. By using the well-known triangle inequality:

|z1 + 22| < |z1] + |z2],

with the inequalities:

(n+1)*><4" (q),>q" VneN,

n

we obtain:

le|" (n+1)

(sete(®)) <1| < & (i
20c] & (2]e[\"
WL ()

n=1
2]c|
= = 9. 22
sg—21c ¢ (22)
Itis clear that 0 < ¢ < 1forg > %, and from the expression (22), we conclude that:
! !
(zv/L/b/C(z)) <1+4+¢z = |arg <Zv/L,b,c(Z)> < arcsin ¢. (23)

!/
With the help of Lemma 1, take n = 0 with F(z) = (ZUIL,b,c(Z)> and G(z) =1+ ¢z, and we get:

zv’L,b, (2) @

<1+ 7z (24)
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This implies that:
U/L,b,c(z) <1+ gz‘
As a result:
/ 9
argvy , .(z)| < arcsin Ex (25)

By using relations (23) and (25), we obtain:

I
/
arg w = farg (04,(2)) ~ arg .2
,0,C
< forg (st )Y | + o ()]
[

< arcsin 0l + arcsin ¢.

As 0 < ¢ < 1, thus one can write the above last expression as:
GG} / T
20 4,0 (2 (P
arg | ————— || < arcsin 1-
Pl @ ("’
which shows that vy ;. € E(a) for « = 2 arcsin <cp 1-— %2 + 81— g02> .

Theorem 3. Let g > %‘;‘, then vy, . € UCY.

Proof. Since: .
Z07 ), (z) 6|c|
01 pe (2) (12q 7lel)

By using Lemma 3, we have the required result. [

4. Univalence Criteria for Integral Operators

In this section, we find the univalence of these integral operators defined by generalized Struve
functions, by using the above lemmas.
Theorem4. LetLy,...,L,, beR,c € Candg; > 72|Z| withg; = Li+"2,i=1,.. n. Let Oppe: D —C
be defined in the Equation (8). Suppose q = min (q1,q2,-..,qn), i are non-zero complex numbers and if
gi € Awith:
8/ (2)
8i (2)

where K ~ 3.05, these numbers satisfying the relations:

<K, zeD,

1 |c| (6q — u
e () <1+ 3 (49 — Ic]) (3 |c| > ; il + Z [7i] <1, (26)

when 0 < N () < 1and for R (a) > 1

1 lel (69 —
R (a) <1+ 3 (49 —Ic]) (3 )ZWHZMQ 7)

then for every complex number B, ¥ (B) > R («) > 0, the function Hy,p -, p defined in (14) is univalent.

41



Symmetry 2019, 11, 463

Proof. Consider the function:

Ti

OL;b,
Hy per, (2 /H( Lube ( ) dt. 28)
01 1 gl
By taking the derivative of Equation (28), we get:
s - 1 (252202 -
_ z) = — )
Lib,c,yi it i (Z)

It is clear that Hy ;¢ -, (0) = HL_ be: (0) —1 = 0. It follows easily that:

ZH ey (B) & [ (%0 (B)) (28] (2)
HMM%U;%{<%mJﬂ (gwm)

and:
1—‘Z|2§R<lx H/L/bc'y,( ) < 1—|Z‘25Ra> Z Lbr +Z‘ ‘ Zgz
R |Ho, @ |- R@ i

Now, using the Lemma 6, we have g; € S,i = 1,..., 1, and:

28; (2)

30
8i(z) 0)

<

By virtue of the above inequality (30), we get:

1_|Z‘2§R(0¢) zHwa(z) _ |z 2| | Lbc(z Z\ |1+|z
R | Hp G| - M@ | PRI
1- U Zv“,c() 1—\z\m> 2 &
< il -
R A e
First, we consider the part:
1—[z[**® il | be (2)
R () " o @ |
This implies that:
1—- |Z|2%(a) i ‘ | ZU/Li,b,C (Z) < 1 i "Y‘ Zv/Li/b,C (Z)
R 5o @ | T R@E T o @) |
Using Lemma 5, we have:
|z\ ”L bc( ) { e[ (64i — |c]) }
il 91+ .
L e U 5 1) Gos— 1)

. . L (7cl _ el(6x—]cl) i i ion;
We define the function 7 : (j, oo) — R, t(x) = 3= [ ) G- It is a decreasing function;

therefore:
le] (64; — |e]) < lel(6g —c])
3 (4g: — |cl) (3gi — [e]) — 3(4q — Ic]) 39 — |c])
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hence:
L ,b,c (

OL;be ()

‘Z' ):i ol

Now, we consider the part:

el (63— [¢])
{ 380~ |c]) (3 — \cn}' 6D

1-— |Z‘2ER «)

S L

For this, we have the following cases:

(1)  For0 < R («) < 1, then the functionv : (0,1) — R, v (x) =1—a*, x = R (a) and |z| = a is
increasing and:
1= [ <1~ |2

’

therefore:

Y il (32)

From the inequalities (31) and (32), for 0 < R (x) < 1, we have:

Hg bc’y,( )
H,L b0, (Z)

1 lc| (6q —
=R (H 3(49—|c)) (3 |c| )D%H Z\% (33)

1— |Z‘2§R(¢x
R («)

(2)  For R (a) > 1, consider the function w : [1,00) — R, w (x) = 1*f2x, x=R(a)and |z| =ais
a decreasing function and:
1— |Z|25R(0()

— <123
R SR
therefore:
1— |Z|2% «) -
TR 1]z ‘Z\M 42\% . (34)
By combining the inequalities (31) and (34) for R (x) > 1, we get:
1 [zPR@\ |zH] . (2) 1 ( lc| (69 — )
: < 1+ vil +4)_ [l (35
( R@W ) [y @ | = R0\ 5@ X il + 43 .

From the inequalities (26), (27), (33) and (35), we obtain:

L Sl e A G
R () HLi,b,c,'y,( )

Therefore, using Lemma 5, we get the required result. [

Theorem 5. LetLy,...L,, b€ R, c € Candg; > 2‘4‘ withq; = L; + (bﬂ) i=1,...,n.Letvy . : D —>
C be defined in the Equation (8). Suppose g = min (q1,q2, .....qn) , Vi, 6; are non-zero complex numbers and if

gi € Awith
8/ (2)

8; (z)

where K ~ 3.05, and these numbers satisfy the relation:

<K, zeD,

2K
el <L 6)
(@R (@) +1) =0 =

Lo
R (2) 3 (a9 [e) ( |c|2‘”’H
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Then, for every complex number B, R (B) > R («) > 0, the function Iy ., 5, defined in Equation (15)
is univalent.

Proof. Consider the function:

n oL, Vi 5
ILibemis ( / ( 3 ) (81 ()" dt. (37)
0 =1
By taking the derivative of Equation (37), we get:
(e (2) )7 5
ypems @ =TT (25) " (g1 @) o)
i=1

Itis clear that I j ¢ -, 5, € A. It follows easily that:

M @ (@) 2 (G
M—E%(Ml>+25i{%é))}'

I eyt (2) VLbe (2)

Therefore, we obtain:

1_‘Z|2W(1¥) zIL b 5. (2)

R@) | b (2)
§ 1_ ‘Z|2XR(0¢) il ZU,Li,b,c( ) 41z H(S\ g (2)
T R Monee @) gZ @1
This implies that:
1_ ‘Z‘ziﬁ‘:(vc) ZIZ,»,b,cmﬁi (2) |z| Z | U/Li,b,c (z) o
R(@) | T enis (2) L be (2)
z z)
" I\Zwlg’ 2)} (39)

Using Lemmas 4 and 6, we get:

1= [z |2l e B f 1= ]2 f\ B le| (64; = |c])
R@W |1 s @ | %R(a) 713 (@gi = 1cl) (3gi — Ie)

1—z
" z|1<2}51~

As was mentioned before:

lc| (6gi — lc]) o lel(6q—lel)
3 (44; — lc[) (3qi — [e]) ~ 3 (49— [e]) (3q — |e[)’

therefore:

1— ‘Z‘Zm(ﬂ()

R (a)

ZIL ,b,c,7i,0i ( )‘

1 221 e Zh
I R(@) 30— ) !

2M||K2 |5|}

Lib,cyi0: (z)

— Iz
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_s2a
Consider the function /1 : [0,1] — R, h (x) = x(1-x ), x = |z|,a =R (x). Then:

a

2
maxh (x) = m,x € [0,1].
a+
This implies that:
L [ 20 s B f1 - [ el e Zh
= l
R |Tpors @ R (@) 3(4g—[c)

2K u
+ammnX3@}~

(2% (“) + l)T((X) i=1
Using the inequalities (36) and (39), we get:

1— 2" |21 ey, (2)
I

0 <1

Lib.cyid: (2)

Therefore, by using Lemma 5, we get the required result. [J

Corollary 1. Consider the function Xy, (z) : D — C defined in the Equation (9). Let Ly,...,L, > —1.75
(n e N)and L = min{Ly,...,Ly}. Furthermore, let the parameter «y; be non-zero complex numbers with
{i=1,2,3,...,n}and if g; € Awith:

i (2)

<K, zeD,
8 (2)

where K ~ 3.05, and these numbers satisfy the relations:

1 4(3L +4) T S
R (a) <1+3(24L2+58L+35)>i;|%‘+ ﬁR(lx)i;m <1

when 0 < N () < 1and for R (a) > 1

1 (3L+4)
LR(&) <1+3(24L2+58L+35 ) ZMHZ il <1

then for every complex number B, R (B) > R (x) > 0, the function Hy;pc ., p is univalent.

Corollary 2. Consider the function Xy, defined in the Equation (9). Let Ly,...,Ly > —1.75 (n € N) and
L =min{Ly,...,L,}.Furthermore, let the parameter -y;, 6; be non-zero complex numbers and if g; € A with:

8! (2)
gi(z)

<K, zeD,

where K =~ 3.05, and these numbers satisfy the relation:

1 4(3L+4) U 2K

5 Z|’Y1|+ 2R(x) Z'M <1
§R( )3(24L +58L+35 (2%(0‘)%(,},)4’_1) 2%(04 i:l

then for every complex number B, R (B) > R () > 0, the function I ¢ ., s, p is univalent.
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Corollary 3. Consider the function Yy, (z) : D — C defined in the Equation (10). Let Ly,..., L, > —1.75
(n € N)and L = min {Ly, Ly, ..., Ly } . Furthermore, let the parameters -y; be non-zero complex numbers with
{i=1,...,n}and if g; € Awith:

8 (2)

g (2)

where K ~ 3.05, and these numbers satisfy the relations:

<K, zeD,

1 (3L+4 n
R () <1+3(24L2+58L+35 >E|W+§R( Yl <1,

i=1

when 0 < N () < 1and for R (a) > 1

1 (BL+4)
LR(&) <1+3(24L2+58L+35 ) ZMHZ vl <1

then for every complex number B, R (B) > R (x) > 0, the function Hy, yc , p is univalent.

Corollary 4. Consider the function Yy, (z) : D — C defined in the Equation (10). Let Ly, ...,L, > —1.75
(n € N)and L = min{Ly, Ly, ..., L, } . Furthermore, let the parameter vy;, 6; be non-zero complex numbers and
if gi € Awith:

8 (z)
8 (2)

where K ~ 3.05, and these numbers satisfy the relation:

<K, zeD,

1 4(3L+4)

2 il + K
R ()R (7) 3 (24L2 + 58L +35) = ' 17

n
@D Z 6;] <1;
(2% (“)+1) 2R(a)  i=1

then for every complex number B, R (B) > R (a) > 0, the function Iy p . 5,5 i univalent.

5. Starlikeness and Uniform Convexity Criteria for the Integral Operator

In this section, we find the starlikeness and uniform convexity of these integral operators defined
by generalized Struve functions.
Theorem 6. Let Ly,...,L,, b € R, c € Cand q; > ‘ | with gi = Li + (HZ) ,i=1,.
D — C be defined in the Equation (8). Let thefunctlon gi satisfy the condltlon ‘ 2z (( ))

a positive integer. Suppose q = min (qq,...,q,) and 7y; are non-zero complex numbers and these numbers

satisfy the relation:
3 lc[ (6q — |c]) ) }
i +1)+ My <1
L {1 (57 e i +) + 1o

then the function Hy, .1 defined in the Equation (14) is in class S*.

,n. Let vppe e

Proof. Consider the function:

z

n e t Vi
HL,-,b,c,wi,l (Z) = /H (%) dt. (40)
o i=1 i
Hence: @ @
1 Libeyit \2) ¢ 1 rpe B\ 1<ng (Z)) 1
’ Lobeit (2) ,; ['y <UL,b,c(Z) T\ 5@ "
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This implies that:
zH/! b, z
1+4—,L—ihm < Lol e +Zn,|gkf @
Li,b,cyi1 Libc
Using Lemma 4(i),
wie@ | lel(6g— )
UL (2) ~3(4q—cl) (3 —el)
and:
G| -y
8i (2) ’
we have:
zH[ . . le] (6qi — [c])
1+771 { < el +1>+ -M}+1.
e @ | = 25 " @ By e +1)
Since:
lel (6qi — |c]) - |e] (64 — |c])
3 (4q; — |e[) (3g; — le]) = 3(4q —c|) (3 — |e[)
therefore:
ZHL byl - { ( |C| (6'7 |C|) )
Moo @) +1) + |y M} +1
‘ o @ | = 5 5@ (G- 1) T
Furthermore,

S (el 6a e
i:zl {M (3(451* c|) (39 — |e]) +1> + |%|M} <1

zHi’ by (2)

H£ b,e,7i1 ( )

implies that:

1+ <2.

By using Lemma 2, the function Hy ;. ,,1 € S*. O

Theorem 7. LetLy,...,L;, b€ R, c € Candg; > 7‘6‘ withq; = L; + Hz,i =1,...,n Letz;L.bC :D —»
C be defined in the Equation (8). Let the function g; sutzsfy the condition Zgg‘(< >)
integer. Suppose q = min (q1,qz, ..., qn) and 7y; are non-zero complex numbers and these numbers satisfy

the relation: el ( )
" cl (6q —|c ) } 1
i +1)+ i Mp < =,
L4 (5 ey g ey 1)+ M) <

i=1
then the function Hy p .1 € UCV.

Proof. Consider the function:

n v Yi
Hy e ( / H( Libe ( > dt. 42)

1

This implies that:

ZH/L/ ,b,eyi1 ( ) _ & ) ZU/Li,b,c (Z) o Zg; (Z)
H/L Jb,evil ( ) izi|:%<vl~ilb,0(z)> %<g:‘(z) >:|
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Therefore:
ZH,L, ,b,c z )
il < L bc + gz (43)
HLi/b/c,y,-, (Z) Z|'Yz Z| 7il ( )
Using Lemma 4(i):
e () el (69— [e])
UL (2) ~3(4q—c]) (3 —cl)
and:
)|
8i (2) ’
we have:
ZH] benin ! lc| (64 — |c])
4444L——'< { ( i +1>+ -M}.
e @ | = 5 U @ = ag - 1) T
Since:
el (bg:—lel) . lel(6q—le))
3 (4, — |c[) (3g; — le]) ~ 3(4q—c|) (39 — |e[)
therefore:
ZHY b < |e] (6
i1 q = |c]) ) }
+1 )+ || M.
T 5 < S (s Sy e +1) +
Using:
3l (5t L 1) i) <
= 3(4q—c]) (3 — |el) 2
then:
Hg b,evil ( ) 1
HL,-,h,c,%',l (Z) 2’

Hence, by using Lemma 3, Hy, ;.1 € UCV. O

Corollary 5. (1) Consider the function Xy, defined in the Equation ( ). Let Ly,..., Ly > =175 (n € N),
L =min{Ly,Ly,..., Ly} and the function g; satisfy the condition
Suppose q = min (q1,q2, ......qn) and 7y; are non-zero complex numbers zmd these numbers satisfy the inequality:

n 4(3L+4)
g%%mumﬁ+%bwa+>+mM4<

then the function Hy, .1 € S*.

(2) Consider the function X, defined as the Equation (9). Let Ly,...,L, > —175 (n €N),
L = min{Ly,Ly,..., Ly} and the function g; satisfy the condition ‘Z;’{((ZZ))

integer. Suppose q = min (q1,q2,...,qn) and vy; are non-zero complex numbers and these numbers satisfy

the inequality:
8(3L+4) 1
PR et NI | . Z
g@’m(my+%bmm+)**mM}<z

then the function Hy pc,.1 € UCV.

Zg’ ’ < M, where M is a positive integer.
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Corollary 6. (1) Consider the function Yy, defined as the Equation (10). Let Ly, ..., L, > —=1.75 (n € N),
L =min{Ly,Ly, ..., Ly} and the function g; satisfy the condition ‘%
Suppose q = min (qy, 2, ......qn ) and vy; are non-zero complex numbers and these numbers satisfy the inequality:

n 4(3L +4)
1 (2Bt ) Ml <
;{‘%|<3(24L2+58L+35)+ >+|7’| }< '

< M, where M is a positive integer.

then the function Hy ... 1 € S*.

(2) Consider the function Yy, defined as the Equation (10). Let Ly,...,L, > =175 (n €N), L =
min{Ly,Ly,..., Ly} and the function g; satisfy the condition ‘ij(—g
Suppose q = min (q1,92,...,q,) and <y; are non-zero complex numbers and these numbers satisfy the

inequality: ) ( |
8(3L+4 1

il 375072 Tea7 1 amy T 1 M L

g{\%l <3(24L2+58L+35) * >+|%| } <3

i=

then the function Hy p .1 € UCV.

< M, where M is a positive integer.
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Abstract: The application of machine learning techniques to sound signals requires the previous
characterization of said signals. In many cases, their description is made using cepstral coefficients
that represent the sound spectra. In this paper, the performance in obtaining cepstral coefficients by
two integral transforms, Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT),
are compared in the context of processing anuran calls. Due to the symmetry of sound spectra, it is
shown that DCT clearly outperforms DFT, and decreases the error representing the spectrum by more
than 30%. Additionally, it is demonstrated that DCT-based cepstral coefficients are less correlated
than their DFT-based counterparts, which leads to a significant advantage for DCT-based cepstral
coefficients if these features are later used in classification algorithms. Since the DCT superiority
is based on the symmetry of sound spectra and not on any intrinsic advantage of the algorithm,
the conclusions of this research can definitely be extrapolated to include any sound signal.

Keywords: spectrum symmetry; DCT; MFCC; audio features; anuran calls

1. Introduction

Automatic processing of sound signals is a very active topic in many fields of science and
engineering which find applications in multiple areas, such as speech recognition [1], speaker
identification [2,3], emotion recognition [4], music classification [5], outlier detection [6], classification
of animal species [7-9], detection of biomedical disease [10], and design of medical devices [11]. Sound
processing is also applied in urban and industrial contexts, such as environmental noise control [12],
mining [13], and transportation [14,15].

These applications typically include, among their first steps, the characterization of the sound:
a process which is commonly known as feature extraction [16]. A recent survey of techniques employed
in sound feature extraction can be found in [17], of which Spectrum-Temporal Parameters (STPs) [18],
Linear Prediction Coding (LPC) coefficients [19], Linear Frequency Cepstral Coefficients (LFCC) [20],
Pseudo Wigner-Ville Transform (PWVT) [21], and entropy coefficients [22] are of note.

Nevertheless, the Mel-Frequency Cepstral Coefficients (MFCC) [23] are probably the most
widely employed set of features in sound characterization and the majority of the sound processing
applications mentioned above are based on their use. Additionally, these features have also been
successfully employed in other fields, such as analysis of electrocardiogram (ECG) signals [24],
gait analysis [25,26], and disturbance interpretation in power grids [27].

On the other hand, the processing and classification of anuran calls have attracted the attention of
the scientific community for biological studies and as indicators of climate change. This taxonomic
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group is regarded as an outstanding gauge of biodiversity. Nevertheless, frog populations have
suffered a significant decrease in the last years due to habitat loss, climate change and invasive
species [28]. So, the continual monitoring of frog populations is becoming increasingly important to
develop adequate conservation policies [29].

It should be mentioned that the system of sound production in ectotherms is strongly affected by
the ambient temperature. Therefore, the temperature can significantly influence the patterns of calling
songs by modifying the beginning, duration, and intensity of calling episodes and, thus, the anuran
reproductive activity. The presence or absence of certain anuran calls in a certain territory, and their
evolution over time, can therefore be used as an indicator of climate change.

In our previous work, several classifiers for anuran calls are proposed that use non-sequential
procedures [30] or temporally-aware algorithms [31], or that consider score series [32], mainly using a
set of MPEG-7 features [33]. MPEG-7 is an ISO/IEC standard developed by MPEG (Moving Picture
Experts Group). In [34], the comparison of MPEG-7 and MFCC are undertaken both in terms of
classification performance and computational cost. Finally, the optimal values of MFCC options for
the classification of anuran calls are derived in [35].

State of the art classification of sound relies on Convolutional Neural Networks (CNN) that take
input from some form of the spectrogram [36] or even the raw waveform [37]. Moreover, CNN deep
learning approaches have also been used in the identification of anuran sound [38]. In spite of that,
studying and optimizing the process of extracting MFCC features is of great interest at least for three
reasons. First, because sound processing goes beyond the classification task, including procedures
such as compression, segmentation, semantic description, sound database retrieval, etc. Secondly,
because the spectrograms that feed the state-of-the-art deep CNN classifiers can be constructed
using MFCC [39]. And finally due to the fact that CNN classifiers based on spectrograms or raw
waveforms require intensive computing resources which makes them unsuitable for implementation in
low-cost low-power-consumption distributed nodes, as is the usual case in environmental monitoring
networks [35].

As presented in greater detail later, the MFCC features are a representation of the sounds in the
cepstral domain. They are derived after a first integral transform (from time to frequency domain),
which obtains the sound spectrum, and then a second integral transform is carried out (from frequency
to cepstral domain). In this paper, we will show that, by exploiting the symmetry of the sound spectra,
it is possible to obtain a more accurate representation of the anuran calls and the derived features will
therefore more precisely reflect the sound.

The main contribution of the paper is to offer a better understanding of the reason (symmetry)
that justify and quantify why Discrete Cosine Transform (DCT) has been extensively used to
compute MFCC. In more detail, the paper will show that DCT-based sound features yielded
to a significantly lower error representing spectra, which is a very convenient result for several
applications such as sound compression. Additionally, through the paper it will be demonstrated that
symmetry-based features (DCT) are less correlated, which is an advantage to be exploited in later
classification algorithms.

2. Materials and Methods

2.1. Extracting MFCC

The process of extracting the MFCC features from the # samples of a certain sound requires 7 steps
in 3 different domains, which are depicted in Figure 1, and can be summarized as follows:

1.  Pre-emphasis (time domain): The sound’s high frequencies are increased to compensate for the
fact that the Signal-to-Noise Ratio (SNR) is usually lower at these frequencies.

2. Framing (time domain): The n samples of the full-length sound segment are split into frames of
short duration (N samples, N < n). These frames are commonly obtained using non-rectangular
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overlapping windows (for instance, Hamming windows [40]). The subsequent steps are executed
on the N samples of each frame.

3. Log-energy spectral density (spectral domain): Using the Discrete Fourier Transform (DFT) or its
faster version, the Fast Fourier Transform (FFT), the N samples of each frame are converted into
the N samples of an energy spectral density, which are usually represented in a log-scale.

4. Mel bank filtering (spectral domain): The N samples of each frame’s spectrum are grouped into
M banks of frequencies, using M triangular filters centred according to the mel scale [41] and the
mel Filter Bank Energy (mel-FBE) is obtained.

5. Integral transform (cepstral domain): The M samples of the mel-FBE (in the spectral domain)
are converted into M samples in the cepstral domain using an integral transform. In this article,
it will be shown that the exploitation of the symmetry of the DFT integral transform obtained in
step 3 yields a cepstral integral transform with a better performance.

6.  Reduction of cepstral coefficients (cepstral domain): The M samples of the cepstrum are reduced
to C coefficients by discarding the least significant coefficients.

7. Liftering (cepstral domain): The C coefficients of the cepstrum are finally liftered to compensate
for the fact that high quefrency coefficients are usually much smaller than their low
quefrency counterparts.

Sound
Pre-emphasis [~ Framing

Time domain
Log-energy Mel
spectral == bank
density filter

Spectral domain

Reduction of MFCC
—>] cepstral =a Liftering
coefficients

Integral
transform

Cepstral domain

Figure 1. The process of extracting the Mel-Frequency Cepstral Coefficients (MFCC) features from a
certain sound.

In this process, integral transforms are used twice: in step 3 to move from the time domain into the
spectral domain; and in step 5 to move forward into the cepstral domain. In this paper, the symmetric
properties of the DFT integral transform in step 3 will be exploited for the selection of the most
appropriate integral transform required in step 5.

2.2. Integral Transforms of Non-Symmetric Functions

As detailed in the previous subsection, a sound spectrum is featured in order to obtain the
MFCC of a sound, specifically by characterizing the logarithm of its energy spectral density. In short,
this would be a particular case of the characterization of a function f(x) by means of a reduced set of
values where, in this case, f(x) is the spectrum of a sound. To address this problem, which is none
other than that of the compression of information, several techniques have been proposed, from among
which the frequency representation of the function stands out. In effect, the idea underlying this type
of technique is to consider the original signal, expand it in Fourier series, and then approximate the
function by means of a few terms of its expansion. Thus, instead of having to supply the values of the
function corresponding to each value of x, only the amplitude values (and eventually also the phase)
of a reduced number of harmonics are provided.
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Let us consider an arbitrary example function f(x), such as that shown in Figure 2, of which
we know only one fragment in the interval [xg, xp + P| (dashed line). Now let us consider that

this function is sampled, and the values only at specific points for x

x;, separated at intervals

Ax, are known. By denoting N as the total number of points (samples) in a period, we know that
Ax = P/N. The sampled function will be called f(x,) = f, where the hat (") above f represents a

sampled function.

0.8

f(x)

06

0.4

0.2

Figure 2. Known fragment of an example function f(x) (dashed line) and its corresponding sampled

function f(x,) (dots).

The usual way to obtain the spectrum of that function is to define a periodic function fy(x) of
period P that coincides with the previous function in the known interval (see Figure 3), and to proceed
to compute the spectrum of that new function. The spectral representation of the function fy(x) is

composed of the complex coefficients of the Fourier series expansion given by [42].

0.8

£,

0.6

0.4

0.2

Figure 3. Periodic function f,(x) obtained by repetition of the known fragment of f(x).
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On the other hand, the sampled function, f (xn) = fu, will have a spectral representation ¢ that
corresponds to ¢, when the sampling of the variable x is taken into account. Now let us call I(x) the

integrand of Equation (1), i.e.,

I(x)

= fx)e
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and hence the spectral representation of the non-sampled function f,(x) is featured by the coefficients

1 [Xo+P

%=73 8 I(x)dx. 3

in order to obtain the values ¢ that take into account the sampling of the variable x, the continuous
calculation of the area that supposes the integral of the previous expression is substituted with the sum
of the rectangles corresponding to the discrete values (sum of Riemann). In Figure 4, the calculation of
the real part of ¢; is depicted for the example function f,(x).

0.4

0.2 i
0 o

-0.2

-0.4

Re[l(x)]

-06F

08f  f .

1 12 14 16 1.8 2 22 24 26 28 3

Figure 4. Integration of sampled functions (sum of Riemann).

Therefore,
R 1 [xo+P
6=l = p [ 1088 o

0 X=Xy

From this equation it can be derived (see supplementary material) that

. 1 _.2mkxgy N-1 25tk
b= e T Y fre N (5)
n=0

z

It can be observed that the spectral representation ¢, depends on the point xg selected as the origin

of coordinates, due to the factor e~/ %. This factor does not affect the amplitude spectrum (since its
modulus is 1), but it does affect the phase spectrum corresponding to the known time-shift property of
the Fourier Transform. For practical purposes, the origin of coordinates is usually considered to be the
starting point of the sequence, that is, at xy = 0, and hence the spectral representation finally becomes

R 1A= e
Ck:Nane]N- (6)
n=0

This expression coincides with the usual definition of the Discrete Fourier Transform (DFT) [43].
In other words: The Discrete Fourier Transform of a known fragment of a function presupposes the
periodic repetition of that fragment.

2.3. Integral Transforms of Symmetric Functions

Let us now again consider the function f(x) of which we know only sampled values of a fragment
fn in the interval [xg, xo + P], as shown in Figure 2. An alternative way of representing its spectrum
to that of periodically repeating the values f, as in Figure 3, lies in defining a sequence of values g,
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of length 2P that coincides with f, in the interval [xg, xo + P], which is its symmetric in the interval
[xp — P, x0], as depicted in Figure 5.

1.4 T ——88

1.2} o p

08t
06} Lo i

0.4 ‘...

021 o o® 1

Figure 5. Known fragment of a symmetric example function g(x) (dashed line) and its corresponding
sampled function ¢(x;) (dots). These functions are obtained by considering the original fragment of
the example function f(x) (blue) and its symmetric (green).

It can be observed that
= fuVne€[0,N—1]

gn=fp1Yn€[-N,-1] . @

Subsequently, a sequence of periodic values /i, of period P’ = 2P is defined that coincides with g, in
the interval [xg — P, xo + P], as shown in Figure 6.
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Figure 6. Periodic function /,, obtained by repetition of the known fragment of g;,.
In order to obtain the spectrum of the sequence of values /1, it can be written that

1 Xp=x0+P—Ax .
&=13 2 hy e

xp=x0—P

271

kxn
Pr

Ax. (8)

From this equation it can be derived (see supplementary material) that

- tkxg . 1tkn

1 e N=1 e N1
6 = ﬁeﬂﬁ el N E fud N + 2 fae N | )
n=0 n=0
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As can be observed, due to the factor e~/ %Q, the spectral representation ¢, depends on the point
xp where the origin of coordinates is defined. This factor does not affect the amplitude spectrum
(since its modulus is 1), but it does affect the phase spectrum, which corresponds to the known
time-shifting property of the Fourier transform. For practical purposes, the origin of coordinates
is usually considered to be located the midpoint of the symmetric sequence g, thatis, xo = Ax/2,
as shown in Figure 7.
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Figure 7. Defining the origin of coordinates.

Finally, the spectral representation becomes (see supplementary material)

N-1
ék:% ;]f"cos{%k<n+%>} (10)

This expression coincides with the usual definition of the Discrete Cosine Transform (DCT) [44].
In other words, the Discrete Cosine Transform of a known fragment of a function presupposes the
periodic repetition of that fragment and its symmetric.

2.4. Representing Anuran Call Spectra

With this digression, we can now address the question posed at the beginning of Section 2.2
concerning the best way to characterize the spectrum of a sound by using the sum of its harmonics.
Note that it is necessary to compute the spectrum (step 5) of a spectrum (step 4), that is,
the trans-spectrum or the cepstrum, as previously discussed. The decision regarding whether
this trans-spectrum (cepstrum) should be derived using either the Fourier transform, or the cosine
transform, is based on the form of the fragment f, (in this case the spectral values of the sound). That is,
it should be considered whether the best approximation to the spectrum is either a periodic repetition
of f, or, in contrast, a periodic repetition of f,, and its symmetric.

Although this is a general question, we have addressed it in the context of a specific application
by featuring anuran calls for their further classification. The dataset employed contains 1 hour and
13 minutes of sounds which have been recorded at five different locations (four in Spain, and one in
Portugal) [32] and they were subsequently sampled at 44.1 kHz. The recordings include 4 types of
anuran calls and, since they have been taken in their natural habitat, are affected by highly significant
surrounding environmental noise (such as that of wind, water, rain, traffic, and voices).

In this paper, the duration of the frames (step 2) was set to 10 ms, such that each frame has
N = 441 data points and a total of W = 434,313 frames are considered. The log-energy spectral
density (step 3) is obtained using a standard FFT algorithm, which obtains a spectrum with N = 441
values. The mel-scaling (step 4) employs a set of M = 23 filters, and hence the mel-FBE spectrum is
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characterised by this number of values (M = 23). In step 5, two different approaches for obtaining the
cepstrum are used and compared: DFT and DCT. The results are then analysed for a different number
of cepstral coefficients (1 < C < M).

In order to carry out a more systematic study of the spectrum approximation error, let us call
E;(n) the original mel-FBE spectrum of the i-th frame (the result of step 4), where n is the filter
index (equivalent to the frequency in mel scale). Let us also call H;(m) the spectrum of E;(n), that is,
the cepstrum as obtained in step 5, where m is the cepstral index (equivalent to the quefrency in
mel scale). It can be written that H;(m) = F[E;(n)], where F represents either the DFT or the DCT
Fourier expansions.

After reducing the number of cepstral coefficients to a value of C < M, the resulting approximate
cepstrum (step 6) will be called H; (), where the tilde (7) above the H represents an approximation.
Using these C values in the corresponding Fourier expansion leads to an approximation of the
mel-FBE, that is, E;(n) = F! {Hl(m)] The approximation error for the i-th frame is therefore

ei(n) = E;i(n) — E;(n), that is, a different error for each value of 1, the filter index (or frequency in
mel-scale). An error measure for the overall spectrum of the i-th frame can be obtained using the Root
Mean Square Error (RMSE;) defined as:

B 1 M-1 5 1 M-1 _ 2
RMSE; = \| 37 Yl = | 57 & [Eitn) = Ei(m)] - (1)

In this paper, an arbitrary selected single frame is first considered, mainly for illustration purposes.
Its time-domain representation is depicted in Figure 8A while its spectrum is plotted in Figure 8B.
Some other examples can be found in [32].
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Figure 8. Sound amplitude for an arbitrarily selected frame of an anuran call (A); and its log-scale
Energy Spectral Density (B).

Additionally, in order to compare the performance of the 2 competing algorithms obtaining the
cepstrum, an overall metric for the whole dataset is considered and defined as the mean RMSE for
every frame, that is,

12)

3. Results

Let us first consider a single frame, arbitrarily selected from the whole sound dataset. Although
these results are limited to that specific sound frame, very similar results are obtained if a different
frame is selected. Moreover, at the end of this section, the overall sound dataset is considered.
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For the case of the single frame, the mel-FBE spectrum obtained in step 4 is depicted in Figure 9.
This is the f(x) function whose spectrum (cepstrum in this case) must be computed in step 5.

-3

-4.5¢

Energy (log scale)

&
.
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Filter index

Figure 9. Mel Filter Bank Energy (mel-FBE) spectrum for an arbitrarily selected frame of an anuran call.

For this frame, let us consider whether it is better to use either a DFT or a DCT. The decision
depends on whether the function f(x) can be considered as a fragment of a periodic repetition of:
(A) the fragment, as shown in Figure 10A, or (B) the function and its symmetric, as shown in Figure 10B.
In the first case, the DFT should be more appropriate, while in the second case the DCT would obtain
better results.

Energy (log scale)
Energy (log scale)
}»

o

" v\[f i

6 6
-50 0 50 100 -50
Filter index Filter index

100

Figure 10. Periodic repetition of the mel-FBE spectrum (A); and the mel-FBE spectrum and its
symmetric (B).

However, the mel-FBE is nothing but a rescaled and compressed way of presenting a spectrum.
On the other hand, it is a well-known fact that the spectrum of a real signal is symmetric with
respect to the vertical axis [43]. And finally, it is also known that the spectrum of a sampled signal
is periodic [45]. For this reason, the repetition of the fragment of Figure 9 corresponds to Figure 10B
and, therefore, using the DCT to compute its trans-spectrum (or cepstrum) should obtain better results.
This hypothesis is verified in the following paragraphs for the selected frame, and, later in this section,
it is verified for the whole dataset.

The number of coefficients obtained by applying either DCT or DFT is M = 23, that is, they have
the same number of values that define the mel-FBE. The resulting cepstrum for the selected frame is
shown in Figure 11.
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Figure 11. Cepstral representation of the mel-FBE spectrum (cepstrum).

The ability to compress information of the Fourier transforms (either in the DFT or DCT version)
lies in the fact that it is not necessary to consider the full set of the M coefficients of the Fourier
expansion to obtain a good approximation of the original function. In Figure 12, the original mel-FBE
spectrum is depicted for the example frame, and those spectra recovered using C < M cepstral
coefficients obtained using DCT.
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Figure 12. Mel-FBE spectrum for an arbitrarily selected frame of an anuran call. Original spectrum and
recovered spectra using a different number of Discrete Cosine Transform (DCT) cepstral coefficients.

Additionally, as expected, the DCT achieves approximations to the original spectrum that are,
in general, significantly better than those obtained for the DFT with the same number of coefficients.
In Figure 13, the original mel-FBE spectrum is depicted for the example frame, and those spectra
recovered using C = 11 cepstral coefficients obtained using DFT and DCT.
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Figure 13. Mel-FBE spectrum for an arbitrarily selected frame of an anuran call. Original spectrum
and recovered spectrum using C = 11 coefficients obtained using Discrete Fourier Transform (DFT)
and DCT.

In order to quantify the error of recovering the selected mel-FBE spectrum using C < M cepstral
coefficients, the Root Mean Square Error (RMSE) is computed in accordance with Equation (11).
The value of RMSE as a function of the number C of cepstral coefficients used for the recovery of the
spectrum is depicted in Figure 14, both for DFT and DCT.
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Figure 14. Root Mean Square Error recovering the original mel-FBE spectrum when a different number
of C cepstral coefficients are used. The cepstral coefficients are obtained applying either DFT or DCT.

This analysis can be extended to include the computation of the RMSE for the whole dataset in
accordance with Equation (12). The value of RMSE as a function of the number C of cepstral coefficients
used for the recovery of the spectrum is depicted in Figure 15 for DFT and DCT separately.
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Figure 15. Root Mean Square Error for the whole dataset when either DFT or DCT is employed.
4. Discussion

Let us first consider the RMSE; for a single frame as depicted in Figure 14. Let us now regard the
case where, for instance, the number of values required to describe the mel-FBE spectrum (M = 23) is
halved, and hence the number of cepstral coefficients used for the recovering an approximation of the
spectrum is C = 11 (in accordance with Equations (6) and (10)).

In this case, it can be observed that RMSE; is 0.34 for DFT, and 0.30 for DCT. On the other hand,
as depicted in Figure 9, the values of the mel-FBE spectrum lie within the range [—6, —3], with a mean
value of —5.02. This means that the relative error of the spectrum representation is only 6.84% for DFT
(5.36% for DCT) when the number of values employed for that representation are halved.

Let us now focus on the RMSE when the DFT is used (green line), either for a single frame
(Figure 14) or for the whole dataset (Figure 15). In both cases, it can be observed that RMSE has values
only for an odd number of cepstral coefficients. This fact can be explained by recalling that, according
to Equation (6), every DFT cepstral coefficient ¢ is a complex number for 1 < k < M — 1 and a real
number for k = 0. On the other hand, according to Equation (10), the DCT cepstral coefficients ¢y are
real numbers for every value of k. Additionally, it has to be considered that DFT cepstrum is symmetric
(green line in Figure 11). Therefore, for k > 0, it can be written that ¢, = ¢);_x.1 and, therefore, only
one of these 2 terms have to be kept for recovery purposes. These circumstances jointly explain the
odd number of DFT cepstral coefficients.

To clarify this idea, let us consider an example where M = 23 and C = 5. The DCT cepstrum
is then described using ¢y, ¢1, €2, €3 and ¢4, that is, 5 real numbers which can be employed to
approximately recover the mel-FBE spectrum. On the other hand, the DFT cepstrum is described using
¢, which is a real number, and ¢; and ¢;, which are complex numbers, that is, although 3 terms are
used, a total of 5 values (coefficients) are required. However, to approximately recover the mel-FBE
spectrum, the terms ¢y, &1, €2, €23 and oy can be used since ¢; = &3 and ¢, = ¢x.

As regards the results obtained for the whole dataset (Figure 15), it can be seen that DCT is better
at describing the mel-FBE spectra than is its DFT counterpart. This improvement (decrease of the
RMSE), can be measured by defining ARMSE = RMSEprr — RMSEpcr (Figure 16A) or its relative
value ARMSE (%) = 100-ARMSE/RMSEprr (Figure 16B). For example, for C = 11, the RMSE is
reduced from 0.209 (DFT) to 0.146, which involves an improvement of approximately 30%. For the
degenerated cases where C = 1 and C = M, there is no improvement. In the first case, only ¢y is used
which, according to Equations (6) and (10), is the mean value of the mel-FBE spectrum, that is, the DFT
and DCT recovering methods have the same error. On the other hand, if C = M then no reduction
on the number of coefficients is achieved, and both equations exactly recover the original spectrum
(no error).
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Figure 16. Improvement of DCT over DFT describing mel-FBE spectra. (A): ARMSE. (B): ARMSE(%).

The above results concern the mean improvement of DCT over DFT for every frame in the dataset.
In a more in-depth analysis, let us also compute its probability density function (pdf). The results
are depicted in Figure 17. In panel A, the pdf is shown for several values of the number of cepstral
coefficients (C). In panel B, the value of the pdf is colour-coded as a function of the improvement
(AError) and of the number of cepstral coefficients (C). It can be observed that only a negligible
number of the frames present a significant negative improvement, thereby demonstrating that DCT is
superior to DFT.
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Figure 17. Improvement of DCT over DFT in describing mel-FBE spectra. (A): Probability density
function for several values of the number of cepstral coefficients. (B): Probability density function for
each value of the number of cepstral coefficients.

The higher performance of DCT over DFT is due to the fact that the mel-FBE spectra are a
special type of function derived from symmetric sound spectra. Consequently, if DCT and DFT were
compared in the task of recovering arbitrary functions, they would each present equal performance.
To demonstrate this claim, one million M-value arbitrary functions are randomly generated (M = 23),
and DFT and DCT are then employed to recover the original function with a reduced set of C coefficients
to measure the errors of that recovery. Finally, the improvement of DCT over DFT is computed.
The results are depicted in Figure 18 where it can be observed that positive and negative improvements
are symmetrically distributed around a zero-mean improvement. Therefore, it can be concluded that
DCT and DFT have similar performance in describing arbitrary functions.
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Figure 18. Improvement of DCT over DFT in describing arbitrary function. (A): Probability density
function for several values of the number of cepstral coefficients. (B): Probability density function for
each value of the number of cepstral coefficients.

From the above results, it is clear that DCT offers superior performance featuring mel-FBE spectra
and, therefore offers superior performance featuring sounds. When the purpose of these features
is to be used as input to some kind of classifier, then DCT offers an additional advantage. It is a
well-established result that classifiers obtain better results if their input features are low-correlated.
The reason is clear: a classification algorithm that includes a new feature that is highly correlated with
previous features adds almost no new information and, therefore, almost no classification improvement
should be expected. Let us therefore examine the correlation between coefficients obtained by DFT
and those by DCT.

Let us call y;, the mean value of the u-th coefficient ¢,,; describing the i-th frame, obtained by

W
Hu = W Z:fui/ (13)

where W is the total number of frames in the dataset. The variance 02 of the u-th coefficient can be
obtained by
2 1 ¢
0w = v 1 (

W-14

Cui — ,uu)2~ (14)
The correlation p,; between the u-th and the v-th coefficient for the whole dataset is therefore given by

1

W A .
o Cui — Hu Coi — Po
Puv = W—1 ]:Zl o o . (15)

In Figure 19, the absolute values of the correlation are shown, whereby the values for the case
M = 23 are colour-coded. The correlations corresponding to the DFT are shown in panel A and those
corresponding to DCT in panel B. In the DFT case, each ¢,; factor is a complex number, and hence the
total number of values is 46, whereby the first 23 coefficients represent the real parts and the last 23 the
imaginary parts. By simply considering the colours in that figure, it is clear that DCT coefficients are
less correlated.
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An alternative way to present this result is by using a histogram of the values of the correlation
coefficients, as depicted in Figure 20. Those corresponding to DCT are more frequent for the low values
of correlation, that is, DCT-obtained features are less correlated than those obtained using DFT. Hence,
classifiers of a more efficient nature should be expected from using DCT.
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Figure 20. Histogram of the correlation among cepstral coefficients describing mel-FBE spectra for DFT
and DCT.

When the MFCC features are used as input of a later classification algorithm, the lower correlation
of DCT-obtained features should yield to a better classification performance. The results obtained
classifying anuran calls [35] do confirm a slight advantage for the DCT as it is reflected in Table 1.
This table has been produced taking the best result (geometric mean of sensitivity and specificity)
obtained through a set of ten classification procedures: minimum distance, maximum likelihood,
decision trees, k-nearest neighbors, support vector machine, logistic regression, neural networks,
discriminant function, Bayesian classifiers and hidden Markov models.

Table 1. Classification performance metrics for DCT and DFT.

Cepstral Transform ACC PRC F1
DFT 94.27% 74.46% 77.67%
DCT 94.85% 76.76% 78.93%

Let us finally consider the computing efforts required for these two algorithms which mainly
depend on the number of samples defining the mel-FBE spectra. Fast versions of DFT and DCT
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algorithms have been tested on a conventional desktop personal computer. The results are depicted
in Figure 21. It can be seen that DCT is about one order of magnitude slower than DFT. Although
this fact is certainly a drawback of DCT it has a limited impact on conventional MFCC extraction
process because the number of values describing the mel-FBE spectra is usually very low (about 20).
Additional studies on processing times for anuran sounds classification can be found in [34].
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Figure 21. Processing time required to compute the DFT and DCT vs. the number of samples describing
mel-FBE spectra.

5. Conclusions

In this article, it has been shown that DCT outperforms DFT in the task of representing sound
spectra. It has also been shown that this improvement is due to the symmetry of the spectrum and not
to any intrinsic advantage of DCT.

In representing the mel-FBE spectra required to obtain the MFCC features of anuran calls,
DCT errors are approximately 30% lower than DFT errors. This type of spectra is therefore much better
represented using DCT.

Additionally, it has been shown than MFCC features obtained using DCT are remarkably less
correlated than those obtained using DFT. This result will make DCT-based MFCC features more
powerful in later classification algorithms.

Although only one specific dataset has been analysed herein, the advantage of DCT can easily be
extrapolated to include any sound since this advantage is based on the symmetry of the spectrum of
the sound

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2073-8994/11/3/405/s1,
supplementary material: Derivation of integral transforms expressions.

Author Contributions: Conceptualization, A.L.; investigation, A.L.,].G.-B., A.C. and ].B.; writing—original draft,
AL.,JG.-B,A.C. and].B.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Rafael Ignacio Marquez Martinez de Orense (Museo
Nacional de Ciencias Naturales) and Juan Francisco Beltran Gala (Faculty of Biology, University of Seville) for
their collaboration and support.

Conflicts of Interest: The authors declare there to be no conflict of interest.

66



Symmetry 2019, 11, 405

References

1. Haridas, A.V.; Marimuthu, R.; Sivakumar, V.G. A critical review and analysis on techniques of speech
recognition: The road ahead. Int. ]. Knowl.-Based Intell. Eng. Syst. 2018, 22, 39-57. [CrossRef]

2. Gomez-Garcia, J.A.; Moro-Velazquez, L.; Godino-Llorente, J.I. On the design of automatic voice condition
analysis systems. Part II: Review of speaker recognition techniques and study on the effects of different
variability factors. Biomed. Signal Process. Control 2019, 48, 128-143. [CrossRef]

3. Vo, T;Nguyen, T; Le, C. Race Recognition Using Deep Convolutional Neural Networks. Symmetry 2018,
10, 564. [CrossRef]

4. Dahake, PP; Shaw, K.; Malathi, P. Speaker dependent speech emotion recognition using MFCC and Support
Vector Machine. In Proceedings of the 2016 International Conference on Automatic Control and Dynamic
Optimization Techniques (ICACDOT), Pune, India, 9-10 September 2016; pp. 1080-1084.

5. Chakraborty, S.S.; Parekh, R. Improved Musical Instrument Classification Using Cepstral Coefficients and
Neural Networks. In Methodologies and Application Issues of Contemporary Computing Framework; Springer:
Singapore, 2018; pp. 123-138.

6.  Panteli, M.; Benetos, E.; Dixon, S. A computational study on outliers in world music. PLoS ONE 2017,
12, €0189399. [CrossRef] [PubMed]

7. Noda, JJ.; Sanchez-Rodriguez, D.; Travieso-Gonzalez, C.M. A Methodology Based on Bioacoustic
Information for Automatic Identification of Reptiles and Anurans. In Reptiles and Amphibians; IntechOpen:
London, UK, 2018.

8.  Desai, N.P; Lehman, C.; Munson, B.; Wilson, M. Supervised and unsupervised machine learning approaches
to classifying chimpanzee vocalizations. J. Acoust. Soc. Am. 2018, 143, 1786. [CrossRef]

9.  Malfante, M.; Mars, J.I.; Dalla Mura, M.; Gervaise, C. Automatic fish sounds classification. J. Acoust. Soc. Am.
2018, 143, 2834-2846. [CrossRef]

10. Wang, Y.; Sun, B,; Yang, X.; Meng, Q. Heart sound identification based on MFCC and short-term energy.
In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20-22 October 2017;
pp. 7411-7415.

11. Usman, M.; Zubair, M.; Shiblee, M.; Rodrigues, P; Jaffar, S. Probabilistic Modeling of Speech in Spectral
Domain using Maximum Likelihood Estimation. Symmetry 2018, 10, 750. [CrossRef]

12.  Cao, J.; Cao, M.; Wang, J.; Yin, C.; Wang, D.; Vidal, P.P. Urban noise recognition with convolutional neural
network. Multimed. Tools Appl. 2018. [CrossRef]

13.  Xu,J; Wang, Z,; Tan, C.; Lu, D.; Wu, B.; Su, Z; Tang, Y. Cutting Pattern Identification for Coal Mining Shearer
through Sound Signals Based on a Convolutional Neural Network. Symmetry 2018, 10, 736. [CrossRef]

14. Lee, J.; Choi, H,; Park, D.; Chung, Y.; Kim, H.Y.; Yoon, S. Fault detection and diagnosis of railway point
machines by sound analysis. Sensors 2016, 16, 549. [CrossRef]

15.  Choi, Y;; Atif, O.; Lee, J.; Park, D.; Chung, Y. Noise-Robust Sound-Event Classification System with Texture
Analysis. Symmetry 2018, 10, 402. [CrossRef]

16.  Guyon, I; Elisseeff, A. An introduction to feature extraction. In Feature Extraction; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 1-25.

17.  Alias, F; Socord, J.; Sevillano, X. A review of physical and perceptual feature extraction techniques for speech,
music and environmental sounds. Appl. Sci. 2016, 6, 143. [CrossRef]

18. Zhang, H.; McLoughlin, I.; Song, Y. Robust sound event recognition using convolutional neural networks.
In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brisbane, Australia, 19-24 April 2015; pp. 559-563.

19. Dave, N. Feature extraction methods LPC, PLP and MFCC in speech recognition. Int. |. Adv. Res. Eng.
Technol. 2013, 1, 1-4.

20. Paul, D.; Pal, M.; Saha, G. Spectral features for synthetic speech detection. IEEE ]. Sel. Top. Signal Process.
2017, 11, 605-617. [CrossRef]

21. Taebi, A.; Mansy, H.A. Analysis of seismocardiographic signals using polynomial chirplet transform and

smoothed pseudo Wigner-Ville distribution. In Proceedings of the 2017 IEEE Signal Processing in Medicine
and Biology Symposium (SPMB), Philadelphia, PA, USA, 2 December 2017; pp. 1-6.

67



Symmetry 2019, 11, 405

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Dayou, J.; Han, N.C; Mun, H.C.; Ahmad, A.H.; Muniandy, S.V.; Dalimin, M.N. Classification and
identification of frog sound based on entropy approach. In Proceedings of the 2011 International Conference
on Life Science and Technology, Mumbai, India, 7-9 January 2011; Volume 3, pp. 184-187.

Zheng, E; Zhang, G.; Song, Z. Comparison of different implementations of MFCC. . Comput. Sci. Technol.
2001, 16, 582-589. [CrossRef]

Hussain, H.; Ting, C.M.; Numan, F; Ibrahim, M.N.; Izan, N.F.,; Mohammad, M.M.; Sh-Hussain, H. Analysis of
ECG biosignal recognition for client identifiction. In Proceedings of the 2017 IEEE International Conference
on Signal and Image Processing Applications (ICSIPA), Kuching, Malaysia, 12-14 September 2017; pp. 15-20.
Nickel, C.; Brandt, H.; Busch, C. Classification of Acceleration Data for Biometric Gait Recognition on Mobile
Devices. Biosig 2011, 11, 57-66.

Mubheidat, F; Tyrer, W.H.; Popescu, M. Walk Identification using a smart carpet and Mel-Frequency Cepstral
Coefficient (MFCC) features. In Proceedings of the 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18-21 July 2018; pp. 4249-4252.
Negi, S.S.; Kishor, N.; Negi, R.; Uhlen, K. Event signal characterization for disturbance interpretation in
power grid. In Proceedings of the 2018 First International Colloquium on Smart Grid Metrology (SmaGriMet),
Split, Croatia, 2427 April 2018; pp. 1-5.

Xie, J.; Towsey, M.; Zhang, J.; Roe, P. Frog call classification: A survey. Artif. Int. Rev. 2018, 49, 375-391.
[CrossRef]

Colonna, J.G.; Nakamura, E.F; Rosso, O.A. Feature evaluation for unsupervised bioacoustic signal
segmentation of anuran calls. Expert Syst. Appl. 2018, 106, 107-120. [CrossRef]

Luque, A.; Romero-Lemos, J.; Carrasco, A.; Barbancho, J. Non-sequential automatic classification of anuran
sounds for the estimation of climate-change indicators. Expert Syst. Appl. 2018, 95, 248-260. [CrossRef]
Luque, A.; Romero-Lemos, J.; Carrasco, A.; Gonzalez-Abril, L. Temporally-aware algorithms for the
classification of anuran sounds. Peer] 2018, 6, e4732. [CrossRef]

Luque, A.; Romero-Lemos, J.; Carrasco, A.; Barbancho, J. Improving Classification Algorithms by
Considering Score Series in Wireless Acoustic Sensor Networks. Sensors 2018, 18, 2465. [CrossRef] [PubMed]
Romero, J.; Luque, A.; Carrasco, A. Anuran sound classification using MPEG-7 frame descriptors.
In Proceedings of the XVII Conferencia de la Asociacién Espafiola para la Inteligencia Artificial (CAEPIA),
Salamanca, Spain, 14-16 September 2016; pp. 801-810.

Luque, A.; Gémez-Bellido, J.; Carrasco, A.; Personal, E.; Leon, C. Evaluation of the processing times in
anuran sound classification. Wireless Communications and Mobile Computing 2017. [CrossRef]

Luque, A.; Gomez-Bellido, J.; Carrasco, A.; Barbancho, J. Optimal Representation of Anuran Call Spectrum
in Environmental Monitoring Systems Using Wireless Sensor Networks. Sensors 2018, 18, 1803. [CrossRef]
[PubMed]

Hershey, S.; Chaudhuri, S.; Ellis, D.P; Gemmeke, J.F; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.;
Saurous, R.A.; Seybold, B.; et al. CNN architectures for large-scale audio classification. In Proceedings of the
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 5-9 March 2017; pp. 131-135.

Dai, W.; Dai, C.; Qu, S.; Li, J.; Das, S. Very deep convolutional neural networks for raw waveforms.
In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), New Orleans, LA, USA, 5-9 March 2017; pp. 421-425.

Strout, J.; Rogan, B.; Seyednezhad, S.M.; Smart, K.; Bush, M.; Ribeiro, E. Anuran call classification with
deep learning. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), New Orleans, LA, USA, 5-9 March 2017; pp. 2662-2665.

Colonna, J.; Peet, T.; Ferreira, C.A.; Jorge, A.M.; Gomes, E.F; Gama, J. Automatic classification of anuran
sounds using convolutional neural networks. In Proceedings of the Ninth International Conference on
Computer Science & Software Engineering, Porto, Portugal, 20-22 July 2016; pp. 73-78.

Podder, P; Khan, T.Z.; Khan, M.H.; Rahman, M.M. Comparative performance analysis of hamming, hanning
and blackman window. Int. . Comput. Appl. 2014, 96, 1-7. [CrossRef]

O’shaughnessy, D. Speech Communication: Human and Machine, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ,
USA, 1999; ISBN 978-0-7803-3449-6.

Bhatia, R. Fourier Series; American Mathematical Society: Providence, RI, USA, 2005.

68



Symmetry 2019, 11, 405

43. Broughton, S.A.; Bryan, K. Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing;
John Wiley & Sons: Hoboken, NJ, USA, 2018.

44. Rao, K.R;; Yip, P. Discrete Cosine Transform: Algorithms, Advantages, Applications; Academic Press: Cambridge,
MA, USA, 2014.

45. Tan, L, Jiang, J. Digital Signal Processing: Fundamentals and Applications; Academic Press: Cambridge, MA,
USA, 2018.

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

69



. symmetry MBPY

Atrticle
Fuzzy Volterra Integro-Differential Equations Using
General Linear Method

Zanariah Abdul Majid !, Faranak Rabiei >*, Fatin Abd Hamid ! and Fudziah Ismail !

L Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400, Malaysia;

am_zana@upm.edu.my (Z.A.M.); fatinkd92@yahoo.com (F.A.H.); fudziah@upm.edu.my (F.I.)
School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
*  Correspondence: faranak.rabiei@monash.edu or faranak.rabiei@gmail.com

2

Received: 26 December 2018; Accepted: 16 January 2019; Published: 15 March 2019

Abstract: In this paper, a fuzzy general linear method of order three for solving fuzzy Volterra
integro-differential equations of second kind is proposed. The general linear method is operated
using the both internal stages of Runge-Kutta method and multivalues of a multisteps method.
The derivation of general linear method is based on the theory of B-series and rooted trees.
Here, the fuzzy general linear method using the approach of generalized Hukuhara differentiability
and combination of composite Simpson’s rules together with Lagrange interpolation polynomial is
constructed for numerical solution of fuzzy volterra integro-differential equations. To illustrate the
performance of the method, the numerical results are compared with some existing numerical methods.

Keywords: fuzzy volterra integro-differential equations; fuzzy general linear method; fuzzy
differential equations; generalized Hukuhara differentiability

1. Introduction

Fuzzy differential equations (FDEs) and fuzzy integral equations (FIEs) have been extensively
studied in the past few years. They have appeared in many applications such as fuzzy matric spaces,
population models, medicine, engineering problems, and others (see [1,2]). In the treatment of FDEs,
one of the approaches was by using the definition of Hukuhara differentiability (see [3,4]). However, the
Hukuhara differentiability experienced a disadvantage in its solutions. To overcome this, generalized
Hukubhara differentiability was introduced by Bede and Gal in [5]. In the area of FIEs, the Rieman
integral concept was proposed by Goetschel and Voxman in [6]. Another concept of integration is
the Lebesgue concept by Kaleva in [7]. An early work in the numerical solutions of FDEs and FIEs
is by Friedman et al. in [8]. Later, the area of interest in FIEs has been expanded into the fuzzy
integro-differential equations (FIDEs). FIDEs take the form of both FDEs and FIEs. A particular class of
FIDEs is known as fuzzy Volterra integro-differential equations (FVIDEs). The existence and uniqueness
of FIDEs and FVIDEs solutions were investigated by Park and Jeong in [9], Hajighasemi et al. in [10],
and Zeinali et al. in [11]. Mikaeilvand et al. in [12] presented the numerical examples of FVIDEs using
the differential transform method. In [13], Allahviranloo et al. proposed a new technique to solve the
FVIDEs using definition of generalized differentiability. Later, Allahviranloo et al. in [14] discussed the
existence and uniqueness of second-order FVIDEs using the fuzzy kernel. Then Matinfar et al. in [15]
solved the FVIDEs using the variational iteration method while Sahu and Saha Ray used Legendre
wavelet method in [16].

In this work, we propose the numerical solutions of FVIDEs using the general linear method
(GLM) introduced by Butcher in [17]. The GLM is a generalization of Runge-Kutta method (RK) and
linear multistep method derived based on theory of B-series and definition of rooted trees. Recently,
the GLM was studied for finding the numerical solutions of FDEs by Rabiei et al. in [18] and based on
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that, in this paper we develop the fuzzy third-order GLM together with suitable integration method to
solve FVIDEs.

In Section 2, preliminaries on fuzzy numbers and theories are proposed. The concept of FVIDEs is
discussed in Section 3. In Section 4, the general form of GLM is given followed by demonstration of the
integration rules in Section 5. Then in Section 6, fuzzy version of the GLM combined with integration
rules for FVIDE is developed while in Section 7, we derived the fuzzy RK method for FVIDEs using
the same approaches used for GLM in Section 6. Section 8, some test problems are carried out to
illustrate the efficiency of obtained method compared with a derived fuzzy RK method of order three
in Section 7. Lastly, discussion and conclusion are presented in Section 9.

2. Preliminaries

In this section, some basic definitions on fuzzy numbers are given.

Definition 1 (see [19]). Consider a fuzzy subset of the real line u : R — [0,1]. Then u is a fuzzy number if it
satisfies the following properties:

(i) u is normal, that is 3 xg € R with u(xg) = 1;

(i) wis fuzzy convex, that is u(tx + (1 — t)y) > min u(x),u(y), vVt € [0,1],x,y € R;

(iii)  w is upper semicontinuous on R, that is Ve > 0 36 > 0 such that u(x) — u(xp) < &, |x — x| < &;

(iv)  w is compactly supported, that is cl{x € R; u(x) > 0} is compact, where cl(A) denotes the closure of
the set A.

Then Rp is called the space of fuzzy numbers.
Definition 2 (see [19]). For 0 < r <1, we have
W]"={xeR; u(x) >r},

and
[u]° = cl{x € R; u(x) > r}}.

Then the [u]" denotes the r-level set of the fuzzy number u. The 1-level will refer to the core while the
0-level refers to the support of the fuzzy number.

Proposition 1 (see [19]). A fuzzy number u is a pair u = (u~,u") of functions u=,u* : [0,1] — R,
implying the end points of r-level set, following the conditions:

(1) u; € Ris a bounded nondecreasing left-continuous function Vr € (0,1] and right-continuous for r = 0;
(ii)  u; € Risa bounded nonincreasing left-continuous function Vr € [0,1] and right-continuous for r = 0;
(iii)  u, <uy forr =1, which implies u; < u;, ¥r € [0,1].

Definition 3 (see [19]). Let u,v € R, the distance D(u, v) between two fuzzy intervals is defined by

Deo(u,v) = sup max{|u, —v, |, Ju —v/[}.
re(0,1]

Then Do (11, v) is the Hausdorff distance between fuzzy numbers.

Proposition 2 (see [19]). It is said that Do (1, v) is a metric space in Ry and the following properties hold:

(i) Doo(tt +w, v+ w)) = Deo(1,0), Yu,v,w € Rg;
(i) Deo(k-u,k-v) = |k|Deo(1t,v), Yu,v € Rp,Vk € R;
(ii))  Doo(tt +v,w +¢) < Deo(u,w) + Deo(v,¢), Yu,v,w,e € Rp.
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Definition 4. A function f : R — R £ is said to be fuzzy continuous function if f exists for any fixed arbitrary
g0 € Rand e > 0,6 > 0 such that |g — go| < 6 = D[f(g), f(g0)] < &

Definition 5. Let x,y € Ry. If there exists z € Ry such that x = y @ z, then z is called the Hukuhara
difference (H-difference) of x and y and it is denoted by x © y. (Please note that, x © y # x + (—y)).

Definition 6 (see [5]). Let f : (a,b) — R and xg € (a,b). f is known as strongly generalized differentiable
at xo, if there exists an element f'(xg) € R such that

(i) forall h > O sufficiently small, 3f (xo + h) © f(x0), f(x0) © f(x0 — h) and the limits in metric D

lny flxo +h; S fxo) _ lny f(x0) 9£(x0 —h _ F(x0), 1)

is type-(i)-differentiability on (a, b),
(i) forall h > O sufficiently small, 3f (xo) & f(xo +h), f(xo —h) & f(x0) and the limits in metric D

fo) e floh) _ - flo—h) o fx) _
R e ) A

@
is type-(ii)-differentiability on (a,b),

Theorem 1 (see [20]). Let F : T — R be a function and denote [F(t)], = [f,(t), gr(t)], for each r € [0,1].
Then

(i) If F is differentiable in the first form (1), then f. and g, are differentiable functions and [F'(t)], =
[fr (), &1 (B)],

(i) If F is differentiable in the second form (2), then f, and g, are differentiable functions and [F'(t)], =
(g7 (£), £ (£)]-

Definition 7 (see [15]). Let f : [a,b] — R, for each partition P = {to, t1,...,t,} of [a,b] and for arbitrary
¢ € [ti—1,4],1 <i < n,and suppose

n

Ry =Y (&)t —tiq),

i=1
A =max{|t; — ti_1|,1 <i<mn}.

The integration of f(t) over [a,b] is

b
[ o=

given that in metric D, the limit exists. The definite integral of fuzzy function f(t) exists, if f(t) is continuous

function in metric D, and
b - b
([ rwa) = [ 5w

(/ bf(t)dt)+ - [[Frwa
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3. Fuzzy Volterra Integro-Differential Equations

Consider the first order fuzzy initial value problems of second kind FVIDEs given by

V0= F+ [ Kesps)ds, y(t) =o€ Re, ®

and in short notation is given as

V0 =F(by [ KEs)©)as), y(t) =o€ R, @

where function f : R x R — Rp, crisp function K(¢, s) are continuous and y is a fuzzy number.
Using Theorem 1, and extending the characterization theorem in [19], FVIDE given in (4) for type
(i)-differentiability is equivalent to the following system of ODEs:

) () = fr Ly, y0) + fy K (4s)y(s)ds = F(t,yr v, fy K™ (8 5)y(s)ds),
W) () = £ty y) + Jo K (5)y()ds = Gty v, Jy KF (1,5)y(5)ds), )
yr (0) = (wo)r,
¥ (0) = (vo)/",
and for type (ii)-differentiability FVIDE (4) is equivalent to the system of ODEs as follows:
W) (0) = (tyr ) + Jy K (6 s)y(s)ds = Gty v, fo K (85)y(s)ds),
W) () = fr (byry) + Jo K ()y(s)ds = Ftyr v, Jy K™ (1,5)y(5)ds), ©
yr (0) = (wo)r,
¥ (0) = (vo)/",
where
K(t “(s)d K(t,s) >
K- (syy(eyds — { KA () K(ws) 20
K(t,s)y*(s)ds, K(t,s) <0,
K(t,s)y*(s)ds, K(t,s) >0,
K+ s)y(syds — KOG K(t9) 2
K(t,s)y—(s)ds, K(t,s) <0.
4. General Linear Method
Consider the first order initial value problems
Y (x) = f(xy(x), y(x)=yo- @)
The general form of GLM (see [17]) is given as
S r
Yi= YaghF+ Y wy! Y, =125, ®
j=1 j=1
i _y UL
vt = Zbijhlfj+20ijyj , o i=12.r, )
j=1 j=1

[n]

where 7 is the step number, y;
stage valuesand F;, i = 1,2,...,s is the stage derivatives.
The algebraic coefficients a, u, b, and v of the proposed method here, are given from Rabiei et al.

,i=1,2,...,r are the approximate solutions, Y;, i = 1,2,...,s is the

in [18] as shown in Table 1.
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Table 1. Coefficients of third-order GLM.

Uy = up =0
a2 = % Uy = % Uy = %
a1 =~ ap=2 un =4 up=73
by =1 bp=3% biz=% ovnu=1 ovp=0
hz] =0 b22:0 h23:0 '02121 '022:0

5. Simpson’s Rule and Lagrange Interpolation Polynomial

In the FVIDE, the integral operator z ~ ]Ot K(t,s)y(s)ds need to be approximated first before
applying the third-order fuzzy GLM. The range of integration is divided into two intervals as

shown below.
tH+C

./Ot K(t,s)y(s)ds = /Otn K(t,s)y(s)ds + K(t,s)y(s)ds, (10)

Jty

where the grid points are calculated by t, = ty + nh with h = % and 0 < n < N. The value c is the
value of coefficient for third-order GLM given in Table 1.

The composite Simpson’s rule (Simpson’s II method defined in [21]) is used to compute the
integration in the interval fot" K(t,s)y(s)ds. Meanwhile we compute the integration in the interval
J,," K(t,5)y(s)ds using Lagrange’s interpolation method. The Lagrange interpolating polynomial
is determined by interpolating on set of points {t,_1, t, tu+c }. For points {t_1,to, t 1 } the Lagrange
interpolating polynomial is:

(t—to)(t—t1) (E=t)(t—t1) (t—t_1)(t—to)

R e e Y L (e I [ R A ey

)yl/z- (11)

Substituting t_; = —h, tp = 0,and t 1= %h into (11) gives

2t(t—h/2) 2(t+h)(t—h/2) | A(t+h)t

P(t) - 3h2 y—l - ]’lz ]/0 + 3]’!2 yl/Z’ (12)
Then integrate Equation (12) with limit from 0 to %, to produce
to1 1 7 2
nty _ = 7 “
./t” K(t,s)y(s)ds = h{ 72K(t,s)y(tn,1) + 24I<(if,s)y(t,1) + 9K(t,s)y(tn+%)}. (13)

In the first step where n = 0, the value of y(t_1) = y(tp — h) is evaluated by using a fourth order
RK method.

6. Fuzzy General Linear Method for Fuzzy Volterra Integro-Differential Equations

Rabiei et al. [18] proposed the fuzzy GLM for solving FDEs. The convergence of the method also
was proven. Here, by using the third-order GLM derived in [18], we will apply the fuzzy GLM for
solving FVIDEs. Consider the fuzzy Problem 4, we denote the initial value yy € Rr with r-level sets

olr =y~ (to; ), y" (to;7)], 7 €[0,1). (14)

The set of equally spaced grid points ty < f; < tp--- < ty = T is a set of interval T. The exact
solutions are given as

Y(O)lr = [Y~(t1), Y (57)], (15)

are approximated by

y®lr =y~ (Er),y" (57)]. (16)
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The grid points are calculated by t, = ty + nh with h = % and 0 < n < N. Thus, we have the
exact and approximate solutions at f,, set as

[Y(tﬂ)}r = [Yi(tn;r)/ Y+(tn; 7’)]/ 17)

()l =y~ (b 1),y (b)) (18)

The third-order fuzzy GLM for solving FVIDEs based on type (i)-differentiability is given by
the formulae:

s=3 r=2
v (tugrir) = Y bijhFi(tn, y(tuir), z(teir)) + Y vy (teir), i=1,...7, (19)
j=1 j=1
s=3 r=2
yi (teiir) = Y bighGi(tn, y(tnir), 2(ti 1)) + Y vy (bwsr), i=1,...,1, (20)
= =
where
Yy (y(tu; 7)) = unryy (bn;r) +ury; (ba7),
Yy  (y(tn; 1)) = unnyy (b 7) + wa2ys (tni7),
Yy (Y(tn;r)) = anhFy (b, y(tni1), 2(tn; 7)) + unayy (bnir) + u22y, (tni7),
Y5 (y(t; 7)) = annhGy(bn, y (b 1), 2 (s 7)) + gy (bn;7) + uzayyf (k7). 1)
Yy (y(tu;7)) = azthFy(tn, y(te; 1), 2(tn; 7)) + as2hFa (b, y(tn; 1), 2(En; 7))
+ uz1yy (b ) +uspyy (tnsr),
Y;(y(tn;r)) = az1hGy(tn, y(tu; 1), 2(tn; 7)) + a32hGa(tn, Y (tn;7), 2(En; 7))
+uzyy (tn;7) + uzyy (te 1),
such that

Fybn, y(tair)) = min { flta+ coh,,0)|u € Yy (y(ti)), Vi (o),
v € 2 (ki) 2 (tin)]

Gt (7)) = max { Flt+ cah,,0)]u € (Y5 (y(bai ), Vi (y(buir))],
v € [z (ki) = (tin)]

Fa(tn, y(tuir)) = min { flt+ cahy,0)|u € [y (y(tui)), Y5 (y(tuir)],
v € [z (W(twi)), 2 (y(tin)]

Galtn, y(ta;)) = max { (b +e2h, ,0) 1 € [¥y (y(ta:), Y5 (y(t0:7)],
v € [z (W), 2 (y(tin)]

Fs(tn,y(tai 7)) = min { (b + csh,,0) [ € Yy (y(tw)), Y (y(bui )],
v € [z5 (y(tir), 55 (w(tir)]

Ga (b, (1)) = max { Flt+ esh,u,0)u € Y5 (y(bair)), Y5 (y(tuir))],

v € [z (y(tuir)), 2 (y(tuin))] },

(22)
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and

) = [ K s,

2 (e) = [ K @s)ytsinds,

2 () = [ K Gswsnds+ [T K 9o @)
2 t) = [ K wosnis+ [T K G

5 t) = [ K (o [ K s,

2 t) = [ K oo+ [ K

Meanwhile the fuzzy third-order GLM for solving FVIDEs based on type (ii)-differentiability is
given by the formulae:

$=3 r=2
y; (tug1s1) = Y bihGi(tn, y(tu; 1), 2(t; 1)) + Y vy (), i=1,...1, (24)
=1 =1
s=3 r=2
v (i) = ) bihFi(tn, y(tair), z(ter)) + ) vi]vy;'(tn;r), i=1,...,r1, (25)
= =
where
Yy (y(tns 1)) = uanyy (b 1) + unay, (ta7),
Y (y(tair)) = unyy (bar) + urays (tes7),
Y, (y(tn;7)) = anthGy(tu, y(tu; 1), 2(tn; 7)) + uzryy (bn;7) + o2y, (bns 1),
Y5 (y(tn; 1) = annhFy(tn, y(tn; 1), 2(kn; 7)) + gy (ks 7) + uzayy (bn;7), (26)
Yﬁ(y(tn/r)) = a31hG1(tnzy(trn )/Z(trn )) +a32hG2(tn/y(tn/ )/ (tn;r))

+uz1yy (tni7) + sy, (beiv),
Y;r(y(t,,;r)) = azgthFy(tn, y(tn; 1), 2(tn; 7)) + as2h B2 (b, Y (tn;7), 2(tns 7))
+ M31y1+(fn, ) + uzy, (tn/ )r

where F, F,, F5, G1,G, and G3 are same as (22).

7. Fuzzy Runge-Kutta Method for Fuzzy Volterra Integro-Differential Equations

In this section, we will develop the fuzzy version of third-order RK method to solve the FVIDEs.
The RK method is combined with suitable integration methods to deal with the integral part. It is
appropriate to apply the composite Simpson’s rule and Lagrange’s method in Section 5 similarly. The
coefficients (see [22]) for RK method is represented in Table 2. The general form of RK method for
solving Equation (7) is given by

Yny1=Yn+h) Bk, 1<n<N-1, (27)
izl
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where

ki = f(xn/yn)/
i—1

ki :f(xn—&-C,-h,yn +h2A1]k]), i:2,3,...,5. (28)
j=1

Table 2. Coefficients of third-order RK method.

C1=0
G=1 An=}
C3=1 Ay =-1 Agp=

The formulae of a third-order RK method for FVIDEs based on type (i)-differentiability is given
as follows:

Y (tnsrir) =y~ (tuir) + BE(tn, (y(tn; 7)), (29)
Y (1) =y (i) + hG (b, (y(ti 7)), (30)
while for type (ii)-differentiability is given as:

Y (turir) =y (tsr) +hG(tn, (y(ta; 1)), 31)
Y (tarr;r) =y (b)) + RE (b, (y(t; 7)), (32)
where
E(t, (7)) = { Biky (4(t;r) + Baky y((t 1) + Bsks (y(tair)) },
G(tn, (y(tn;7))) = {Blkf((y(tn;r)) + Boky (y(tnir)) + nggf(y(tn;r))}, (33)
where
by wtair)) = min{ 50,00l € [y~ 1)y (i) o € g (o) 21 (i),
kK (y(tw;r)) = max{f (t,u,0)|u € [y~ (tw;r),yT (t;7)],0 € [zl_(y(tn;r)),zf'(y(tn;r))]},
ky (y(tnir)) = {f (t+ Coh,u,0)|u € [wy (tw;7), wy (tu;7)], 0 € [ZE(J/(fn;f))/zf(y(tnﬂ))]}/
(34)
k3 (y(twir)) = m“x{f t+ Caht,u,v)|u € [wy (b 1), wy (be;7)], 0 € (27 (y(fn;r)),zzr(y(fn;f))}},
k3 (y(tus 1) {f (t+ Csh,u,v)|u € [wy (ta;r), ws (ta; 7)), 0 € [zg(y(tn;r)),z;r(y(tn;r))]},
k3 (y(tnir) m‘”‘{f t+ Cahyu,0)u € [wy (tn; ), wy (ts7)], 0 € [25(y(tn;r)),2§(y(tn;f))}},
such that
w;(tn;r) y (tn,r) +hA21k]7,
w?’(tn;r) y+(fn, 7’) -+ hA21kiF, (35)
wy (ta;r) =y (b 1) + h(Asiky + Ak, ),
wf (ty;r) =y (twir) + h(Ank] + Agky),
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and

K= (t,8)y(s;r)ds,

Kt (t,8)y(s;r)ds,
ey
K= (t,s)y(s;r)ds + / K™ (t,8)y(s)ds,
S (36)

n+1
K™ (t,s)y(s)ds,

/

/

/

z3 (y(tn)) = /Otn K*(t,5)y(s; r)ds + /:HCZ K*(t,5)y(s)ds,
/

/0 " K" (t,5)y(s)ds.

8. Numerical Results

We tested the fuzzy GLM to illustrate the efficiency of the method. Comparison is made between
fuzzy versions of GLM and the RK method, Variational iteration method and homotopy perturbation
method. The efficiency of method is shown in terms of error which is estimated by E(t;r) = |y(t;r) —
Y(t;7)| and E(t;7) = |y(t;7) — Y(t;7)|. List of abbreviations used in the tabulated results are as follows:

r-level set of fuzzy numbers,

r
Y- Left bound of exact solution,
Y

* Right bound of exact solution,

v Left bound of approximate solution,
yr Right bound of approximate solution,
E Left bound of error computed (jy~ — Y~),

E* Right bound of error computed (|y* — Y*|),

GLM  Third-order general linear method from this paper,
RK Third-order Runge-Kutta method from Section 7,
VIM  Variational iteration method from [15],

HAM Homotopy perturbation method from [15].

8.1. Problem 1

Consider the following FVIDEs (see [15])

y'(t)
c

1 4 Foo o
= C1 (365t )+/0 (2 + 2)y(s;r)ds,

=[(P+2r)t,(6 -3, y(0)=1[0,0, 0<s<t<L

The equivalent system of ODEs based on (i)-differentiability:

(y ) (tr) = 11—2rt2(r4 +2)(36 — 5t4) + /(:(t2 + sz)y* (s;r)ds, y (0;r) =0,

) (tr) = itz(r“” —2)(5t* —36) +/0t(t2 +5%)y " (s;r)ds, y(0;r) = 0.

Exact solutions :
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For Problem 1, the graphical results of GLM together with exact solutions are shown in Figure 1.
The comparison of numerical results of GLM with existing methods is given in Table 3 and Figure 2.

Table 3. Comparison between GLM and existing methods for solving Problem 1.

GLM RK VIM HPM
r  E(t=057r) E (t=1r) E (t=05r) E (t=Lr) E (t=057r) E (t=057)

0.0 0 0 0 0 0 0

0.1 9956810(—11) 1.209550(—9) 4.823713(—10) 7.462263(—9) 7.6675(—11)  2.5125(—6)
02 1992855(—10) 2.420914(—9) 9.654662(—10) 1.493572(—8)  1.5347(—10)  5.0288(—6)
0.3 2.998988(—10) 3.643163(—9)  1.452902(—9) 2.247632(—8)  2.3095(—10) 7.5676(—6)
0.4 4.033500(—10) 4.899886(—9) 1.954086(—9) 3.022960(~8) 3.1061(~10)  1.0178(-5)
05 5133730(—10) 6.236430(—9) 2.487103(—9) 3.847537(—8)  3.9534(—10)  1.2954(-5)
0.6 6.360880(—10) 7.727180(—9)  3.081621(—9) 4.767250(—8)  4.8984(—10) 1.6051(—5)
07 7.806100(—10) 9.482820(~8) 3.781770(—9) 5.850381(—8)  6.0113(~10)  1.9698(—5)
0.8 9.596280(—10) 1.165754(—8) 4.649055(—9) 7.192064(—8)  7.3899(—10)  2.4215(-5)
0.9 1.190025(—9)  1.445635(—8)  5.765231(—9) 8.918787(—8)  9.1641(—10) 3.0029(—5)
10 1493445(—9) 1814234(—8) 7.235207(—9) 1.119283(—7)  1.1501(—9) 3.7686(—5)
r  EY(t=05r) ET(t=1r) ET(t=05r) EY(t=Lr) ET(t=05r) Et(t=05r)
0.0 2986892(—9) 3.628465(—8) 1447042(—8) 2238567(—7)  23001(—9)  7.5371(—5)
01 2985401(—9) 3.626651(—8) 1446318(—8) 2237446(~7)  22990(~9)  7.5333(—5)
02 2974945(—9)  3.613950(—8) 1441254(—8) 2229612(~7)  22909(—=9)  7.5070(-5)
03  2946571(—9) 3.579484(—8) 1427506(—8) 2.208346(—7)  22691(—9)  7.4354(—5)
04 2.891310(—9) 3.512354(—8) 1400736(—8) 2166932(~7)  22265(~9)  7.2959(—5)
05 2.800214(—9) 3.401690(—8) 1.356601(—8) 2.098656(~7)  2.1564(=9)  7.0660(—5)
0.6 2664307(—9) 3.236502(—8) 1290761(—8) 1.996801(—7)  2.0517(—9)  6.7231(—5)
07 2474641(—9) 3.006184(—8) 1.198874(—8) 1.854652(~7)  1.9057(~9)  6.2444(-5)
0.8 2.222250(—9) 2.699583(—8)  1.076599(—8) 1.665493(~7)  17113(=9)  5.6076(—5)
09 1.898170(—9) 2.305891(—8) 9.195954(—8) 1.422609(—7)  1.4617(—9)  4.7899(—5)
1.0 1493445(—9) 1.814234(—8) 7.235207(—8) 1.119283(~7)  1.1501(=9)  3.7686(-5)
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Figure 1. (a) Approximate solution of GLM (circle) and exact solution (line) at t = 1.0; (b) 3D-plot of
GLM for Problem 1.
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(a) (b)
Figure 2. (a) Graph of Log (Error) versus r at t = 0.5 for left bound of solutions; (b) Graph of Log

(Error) versus r at t = 0.5 for right bound of solutions for Problem 1.
8.2. Problem 2
Consider the following FVIDEs (see [12])

w=c+ [ d
v =c+ [ ysnis,
C=[r-11-r], y(0)=1]0,0], 0<s<t<1l
The equivalent system of ODEs based on (i)-differentiability:

t

WY ==+ [y Ends v o0 =0,
t

WY =0=n+ [yiEnds vt on=o.

Exact solutions :

For Problem 2, the graph of approximate solutions and 3D-plot of GLM are represented in Figure 3.
Table 4 and Figure 4, show the numerical results using GLM compared with RK method.

1.0
0.94
0.81
0.74
0.61
=057 i
o 1
Akt
0.2
0.14
2 N 0 1 2
y
(a) (b)
Figure 3. (a) Approximate solution of GLM (circle) and exact solution (line) at t = 1.0; (b) 3D-plot of
GLM for Problem 2.
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Table 4. Comparison between GLM and RK for solving Problem 2.

GLM

RK

r  E(t=05r)

E - (t=1r)

E~(t=05r)

E - (t=1r)

0.0 2.069650(—10)
0.1 1.862700(—10)
02 1.655720(—10)
03 1.655720(—10)
04 1.241780(—10)
0.5 1.034820(—10)
0.6 8.278600(—11)
07  6.208900(—11)
0.8  4.139400(—11)
09 2.069650(—11)
1.0 0

8.391900(—10)
7.552900(—10)
6.713560(—10)
5.874450(—10)
5.035170(—10)
4.195950(—10)
3.356810(—10)
2.517620(—10)
1.678420(—10)
8.391900(—10)
0

1.431575(—9)
1.288422(—9)
1.145253(—9)
1.145253(—9)
8.589440(—10)
7.157840(—10)
5.726270(—10)
4.294700(—10)
2.863150(—10)
1.431575(—10)
0

6.462170(—9)
5.815940(—9)
5.169731(—9)
4.523523(—9)
3.877302(—9)
3.231079(—9)
2.584868(—9)
1.938651(—9)
1.292426(—9)
6.462170(—9)
0

r  EY(t=05r)

Et(t=1r)

Et(t=05r)

Et(t=1r)

0.0 2.069650(—10)
0.1 1.862700(—10)
02 1.655720(—10)
0.3 1.448800(—10)
04 1.241780(—10)
05 1.034820(—10)
0.6 8.278600(—11)
07  6.208900(—11)
0.8  4.139400(—11)
09 2.069650(—11)
1.0 0

8.391900(—10)
7.552900(—10)
6.713560(—10)
5.874450(—10)
5.035170(—10)
4.195950(—10)
3.356810(—10)
2.517620(—10)
1.678420(—10)
8.391900(—10)
0

1.431575(—9)
1.288422(—9)
1.145253(—9)
1.002105(—9)
8.589440(—10)
7.157840(—10)
5.726270(—10)
4.294700(—10)
2.863150(—10)
1.431575(—10)
0

6.462170(—9)
5.815940(—9)
5.169731(—9)
4.523523(—9)
3.877302(—9)
3.231079(—9)
2.584868(—9)
1.938651(—9)
1.292426(—9)
6.462170(—9)
0
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Figure 4. Graph of Log (Error) versus r at t = 0.5 for left bound of solutions and right bound of

solutions for Problem 2.

8.3. Problem 3

Consider the following FVIDEs (see [23])

v =c+ [y,

C = [2(r —2)sin(t),2(2 — 3r) sin(t)],

81

y(0) = [3r—2,2-7],

0<t<1.
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The equivalent system of ODEs based on (i)-differentiability:

1
(y7) (r) =2(r —2)sin(t) +/0 (—Dy™(s;r)ds, y (0;r) =3r—2,
1
W) (60 =2@=3nsin(t) + [ (~Dy (sinds, y*(0r) =2-.
Exact solutions based on (i)-differentiability:

tr) = —rtsin(t) + (2 —r) cos(t) +2(r — 1) (exp(t) + exp(—t)),
t;r) = —rtsin(t) 4+ (3r — 2) cos(t) + 2(1 — r) (exp(t) + exp(—t)).

The equivalent system of ODEs based on (ii)-differentiability:

1
(y7)'(tr) = 2(2 —3r)sin(t) +/0 (-1)y (s;r)ds, y (0;r) =3r—2,
1
() (t7) = 2(r —2) sin(t) + /O (—1)y* (s;7)ds, yH(O;r) =2 .
Exact solutions based on (ii)-differentiability:

Y~ (t;7) = (3r — 2)(cos(t) — tsin(t)),
YT (t;r) = (2—7)(cos(t) — tsin(t)).

For Problem 3, the graph of approximate solution compared with exact solution is given in
Figure 5. Also the numerical results of GLM are compared with RK method using the both types of
differentiabilities. The comparison of obtained results based on type (i)-differentiability are presented
in Table 5 and Figure 6 whereas the results obtained based on type (ii)-differentiability are given in
Table 6 and Figure 7. 3D-plots of GLM based on types (i) and (ii)-differentiability are shown in Figure 8.

1.0 10
0.91 0.91
0.81 0.81
0.71 0.7
0.61 0.61
= 051 = 0.51
0.49 0.4
0.3 0.31
0.2 021
0.19 0.1
% 4 ) 0 2 4 6 % 4 2 0 2 4 6
y y
() (b)

Figure 5. (a) Approximate solution of GLM (circle) and exact solution (line) at t = 1.0 using type
(i)-differentiability; (b) Approximate solution of GLM (circle) and exact solution (line) at ¢ = 1.0 using
type (ii)-differentiability for Problem 3.
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Table 5. Comparison between GLM and RK for solving Problem 3 based on (i)-differentiability.

GLM RK
r  E(t=05r) E (t=1Lr) E (t=05r) E (t=1Lr)
00 9591260(—9) 1.703350(—8) 3.884529(—8) 8.745231(—8)
0.1  8.252610(—9) 1.499912(—8)  3.333684(—8)  7.665465(—8)
02  6913930(—9) 1.296471(—8) 2.782840(—8)  6.585705(—8)
03 5575350(—9) 1.093031(—8) 2.231994(—8)  5.505935(—8)
04  4236740(—9) 8.895910(—9) 1.681141(-8) 4.426157(-8)
05 2.898090(—9) 6.861520(—9) 1.130299(—8)  3.346385(—8)
0.6 1559467(—9) 4.827130(—9) 5.794547(—9)  2.266616(—8)
0.7 2.208310(—10) 2.792740(—9) 2.860890(—10) 1.186848(—8)
0.8 1.117786(—9) 7.583400(—9) 5.222359(—9)  1.070790(—8)
09 2456414(—9) 1.276027(—9) 1.073082(—8)  9.726932(—8)
1.0 3.795042(—9) 3.310421(—9) 1.623928(—8)  2.052464(—8)
r  ET(t=057r) ET(t=1r) ET(t=05r) ET(t=1Lr)
00 9.591260(—9) 1.703350(—8) 3.884529(—8)  8.745231(—8)
01 9.011600(—9) 1.566117(—8) 3.658467(—8)  8.075957(—8)
02  8431990(—9) 1428888(—8) 3.432415(—8)  7.406693(—8)
03  7.852400(—9) 1.291656(—8) 3.206350(—8)  6.737409(—8)
04  7272740(—9) 1.154423(—8) 2.980293(~8)  6.068132(—8)
05  6.693130(—9) 1.017195(—8) 2.754225(—8)  5.398850(—8)
06  6.113500(—9) 8.799650(~9) 2.528165(—8)  4.729569(—8)
07 5.533890(—9) 7.427330(~9) 2.302113(~8)  4.060305(—8)
0.8  4954250(—9) 6.054989(—9)  2.076049(—8)  3.391018(—8)
09  4374664(—9)  4.682732(—9)  1.849986(—8)  2.721740(—8)
1.0 3795042(—9) 3.310421(—9)  1.623928(—8)  2.052464(—8)
! T T T T
I \7*;;\ T, .
1T R
i @'E'“‘**‘ﬂ‘—‘.,\,k
il ] e
10! | | | | | | | | | | | | | | | | | | | |
PO m W W s s w W o ww W W W W W
(a) (b)

Figure 6. (a) Graph of Log (Error) versus r at t
(i)-differentiability; (b) Graph of Log (Error) versus r at t = 0.5 for right bound of solutions using type
(i)-differentiability for Problem 3.
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Table 6. Comparison between GLM and RK for solving Problem 3 based on (ii)-differentiability.

GLM

R

K

r  E(t=05r)

E - (t=1r)

E~(t=05r)

E- (t=1r)

00  7.590100(—9)
01  6.451570(—9)
02 5.313055(—9)
03 4.174528(—9)
04  3.036036(—9)
05  1.897518(—9)
0.6 7.590100(—10)
0.7 3.795042(—10)
08  1.518015(—9)
09  2.656530(—9)
1.0 3.795042(—9)

6.620856(—9)
5.627722(—9)
4.634590(—9)
3.641453(—9)
2.648343(—9)
1.655208(—9)
6.620856(—10)
3.310421(—10)
1.324166(—9)
2.317297(—9)
3.310421(—9)

3.247856(—8)
2.760677(—8)
2.273503(—8)
1.786324(—8)
1.299143(—8)
8.119643(—9)
3.247856(—9)
1.623928(—9)
6.495721(—9)
1.136750(—8)
1.623928(—8)

4.104928(—8)
3.489188(—8)
2.873452(—8)
2.257713(—8)
1.641972(—8)
1.026232(—8)
4.104928(—9)
2.052464(—9)
8.209863(—8)
1.436725(—8)
2.052464(—8)

r  EY(t=05r)

ET(t=1;r)

Et(t=05r)

Et(t=1r)

00 7.590100(—9)  6.620856(—9)  3.247856(—8) 4.104928(—8)
01 7210590(—9)  6.289804(—9)  3.085463(—8)  3.899682(—8)
02 6.831070(—9) 5.958752(—9)  2.923064(—8)  3.694430(—8)
03  6451570(=9)  5.627722(=9)  2.760677(—8)  3.489188(—8)
04  6072060(—9) 5.296667(—9) 2.598287(—8) 3.283943(—8)
0.5  5.692550(—9) 4.965625(—9)  2.435890(—8)  3.078694(—8)
0.6 5313055(—9)  4.634590(—9)  2.273503(—8)  2.873452(—8)
0.7  4.933553(—9) 4.303548(—9) 2.111106(—8)  2.668203(—8)
0.8  4.554036(—9) 3.972496(—9)  1.948713(—8)  2.462956(—8)
09 4.174528(—9)  3.641453(—9)  1.786324(—8) 2.257713(—8)
1.0  3.795042(—9) 3.310421(—9) 1.623928(—8)  2.052464(—8)
T T T T
——
o — Vﬁii‘i‘i""fff"\ﬂ‘

4 —
ETT— g I
g e — ig
i) e

10 | | | | | | | | | | | | | | | | | | |
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Figure 7. (a) Graph of Log (Error) versus r at t

(ii)-differentiability; (b) Graph of Log (Error) versus r at f = 0.5 for right bound of solutions using type

(ii)-differentiability for Problem 3.
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@ (b)

Figure 8. (a) 3D-plot of GLM using type (i)-differentiability for Problem 3; (b) 3D-plot of GLM using
type (ii)-differentiability for Problem 3.

9. Discussion and Conclusions

Using the fuzzy GLM and fuzzy RK derived in this paper, the three FVIDEs given in Problems
1-3 are solved and the numerical results are shown. In addition, the obtained numerical results are
compared with two other existing methods, variational iteration method and homotopy perturbation
method, for Problem 1 at t = 0.5.

For Problem 1, in Table 3, it is observed that the left bound of errors at t = 0.5 obtained by the
fuzzy GLM is competitive with the fuzzy RK for r = 0.2,0.9,1.0. At f = 1, the left bound errors from
the fuzzy GLM is comparable with fuzzy RK when r = 0.1,0.7,0.8,0.9. However, for the rest of errors
fuzzy GLM achieved better accuracy compared to fuzzy RK. Moreover, the errors for the right bound
of fuzzy GLM at both t = 0.5 and ¢ = 1 are found to be one decimal place better than the fuzzy RK
method. Meanwhile, the results acquired by GLM are almost the same with the results acquired by
VIM. In comparison between GLM and HPM, GLM clearly outperformed the HPM.

For Problem 2, in Table 4, the fuzzy GLM is competitive with the fuzzy RK only when r = 0.4
and r = 0.5, though for the rest of r-levels the fuzzy GLM outperformed the fuzzy RK again by one
decimal place better. For Problem 3, both types of differentiability are applied to solve this problem. In
Table 5 by using type (i)-differentiability, there are some competitive results between the fuzzy GLM
and fuzzy RK. However, in Table 6 by using type (ii)-differentiability, for almost all r-levels the fuzzy
GLM gave more accurate results than the fuzzy RK.

Graphical illustrations of approximated solutions by fuzzy GLM in comparison with the exact
solutions and 3D-plots of GLM for solving FVIDEs are presented in Figures 1, 3, 5 and 8. The graphs
shown that the GLM performed the accurate results. Moreover, in Figure 5b the approximate solutions
of GLM based on type (ii)-differentiability showed smaller bound compared to the solutions based on
type (i)-differentiability in Figure 5a. Considering that there exists a negative function in Problem 3,
therefore the (ii)-differentiability approach is preferred. Graphs of comparison in terms of errors at
t = 0.5 between fuzzy GLM and other methods are showed as well. The fuzzy GLM is seen competitive
with the VIM in Figure 2 meanwhile from Figures 4, 6, and 7, the fuzzy GLM is the more accurate
method than HPM and RK3.

In conclusion, the fuzzy GLM combined with Simpson’s II method and Lagrange interpolation
polynomials is an efficient numerical method for solving FVIDEs.
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1. Introduction
We denote by A (U) the class of functions which are analytic in the open unit disk
U={z:zeC and |z| <1},

where C is the complex plane. Let A be the class of analytic functions having the following
normalized form:

fz)=z+Y a2 (Vzel) (1)
n=2
in the open unit disk U, centered at the origin and normalized by the conditions given by
f(0)=0 and f(0)=1.

In addition, let S C A be the class of functions which are univalent in U. The class of starlike
functions in U will be denoted by S*, which consists of normalized functions f € A that satisfy the
following inequality:

9 Z.f,(z) z
R<f(z)>>0, (VzelU). ()

Symmetry 2019, 11, 347; doi:10.3390/sym11030347 88 www.mdpi.com/journal /symmetry
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If two functions f and g are analytic in U, we say that the function f is subordinate to g and write
in the form:

f=g or f(z)=<g(z),
if there exists a Schwarz function w which is analytic in U, with
w(0)=0 and |w(z)]<1,
such that
fz) =g(w(z)).

In particular, if the function g is univalent in U, then it follows that (cf., e.g., [1]; see also [2])

f(z) <8(z) (z€U)= f(0) =¢(0) and f(U)C g(U).

Moreover, for two analytic functions f and g given by

fz)=z+ izunz” (Vzel)

and .
glz)=z+ ) bz (VzeU),
n=2

the convolution (or the Hadamard product) of f and g is defined as follows:
fz)*g(z) =z+ Y anbuz".
n=2
We next denote by P the class of analytic functions p which are normalized by
p(z) =1+Y paz", 3)
n=1

such that
R(p(z)) >0 (z€).

We now recall some essential definitions and concept details of the basic or quantum (g-) calculus,
which are used in this paper. We suppose throughout the paper that 0 < g < 1 and that

N={1,23-}=No\{0} ~ (No=1{0,1,23,---})

Definition 1. Let g € (0,1) and define the g-number [A] by

1*117‘

= (AeC)
A, =

n—1

qu:1+q+q2+...+q”*1 ()\ZHEN).

=0
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Definition 2. Let g € (0,1) and define the q-factorial [n] g by

1 (n=0)
[Tl]q! - n—1

MK, (en).

k=1

1 (n=0)
[)\]q,n = n

[T [A+K], (n €N).

k=0

Definition 4. For w > 0, let the q-gamma function T (w) be defined by
Iy (w+1) = [w]q Ij(w) and Ty(1):=1

Definition 5. (see [3,4]) The q-derivative (or the q-difference) operator Dy of a function f in a given subset of
C is defined by
f(Z) 7f(qz) (Z 75 0)
1-g)z
(o) =4 177 @
f'(0) (z=0),
provided that f' (0) exists.

We note from Definition 5 that

Jom (o)) = g HELLE

,)f(z) :f/ (Z),

for a differentiable function f in a given subset of C. It is readily deduced from (1) and (4) that

(Dyf) (2) =1+ i ], a2, )

The operator D; plays a vital role in the investigation and study of numerous subclasses of the
class of analytic functions of the form given in Definition 5. A g-extension of the class of starlike
functions was first introduced in [5] by using the g-derivative operator (see Definition 6 below).
A background of the usage of the g-calculus in the context of Geometric Funciton Theory was actually
provided and the basic (or g-) hypergeometric functions were first used in Geometric Function Theory
by Srivastava (see, for details, [6]). Some recent investigations associated with the g-derivative operator
D, in analytic function theory can be found in [7-13] and the references cited therein.

Definition 6. (see [5]) A function f € A (U) is said to belong to the class Sy if

fO)=f(0)-1=0 (6)

G D@ - | ST (zel), %

The notation S was first used by Sahoo et al. (see [14]).
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It is readily observed that, as § — 1—, the closed disk given

becomes the right-half plane and the class S; reduces to S*. Equivalently, by using the principle of
subordination between analytic functions, we can rewrite the conditions in (6) and (7) as follows

(see [15]):
z - . 1+z
Son@<p (p=115).

Definition 7. (see [16]) For a function f € A(U), the Ruscheweyh-type q-derivative operator is
defined as follows:

Rof (2) = ¢ (4,6 +12) f(Z):z+i¢n71anz” (zeU; 6> -1), ®)
n=2
where .
¢@0+Lz)=2z+) Py ©)
n=2
and
Fq(é-&-n) [n+1]n 149

L T | P R PR (10)

From (8) it can be seen that
Rof(2) = f(2) and Rgf(z) =zDyf (2),
zDi'f (2) ("' f (2))

RIF(z) = oN (m eN),
g
I T
and Z
qlg{Lqu() f()*m-

This shows that, in case of § — 1—, the Ruscheweyh-type g-derivative operator reduces
to the Ruscheweyh derivative operator D’ f(z) (see [17]). From (8) the following identity can

2DyRf (2) = ( [‘;];) REF () ]‘7

easily be derived:

Ryf (2). an

If g — 1—, then
2(RF(2)) = (1+0) RIIf (2) — 6RF (2)

Now, by using the Ruscheweyh-type g-derivative operator, we define the following class of
g-starlike functions.

Definition 8. For f € A (U), we say that f belongs to the class RS} (9) if the following inequality holds true:

1
1—9q

ZDyRYS (2) !
f(z) 1—q

A

(zeU; 6> -1)
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or, equivalently, we have (see [15])
ZDﬂ%f@)< 14z
f(2) 1—gz

(12)
by using the principle of subordination.

Letn 2 0 and j 2 1. The jth Hankel determinant is defined as follows:

an Ap+1 S un+j—1
Ant1

?{j(n)::
Aptj-1 - s (i)

The above Hankel determinant has been studied by several authors. In particular, sharp upper
bounds on #; (2) were obtained by several authors (see, for example, [18-21]) for various classes of
normalized analytic functions. It is well-known that the Fekete-Szegt functional |a3 — u%| =Hy (1).
This functional is further generalized as |a3 — jia3| for some real or complex ju. In fact, Fekete and Szegd
gave sharp estimates of |a3 — pa3| for real y and f € S, the class of normalized univalent functions
in U. It is also known that the functional }a2a4 - a§| is equivalent to H; (2). Babalola [22] studied the
Hankel determinant #H3 (1) for some subclasses of analytic functions. In the present investigation, our
focus is on the Hankel determinant #3 (1) for the above-defined function class RS; (4) .

2. A Set of Lemmas

Each of the following lemmas will be needed in our present investigation.

Lemma 1. (see [23]) Let
pz) =14+crz4+cz> + -

be in the class P of functions with positive real part in U. Then, for any complex number v,

—4v+2 (v=0)
‘Q—uﬁ}g 2 0<v<1) (13)
4v—2 (v=1).

When v < 0 or v > 1, the equality holds true in (13) if and only if

1+z
piz) =13

or one of its rotations. If 0 < v < 1, then the equality holds true in (13) if and only if

1422
T 1-22

p(z)

or one of its rotations. If v = 0, the equality holds true in (13) if and only if

_(1+p\1+z 1-p\1-2z <, <
ﬂﬂ_( 2>lfz+< 2>l+z O=p=1)
or one of its rotations. If v = 1, then the equality in (13) holds true if p(z) is a reciprocal of one of the functions
such that the equality holds true in the case when v = 0.
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Lemma 2. (see [24,25]) Let
pz) =1+ piz+p2+--

be in the class P of functions with positive real part in U. Then
22 =ph+x (4= 1)
for some x, |x| < 1and
aps=pl+2(4=p}) prx— (4= p}) p?+2 (4= ) (1-1xP) 2
forsomez (|z| £1).

Lemma 3. (see [26]) Let
pz) =1+ piz+p2+- -

be in the class P of functions positive real part in U. Then
el =2 (k€ N)
and the inequality is sharp.

3. Main Results

In this section, we will prove our main results. Throughout our discussion, we assume that
ge (0,1) and 6> —1.
Our first main result is stated as follows.

Theorem 1. Let f € RS, (6) be of the form (1). Then

(L+q+a%) yi—p(1+9) 9 ( <(q2+1)¢%>
Py (1+9)° 2

Ll S

NE

RS @+ 97
qya 1+9)° ¢

IIA
< |

)

pO+9 92— (1+q+¢) 43 a0
PP} /

where ,,_1 is given by (10).
It is also asserted that, for

and that , for
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2 ¥ — w2 2. 1
 udd] + <l
las — pa3| < > > |aa|” = P

Proof. If f € RS; (0), then it follows from (12) that

zDyRf (2)
# <¢(z), (14)
where 14
z
e = 1
We define a function p(z) by
1+w(z
Pz = ﬁ =1+piz+paz? +ps’ + o

It is clear that p € P. From the above equation, we have

_r-1
w(z) = p(z)+1
From (14), we find that
zDgRif (2)
T )
together with
2p (2)
¢ (2) (1-q)p(z)+1+4q
Now

2p (z)
(1-q)p(z)+1+q

1 1 1
=1+5(1+qpz+ {E(qﬂ)pz -, *qz)iﬂ%}zz

1 1
(1+gps = 3= P+ g1+ )1 g |2

(1+q)p4:i(1—q2) P%‘%(l—‘f)mm

Similarly, we get
2D, RLf (2)
qaiq = T+qopiz+ {(q+q%) a3 —qpia3} 22 + S (9+ 4>+ ) $aas
Rof (2)

— (29 + %) Y1203 + qll’lﬂz}z { (9+9*+ 3 +4q*) psa5

— 29+ P+ ) Yav3a2a4 — (9 + %) Y343

+ (34 +4°) yipaazas — Wlaz}z +-
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Therefore, we have

(1+q)
_ ) 15
ap 2091 p1 (15)
1 (> +1) ,
_ n 16
a3 qupzpz 47 pi (16)
and
- (1+q) ps_(1+q)(q*2)(2q+1)plp2
2q(1+q9+42) s 49> (1+q+9%) ¢s an
LAt (@41 (P —q+1) 4
843 (1+q+4¢%) 3 v
We thus obtain
oo 1 -~ pA+q) - (1479t ,
o5 = 1| = 5y, |2 2947 &l 1

Finally, by applying Lemma 1 and Equation (13) in conjunction with (18), we obtain the result
asserted by Theorem 1. [

We now state and prove Theorem 2 below.

Theorem 2. Let f € RS, (6) be of the form (1). Then

1
Il

’a2a4 - a%‘ <

N

Proof. From (15)—(17), we obtain

e (1+q)° (a2 (29+1)  (P+D) ,
s <4q2(1+q+»72)¢1¢3>p1p3 <8q3(1+q+q2)¢1¢3 T )V
g (L) A’ (@) (P o))
? l6q4y3 160% (144 +42) 19 !

_ 1
4923

By using Lemma 2, we have

2 ((Hq)z(qzﬂ)(qzqﬂ) (q2+1)2> s

a4 — a3 = 164° (1+q+q2) P13 - loqy3 &
(1+49)°
N (16q2(1+q+q2)¢1%> p{pi+ap (4-p1)x
2+1
TN (=
2
(1+9?@=2)29+1)\ H7(» i
C16° (1+q+ ) igps >p1{<p1+(4—P1)x>}

- <16;2¢%> {p‘l‘ + (4~ p%)2x2+2p% (4-1) x}~
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Now, taking the moduli and replacing |x| by p and p; by p, we have

|a20y —a| < e @) p*+20 (1497 ¥3p (4-1?)

Aq)
+Q(q) (4= 1) PP+ (0@ + 107932 +q (4 1?) 19)
S(14a+02) iy —20(1+0)ydp) (4-p2) 0]
=F(p.p),
where
A(g) =160° (1+q+0%) ¥rysyd,
w(g) = |(3+30— 0 +a*) 1+ 0¥ - (1+30+ 272 +27° +¢*)
: (1 +aq+ 612) 1!’1%‘
and

O(q) = |(1+9) (22 =50 -2) 93 +2q (2 +2) (14 9+ 02) us|.

Upon differentiating both sides (19) with respect to p, we have

aFg:;p) - (ﬁ) (@) (4=1) P+ 2(7(a+ 1 93p2 +q (4 - p?)

(Vg +a) s —20(1+9)93p) (4 ) ]

Itis clear that
oF(p,p)

9%
which show that F(p, p) is an increasing function of p on the closed interval [0, 1] . This implies that the
maximum value occurs at p = 1. This implies that

>0,

max{F(p,p)} = F(p,1) =: G(p).

We now observe that

G(p) = (ﬁ) (0@ -0@-q@+ 17+ (7+8+7°) pags) p*
+(40) +49(q+ 1743~ 8 (7% +4°) rys) 20)
+16 (q+ 2 +7°) Y195
=G(p)-

By differentiating both sides of (20) with respect to p, we have

G'(p) = <ﬁ> [4(w@-0@-a@+ D)+ (0+2+7) pays) p°

+2 (40(q) +49 (0 + 173~ 8 (0+ 2 +°) grips) p|
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Differentiating the above equation once again with respect to p, we get

G"(p) = (ﬁ) [12(0@-Q@-a@+ D43+ (0+7+7) prys) p?

+2 (40(q) +49 (0 + 173 =8 (0+ 2 +°) yas) ] -

For p = 0, this shows that the maximum value of (G(p)) occurs at p = 0. Hence, we obtain

The proof of Theorem 2 is thus completed. [

If, in Theorem 2, we let § — 1— and put § = 1, then we are led to the following known result.
Corollary 1. (see [18]) Let f € S*. Then
‘a2a4 — a%‘ <1,
and the inequality is sharp.

Theorem 3. Let f € RSy (0). Then

B (1+q)x(q)
|axas —ag| < FTIRTIRTY e

where

K(q):'(1+q+q2)2¢3—(q4—3q+6q2+q+1)¢1¢2. @1

Proof. Using the values given in (15) and (16) we have

pie e = (D@ +Y) A+ (P+1) (¢ —g+1)) 4
weoh T 83312 83 (4> + 4% +q*) n
+((Hq) (q*Z)(2q+1)(1+q)>p1p2 22)

492142 493 (2 + 4% +4%)
B ( (1+9) > .
2(q+9*+4%) s

We now use Lemma 2 and assume that p; < 2. In addition, by Lemma 3, we let p; = p and
assume without restriction that p € [0,2]. Then, by taking the moduli and applying the trigonometric
inequality on (22) with p = |x|, we obtain

(1+4q)
|aza3 — ay| < (8 T ¢1¢z¢3) [K @) P> +1(q) pl4—pp
+20291pa(4 — p?) + Pprn (p — 2) (4 — p)o?]
=:F(p),

where

1@) = |(1+7+3) vs+ (20— 0 —2q) 12|
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and « (¢) is given by (21). Differentiating F(p) with respect to p, we have

/ (1+4q)
F'(p) = (8(q3+q4+q5)¢1¢2%> [1(0) (4= ) +24%09s (p — 2) (4= p)p)]

> 0.
This implies that F(p) is an increasing function of p on the closed interval [0, 1]. Hence, we have
Flo)=F1)  (Vpe[01)),

that is,

F(p) < <s(q3+q(41:q?) 4]1%%) [(x@) @) - Pory2) p°

+ (41 (0) + 440192 ) p)
=:G(p).

Since p € [0,2], p = 2 is a point of maximum. We thus obtain

(1+q)x(g)
(4 +q* +9°) Y13’

which corresponds to p = 1 and p = 2 and it is the desired upper bound. [J

[IA

G(p)

For 6 = 1and g — 1—, we obtain the following special case of Theorem 3.
Corollary 2. (see [22]) Let f € S*. Then
|axaz — ays| < 2.
Finally, we prove Theorem 4 below.

Theorem 4. Let f € RS} (). Then

(1+q+4%) »(q) % (q) 7(q)
Ha(1) < ,
S = My P (1+q+ ) Y1293 W T EY AT O T R ar=
where
() = (1+9)° (¢* =30° + 647 +4+1), (23)
() = (1+0q) (47 +2¢° + 607 + 7" + 134 — 9 1) (24)

and x (q) is given by (21).

Proof. Since

’

Ha(L) < |a| 1204 — o3| + || 205 — as] + [as| a3 — a3

by using Lemma 3, we have

(1+4q) (1+q+64* —3¢° +¢*)
P(A+q+4) s

las| =
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and

las| < 7 (q) ,
TR+ ) (1 +g+47) ¢y

where 7 (g) is given by (24). Now, by applying Theorems 1-3, we have the required result asserted by
Theorem 4. [

4. Conclusions

By making use of the basic or quantum (g-) calculus, we have introduced a Ruscheweyh-type
g-derivative operator. This Ruscheweyh-type g-derivative operator is then applied to define a certain
subclass of g-starlike functions in the open unit disk U. We have successfully derived the upper bound
of the third Hankel determinant for this family of g-starlike functions which are associated with the
Ruscheweyh-type g-derivative operator. Our main results are stated and proved as Theorems 1-4.
These general results are motivated essentially by their several special cases and consequences, some
of which are pointed out in this presentation.
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Abstract: In this work, the natural transform decomposition method (NTDM) is applied to solve the
linear and nonlinear fractional telegraph equations. This method is a combined form of the natural
transform and the Adomian decomposition methods. In addition, we prove the convergence of our
method. Finally, three examples have been employed to illustrate the preciseness and effectiveness of
the proposed method.

Keywords: natural transform; Adomian decomposition method; Caputo fractional derivative;
generalized mittag-leffler function

1. Introduction

The fractional calculus (non-integer) plays an important role in applied mathematics and other
fields such as science, physics and engineering. It describes the smallest details of natural phenomena,
which is better than using a calculus integer. In [1] the fractional telegraph equation is obtained from
the classical telegraph equation by replacing the second-order distance derivative with the fractional
derivative (0 < a < 2) given to it. The telegraph equation describes the signal propagation of an
electrical